The Application of Sewage Sludge-Derived Compost or Biochar as a Nature-Based Solution (NBS) for Healthier Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Methods
2.3. Statistical Analysis
3. Results
3.1. Effects of SSC or SSB on Total C, N, and S Contents as Well as Available N and S Amounts
3.2. Effects of SSC or SSB on Various C Connections
4. Discussion
4.1. The Importance of SSC and SSB in Sustainable Soil Management
4.2. Quantitative Changes of Various C Connections
4.3. Relationships Between Applied Organic Amendments and Available Amounts of N and S
4.4. Challenges and Future Research Recommendations
- To follow the life cycle assessment (LCA) of SSC and SSB in different soil and climate conditions and with different crops;
- To develop universal indicators for soil health that reflect the effect of sustainable soil management practices in a realistic and meaningful way;
- To compare the effect of carbon farming in relation to SSC vs. SSB with clear recommendations in relation to specific soil conditions.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Official Journal of the European Communities. L 370. 2014/955/EU: Commission Decision of 18 December 2014 Amending Decision 2000/532/EC on the List of Waste Pursuant to Directive 2008/98/EC of the European Parliament and of the Council Text with EEA Relevance. Available online: http://data.europa.eu/eli/dec/2014/955/oj (accessed on 15 October 2024).
- Goldan, E.; Nedeff, V.; Barsa, N.; Culea, M.J.; Tomozei, C.; Panainte-Lehadus, M.; Mosnegutu, E. Evaluation of the use of sewage sludge biochar as a soil amendment—A review. Sustainability 2022, 14, 5309. [Google Scholar] [CrossRef]
- Jakubus, M. Current trends in sustaianbble sewage sludge management—A case study for Poznań country, Poland. Sustainability 2024, 16, 5056. [Google Scholar] [CrossRef]
- Boudjabi, S.; Chenchouni, H. On the sustainability of land applications of sewage sludge: How to apply the sewage sludge biosolid in order to improve soil fertility and increase crop yield? Chemosphere 2021, 282, 131122. [Google Scholar] [CrossRef]
- Dhanker, R.; Chaudhary, S.; Goyal, S.; Garg, V.K. Influence of urban sewage sludge amendment on agricultural soil parameters. Env. Technol. Inno. 2021, 23, 101642. [Google Scholar] [CrossRef]
- Černe, M.; Palčić, I.; Pasković, I.; Major, N.; Romić, M.; Filipović, V.; Igrc, M.; Perčin, A.; Goreta Ban, S.; Zorko, B.; et al. The effect of stabilization on the utilization of municipal sewage sludge as a soil amendment. Waste Manag. 2019, 94, 27–38. [Google Scholar] [CrossRef]
- Černe, M.; Palčić, I.; Major, N.; Pasković, I.; Perković, J.; Užila, Z.; Filipović, V.; Romić, M.; Goreta Ban, S.; Jaćimović, R.; et al. Effect of sewage sludge derived compost or biochar amendment on the phytoaccumulation of potentially toxic elements and radionuclides by Chinese cabbage. J. Environ. Manag. 2021, 293, 112955. [Google Scholar] [CrossRef] [PubMed]
- Horvatić, V.; Begić, H.B.; Romić, D.; Černe, M.; Goreta Ban, S.; Zovko, M.; Romić, M. Evaluation of land potential for use of biosolids in the coastal Mediterranean karst region. Land 2021, 10, 1035. [Google Scholar] [CrossRef]
- Shaddel, S.; Bakhtiary-Davijany, H.; Kabbe, C.; Dadgar, F.; Østerhus, S.W. Sustainable sewage sludge management: From current practices to emerging nutrient recovery technologies. Sustainability 2019, 11, 3435. [Google Scholar] [CrossRef]
- Alvarenga, P.; Farto, M.; Mourinha, C.; Palma, P. Beneficial use of dewatered and composted sewage sludge as soil amendments: Behaviour of metals in soils and their uptake by plants. Waste Biomass Valori. 2016, 7, 1189–1201. [Google Scholar] [CrossRef]
- Abd Elsalam, H.E.; El-Sharnouby, M.E.; Mohamed, A.E.; Raafat, B.M.; El-Gamal, E.H. Effect of sewage sludge compost usuage on corn and faba bean growth, carbon and nitrogen forms in plants and soil. Agronomy 2021, 11, 628. [Google Scholar] [CrossRef]
- Filipović, V.; Černe, M.; Šimůnek, J.; Filipović, L.; Romić, M.; Ondrasek, G.; Bogunovic, I.; Mustać, I.; Krevh, V.; Ferenčević, A.; et al. Modelling water flow and phosphorus sorption in a soil amended with sewage sludge and olive pomace as compost or biochar. Agronomy 2020, 10, 1163. [Google Scholar] [CrossRef]
- Wang, D.; Lin, J.Y.; Sayre, J.M.; Schmidt, R.; Fonte, S.J.; Rodrigues, J.L.; Scow, K.M. Compost amendment maintains soil structure and carbon storage by increasing available carbon and microbial biomass in agricultural soil—A six-year field study. Geoderma 2020, 427, 116117. [Google Scholar] [CrossRef]
- Jakubus, M. A comparative study of composts prepared from various organic waste based on biological and chemical parameters. Agronomy 2020, 10, 869. [Google Scholar] [CrossRef]
- Jakubus, M.; Graczyk, M. Effect of composted sewage sludge on the rate of C, N and P mineralization in sandy soil. EJPAU 2016, 19, #10. Available online: http://www.ejpau.media.pl/volume19/issue4/art-10.html (accessed on 15 October 2024).
