Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology
Abstract
:1. Introduction
2. Microorganisms in Extreme Environmental Conditions
2.1. Thermophiles and Hyperthermophiles
2.2. Psychrophiles
2.3. Acidophiles
2.4. Alkaliphiles
2.5. Halophiles
2.6. Piezophiles
3. Contributions to Astrobiology
3.1. Origin of Life
3.2. The Search for Extraterrestrial Life
3.2.1. Mars
3.2.2. Europa
3.3. Panspermia
4. Concluding Remarks
References
- Horikoshi, K.; Grant, W.D. Extremophiles: Microbial Life in Extreme Environments; Wiley-Liss: New York, NY, USA, 1998. [Google Scholar]
- Rampelotto, P.H. The search for life on other planets: Sulfur-based, silicon-based, ammonia-based life. J. Cosmol. 2009, 1, 818–827. [Google Scholar]
- Pikuta, E.V.; Hoover, R.B. Microbial extremophiles at the limits of life. Crit. Rev. Microbiol. 2007, 33, 183–209. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, L.J.; Mancinelli, R.L. Life in extreme environments. Nature 2001, 409, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- López-García, P. Extremophiles. In Lectures in Astrobiology; Gargaud, M., Barbier, B., Martin, H., Reisse, J., Eds.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Seckbach, J. Life as We Know It; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Westall, F. Early life on Earth: The ancient fossil record. In Astrobiology: Future Perspectives; Ehrenfreund, P., Irvine, W., Owen, T., Becker, L., Blank, J., Brucato, J., Colangeli, L., Derenne, S., Dutrey, A., Despois, D., Lascano, A., Robert, F., Eds.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Cavicchioli, R. Extremophiles and the search for extraterrestrial life. Astrobiology 2002, 2, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Horneck, G.; Rettberg, P. Complete Course in Astrobiology; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007. [Google Scholar]
- Rampelotto, P.H. Are we descendants of extraterrestrials? J. Cosmol. 2009, 1, 86–88. [Google Scholar]
- Madigan, M.T.; Martino, J.M. Brock Biology of Microorganisms, 11th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Nakagawa, S.; Takai, K. The isolation of thermophiles from deep-sea hydrothermal environments. In Methods in Microbiology: Extremophiles; Rainey, F.A., Oren, A., Eds.; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Lund, E.; John, W. Characteristics, development and utilization of geothermal resources. Q. Bull. 2007, 28, 1–9. [Google Scholar]
- Amend, J.P.; Rogers, K.L.; Shock, E.L.; Gurrieri, S.; Inguaggiato, S. Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 2003, 1, 37–58. [Google Scholar] [CrossRef]
- Satyanarayana, T.; Raghukumar, C.; Shivaji, S. Extremophilic microbes: Diversity and perspectives. Curr. Sci. 2005, 89, 78–90. [Google Scholar]
- Schleper, C.; Puehler, G.; Holz, I.; Gambacorta, A.; Janekovic, D.; Santarius, U.; Klenk, H.P.; Zillig, W. Picrophilus gen. nov. fam. nov.: A novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J. Bacteriol. 1995, 177, 7050–7059. [Google Scholar] [PubMed]
- Desbruyères, F.D.; Almeida, A.; Biscoito, M.; Comtet, T.; Khripounoff, A.; Le Bris, N.; Sarradin, P.M.; Segonzac, M. A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: Dispersal vs. environmental controls. Hydrobiologia 2000, 440, 201–216. [Google Scholar] [CrossRef]
- Daniel, R.M.; Cowan, D.A. Biomolecular stability and life at high temperatures. Cell. Mol. Life Sci. 2000, 57, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Takai, K.; Nakamura, K.; Toki, T.; Tsunogai, U.; Miyazaki, M.; Miyazaki, J.; Hirayama, H.; Nakagawa, S.; Nunoura, T.; Horikoshi, K. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Nat. Acad. Sci. USA 2008, 105, 10949–10954. [Google Scholar] [CrossRef] [PubMed]
- Ulrih, N.P.; Gmajner, D.; Raspor, P. Structural and physicochemical properties of polar lipids from thermophilic archaea. Appl. Microbiol. Biotechnol. 2009, 84, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Nussinov, R. How do thermophilic proteins deal with heat? Cell. Mol. Life Sci. 2001, 58, 1216–1233. [Google Scholar] [CrossRef] [PubMed]
- Jaenicke, R. Stability and folding of ultrastable proteins: Eye lens crystallins and enzymes from thermophiles. FASEB J. 1996, 10, 84–92. [Google Scholar] [PubMed]
- Hickey, D.A.; Singer, G.A. Genomic and proteomic adaptations to growth at high temperature. Genome Biol. 2004, 5, 117.1–117.7. [Google Scholar] [CrossRef]
- Marguet, E.; Forterre, P. Protection of DNA by salts against thermodegradation at temperatures typical for hyperthermophiles. Extremophiles 1998, 2, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, L. Extremophiles: Defining the envelope for the search for life in the universe. In Planetary Systems and the Origins of Life; Pudritz, R., Higgs, P., Stone, J., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Atkins, P.W.; Locke, J.W. Physical Chemistry, 7th ed.; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Margesin, R.; Schinner, F.; Marx, J.C.; Gerday, C. Psychrophiles: From Biodiversity to Biotechnolgy; Springer: New York, NY, USA, 2008. [Google Scholar]
- Rodrigues, D.F.; Jesus, E.C.; Ayala-del-Río, H.L.; Pellizari, V.H.; Gilichinsky, D.; Sepulveda-Torres, L.; Tiedje, J.M. Biogeography of two cold-adapted genera: Psychrobacter and Exiguobacterium. ISME J. 2009, 3, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, R. Cold-adapted archaea. Nat. Rev. Microbiol. 2006, 4, 331–343. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, S.; Collins, T.; Marx, J.C.; Feller, G.; Gerday, C. Psychrophilic microorganisms: Challenges for life. EMBO J. 2006, 7, 385–389. [Google Scholar] [CrossRef]
- Nichols, D.; Miller, M.R.; Davies, N.W.; Goodchild, A.; Raftery, M.; Cavicchioli, R. Cold adaptation in the Antarctic archaeon, Methanococcoides burtonii, involves membrane lipid unsaturation. J. Bacteriol. 2004, 186, 8508–8515. [Google Scholar] [CrossRef] [PubMed]
- Feller, G.