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A Review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Nogues, I.; Miritana, V.M.; Passatore, L.; Zacchini, M.; Peruzzi, E.; Carloni, S.; Pietrini, F.; Marabottini, R.; Chiti, T.; Massaccesi, L.; et al. Biochar soil amendment as carbon farming practice in a Mediterranean environment. Geoderma Reg. 2023, 33, e00634. [Google Scholar] [CrossRef]
- Du, Z.-L.; Zhao, J.-K.; Wang, Y.-D.; Zhang, Q.-Z. Biochar addition drivers soil aggregation and carbon sequestration in aggregate fractions from intensive agricultural system. J. Soils Sediments 2017, 17, 581–589. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, H.; Zhang, T.; Nan, X.; Ma, F. Effect of pyrolysis temperature on sulfur content, extractable fraction and release of sulfate in corn straw biochar. RSC Adv. 2018, 8, 35611–35617. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, R.; Wu, J.; Cai, L.; Dong, B. Effect of different biochar application rates on soil organic carbon in the semi-arid Loess Plateau, China. Commun. Soil Sci. Plant Anal. 2021, 52, 423–431. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Dhanjal, D.S.; Datta, S.; Bhatia, D.; Dhiman, J.; Samuel, J.; Prasad, R.; Singh, J. A sustainable paradigm of sewage sludge biochar: Valorization, opportunities, challenges and future prospects. J. Clean. Prod. 2020, 269, 122259. [Google Scholar] [CrossRef]
- Sharma, M.; Kaushal, R.; Kaushik, P.; Ramakrishna, S. Carbon farming: Prospects and challenges. Sustainability 2021, 13, 11122. [Google Scholar] [CrossRef]
- Shahane, A.A.; Shivay, Y.S. Soil health and its improvement through novel agronomic and innovative approaches. Front. Agron. 2021, 3, 680456. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal. COM(2019) 640 Final. 2019. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 15 October 2024).
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Debele, S.E.; Leo, L.S.; Kumar, P.; Sahani, J.; Ommer, J.; Bucchignani, E.; Vranić, S.; Kalas, M.; Amirzada, Z.; Pavlova, I.; et al. Nature-based solutions can help reduce the impact of natural hazards. A global analysis of NBS case studies. Sci. Total Environ. 2023, 902, 165824. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Research and Innovation, EU Missions—Soil Deal for Europe—What Is the EU Mission—A Soil Deal for Europe, Publications Office of the European Union. 2023. Available online: https://data.europa.eu/doi/10.2777/171313 (accessed on 15 October 2024).
- Keesstra, S.D.; Veraart, J.A.; Verhagen, A.; Visser, S.M.; Kragt, M.; Linderhof, V.; Appelman, W.A.J.; van den Berg, J.; Deolu-Ajayi, A.O.; Groot, A.M.E. Nature-Based Solutions as Building Blocks for the Transition towards Sustainable Climate-Resilient Food Systems. Sustainability 2023, 15, 4475. [Google Scholar] [CrossRef]
- Wu, H.; Lai, C.; Zeng, G.; Liang, J.; Chen, J.; Xu, J.; Dai, J.; Li, X.; Liu, J.; Chen, M.; et al. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: A review. Crit. Rev. Biotechnol. 2017, 37, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, A. Humus and Soil Conservation. In Humic Substances in Terrestrial Ecosystems; Piccolo, A., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1999; pp. 225–264. [Google Scholar]
- Jakubus, M.; Bakinowska, E.; Tobiasova, E. Valorization of sewage sludge humic compounds in the aspect of its application in natural environment. Environ. Prot. Eng. 2021, 47, 67–83. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Bašić, F. The Soils Of Croatia; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Černe, M.; Palčić, I.; Major, N.; Pasković, I.; Perković, J.; Užila, Z.; Filipović, V.; Romić, M.; Goreta Ban, S.; Heath, D.J.; et al. Effect of sewage sludge-derived amendments on the nutrient uptake by Chinese cabbage from Mediterranean soils. J. Plant Nutr. 2022, 46, 1421–1445. [Google Scholar] [CrossRef]
- Cornelissen, G.; Pandit, N.R.; Taylor, P.; Pandit, B.H.; Sparrevik, M.; Schmidt, H.P. Emissions and char quality of flame-curtain “Kon Tiki” kilns for farmer-scale charcoal/biochar production. PLoS ONE 2016, 11(5), e0154617. [Google Scholar] [CrossRef]
- Van-Reeuwijk, L. Procedures for Soil Analysis, 3rd ed.; International Soil Reference and Information Center (ISRIC): Wageningen, The Netherlands, 1992. [Google Scholar]
- Loginov, W.; Wisniewski, W.; Gonet, S.S.; Cieścinska, B. Fractionation of organic carbon based on susceptibility to oxidation. Pol. J. Soil Sci. 1987, 20, 47–52. [Google Scholar]
- Ghani, A.; Dexter, M.; Perrott, K.W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biol. 2003, 35, 1231–1245. [Google Scholar] [CrossRef]
- Dziadowiec, H.; Gonet, S. A methodological guide to soil organic matter research. PTG 1999, 120, 31–33. [Google Scholar]
- Mushtaq, M.; Iqbal, M.K.; Khalid, A.; Khan, R.A. Humification of poultry waste and rice husk using additives and its application. Int. J. Recycl. Org. Waste Agricul. 2019, 8, 15–22. [Google Scholar] [CrossRef]
- Bardsley, C.E.; Lancaster, J.D. Determination of reserve sulfur and soluble sulfates in soils. Soil Sci. Soc. Am. Proc. 1960, 24, 265. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic Forms. In Methods for Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; Agron. Monogr. ASA: Medison, WI, USA; SSSA: Medison, WI, USA, 1982. [Google Scholar]
- Rorat, A.; Courtois, P.; Vandenbulcke, F.; Lemiere, S. Sanitary and environmental aspects of sewage sludge management. In Industrial and Municipal Sludge; Elsievier Inc.: Amsterdam, The Netherlands, 2019; pp. 155–177. [Google Scholar]
- Rodrigues, L.; Budai, A.; Elsgaard, L.; Hardy, B.; Keel, S.G.; Mondini, C.; Plaza, C.; Leifeld, J. The importance of biochar quality and pyrolysis yield for soil carbon sequestration in practice. Eur. J. Soil Sci. 2023, 74, e13396. [Google Scholar] [CrossRef]
- Zoghlami, R.I.; Hechmi, S.; Weghlani, R.; Jedidi, N.; Moussa, M. Biochar derived from domestic sewage sludge: Influence of temperature pyrolysis on biochars’ chemical properties and phytotoxicity. J. Chem. 2021, 2021, 1818241. [Google Scholar] [CrossRef]
- Ayaz, M.; Feiziene, D.; Tilvikiene, V.; Akhtar, K.; Stulpinaite, U.; Iqbal, R. Biochar role in the sustainability of Agriculture and Environment. Sustainability 2021, 13, 1330. [Google Scholar] [CrossRef]
- Hernandez, T.; Chocano, C.; Moreno, J.J.; Garcia, C. Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops-effects on soil and plant. Soil Till. Res. 2016, 160, 14–22. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Kopeć, M.; Ukalska-Jaruga, A. Biochar changes in soil based on quantitative and qualitative humus compounds parameters. Soil Sci. Annu. 2018, 69, 234–242. [Google Scholar] [CrossRef]
- Šimansky, V.; Horak, J.; Lukac, M. Addition of Biochar and Fertilizer Drives Changes in Soil Organic Matter and Humic Substance Content in Haplic Luvisol. Land 2024, 13, 481. [Google Scholar] [CrossRef]
- Šrank, D.; Šimansky, V. Differences in soil organic matter and humus of sandy soil after application of biochar substances and combination of biochar substrates with mineral fertilizers. Acta Fytotechn. Zootech. 2020, 23, 117–124. [Google Scholar] [CrossRef]
- You, J.; Sun, L.; Liu, X.; Hu, X.; Xu, Q. Effects of sewage sludge biochar on soil characteristics and crop yield in loamy sand soil. Pol. J. Env. Stud. 2019, 28, 2973–2980. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, Y.; Han, I.; Wang, P.; Mei, Q.; Huang, Y. Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus and enzyme activity in paddy soil. Sci. Rep. 2020, 10, 8837. [Google Scholar] [CrossRef] [PubMed]
- Cybulak, M.; Sokołowksa, Z.; Boguta, P. The influence of biochar on the content of carbon and chemical transformations of fallow and grassland humic acids. Sci. Rep. 2021, 11, 5698. [Google Scholar] [CrossRef] [PubMed]
- Jakubus, M.; Michalak-Oparowska, W. Valorization of vermicomposts and composts quality using various parameters. Agriculture 2022, 12, 293. [Google Scholar] [CrossRef]
- Corvasce, M.; Zsolnay, A.; D’Orazio, V.; Lopez, R.; Miano, T.M. Characterization of water extractable organic matter in a deep soil profile. Chemosphere 2006, 62, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Xing, M.; Yang, J.; Qi, W.; Lu, Y. Chemical and spectroscopic characterisation of water extractable organic matter during vermicomposting of cattle dung. Bioresour. Technol. 2013, 132, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Cross, A.; Sohi, S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Sci. Soc. Am. J. 2011, 74, 2127–2134. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; Cakmak, I.; Coskun, D.; De Kok, L.J.; Lambers, H.; Schjoerring, J.K.; White, P.J. Functions of macronutrients. In Marschner’s Mineral Nutrition of Plants; Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Skrumsager Møller, I., White, P., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2023; pp. 135–189. [Google Scholar] [CrossRef]
- Rodriguez, B.C.; Duraz-Zuaza, V.H.; Rodriguez, M.S.; Garcia-Tejero, I.F.; Ruiz, B.G.; Tavira, S.C. Conservation agriculture as a sustainable system for soil health: A review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Siebielec, G.; Siebielec, S.; Pecio, M. The impact of exogenous organic matter on wheat growth and mineral nitrogen availability in soil. Agronomy 2020, 10, 1314. [Google Scholar] [CrossRef]
- Jakubus, M.; Graczyk, M. Quantitative changes in sulfur fractions during cocomposting of pine bark with green plant material. Pol. J. Env. Stud. 2019, 28, 2633–2644. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar addition alter phosphorous and nitrogen availability in agricultural ecosystems: A meta-analysis. Sci. Total Environ. 2019, 654, 463–472. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Xu, C.-Y.; Tahmasbian, I.; Che, R.; Xu, Z.; Zhou, X.; Wallace, H.M.; Bai, S.H. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef]
- Bardhod, J.; Rumpel, C.; Dignac, M.-F. Composting with additives to improve organic amendments. A Review. Agron. Sustain. Dev. 2018, 38, 17. [Google Scholar] [CrossRef]
- Gu, W.; Sun, W.; Lu, Y.; Li, X.; Xu, P.; Xie, K.; Sun, L.; Wu, H. Effect of Thiobacillus tioparus 1904 and sulfur addition on odour emission during aerobic composting. Bioresour. Technol. 2018, 249, 254. [Google Scholar] [CrossRef] [PubMed]
Treatments | TN * | TS | TC | C:N | C:S | C:N:S |
---|---|---|---|---|---|---|
C25 * | 7.13 d | 0.85 e | 63.61 d | 8.9 | 74.8 | 10.5 |
C50 | 13.66 e | 1.57 bc | 142.56 c | 10.4 | 90.8 | 6.6 |
C75 | 20.63 b | 2.6 b | 196.5 b | 9.5 | 75.6 | 3.7 |
C100 | 27.95 a | 3.28 a | 262 a | 9.4 | 79.9 | 2.9 |
B25 | 2.15 e | 0.53 de | 23.81 e | 11.1 | 44.9 | 20.9 |
B50 | 4.16 de | 0.96 de | 40.92 de | 9.8 | 42.6 | 10.2 |
B75 | 4.81 de | 1.7 de | 52.49 d | 10.9 | 30.9 | 6.4 |
B100 | 5.25 de | 1.95 bc | 60.72 d | 11.6 | 44.9 | 8.6 |
Control | 1.21 f | 0.08 f | 5.34 f | 4.4 | 66.8 | 55.2 |
Treatments | AN * | AS |
---|---|---|
C25 * | 89.24 d | 25.35 e |
C50 | 174.99 c | 46.18 e |
C75 | 319.68 b | 56.19 e |
C100 | 398.4 a | 67.73 e |
B25 | 40.83 ef | 407.88 d |
B50 | 58.33 e | 711.22 c |
B75 | 60.66 e | 1056.93 b |
B100 | 70.83 e | 1389.76 a |
Control | 31.5 f | 8.22 e |
Treatments | TOC * | CHS | WEOC | LC | Q4/6 | PD |
---|---|---|---|---|---|---|
C25 * | 49.91 d | 19.47 c | 10.82 c | 10.34 c | 5.3 | 1.8 |
C50 | 102.35 c | 33.56 b | 46.05 b | 15.45 b | 5.6 | 1.4 |
C75 | 145.76 b | 42.61 a | 88.92 a | 23.77 a | 5.4 | 1.2 |
C100 | 206.58 a | 45.25 a | 109.46 a | 27.37 a | 5.3 | 1.1 |
B25 | 12.40 e | 6.4 e | 2.56 e | 3.44 de | 3.8 | 0.5 |
B50 | 21.48 e | 10.4 de | 4.20 e | 4.93 de | 3.8 | 0.3 |
B75 | 28.63 e | 12.6 d | 5.22 e | 5.53 de | 3.9 | 0.2 |
B100 | 30.92 e | 14.35 d | 6.28 e | 6.86 c | 3.8 | 0.2 |
Control | 4.37 f | 2.94 f | 1.05 f | 2 e | 3.6 | 0.6 |
WEOC * | CHS | LC | AN | AS | |
---|---|---|---|---|---|
Treatments with SSC doses | |||||
TOC | 0.997 ** | 0.904 ** | 0.905 ** | 0.846 ** | 0.816 ** |
WEOC | - | 0.927 ** | 0.915 ** | 0.876 ** | 0.847 ** |
CHS | n.s. | - | 0.904 ** | 0.952 ** | 0.930 ** |
LC | n.s. | n.s. | - | 0.886 ** | 0.899 ** |
Treatments with SSB doses | |||||
TOC | 0.984 ** | 0.838 ** | n.s. | n.s. | 0.856 ** |
WEOC | - | 0.834 ** | n.s. | n.s. | 0.913 ** |
CHS | n.s. | - | n.s. | n.s. | 0.800 ** |
LC | n.s. | n.s. | - | n.s. | 0.709 ** |
Treatments | Y | X | β 0 | β 1 |
---|---|---|---|---|
Treatments with SSC doses | WEOC * | TOC | −5.668 | 0.559 |
CHS | TOC | 17.348 | 0.139 | |
LC | TOC | 20.083 | 0.037 | |
AN | TOC | 0.104 | 0.037 | |
AS | TOC | 0.053 | 0.0005 | |
AS | WEOC | 0.053 | 0.0001 | |
AN | WEOC | 0.115 | 0.0028 | |
LC | WEOC | 20.43 | 0.066 | |
CHS | WEOC | 18.49 | 0.253 | |
LC | CSH | −50.199 | 3.425 | |
AN | CSH | 10.291 | 81.164 | |
AS | CSH | −57.737 | 1468.3 | |
AS | LC | 1.07 | 374.15 | |
AN | LC | 18.589 | 19.935 | |
Treatments with SSB doses | WEOC | TOC | −1.688 | 0.365 |
CHS | TOC | 14.894 | 0.418 | |
AS | TOC | −0.266 | 0.078 | |
AS | WEOC | 0.051 | 0.224 | |
CHS | WEOC | 12.85 | 1.118 | |
AS | CHS | 12.48 | 4.375 | |
AS | LC | 6.607 | 0.654 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubus, M.; Černe, M.; Palčić, I.; Pasković, I.; Ban, S.G.; Ban, D. The Application of Sewage Sludge-Derived Compost or Biochar as a Nature-Based Solution (NBS) for Healthier Soil. Sustainability 2025, 17, 1630. https://doi.org/10.3390/su17041630
Jakubus M, Černe M, Palčić I, Pasković I, Ban SG, Ban D. The Application of Sewage Sludge-Derived Compost or Biochar as a Nature-Based Solution (NBS) for Healthier Soil. Sustainability. 2025; 17(4):1630. https://doi.org/10.3390/su17041630
Chicago/Turabian StyleJakubus, Monika, Marko Černe, Igor Palčić, Igor Pasković, Smiljana Goreta Ban, and Dean Ban. 2025. "The Application of Sewage Sludge-Derived Compost or Biochar as a Nature-Based Solution (NBS) for Healthier Soil" Sustainability 17, no. 4: 1630. https://doi.org/10.3390/su17041630
APA StyleJakubus, M., Černe, M., Palčić, I., Pasković, I., Ban, S. G., & Ban, D. (2025). The Application of Sewage Sludge-Derived Compost or Biochar as a Nature-Based Solution (NBS) for Healthier Soil. Sustainability, 17(4), 1630. https://doi.org/10.3390/su17041630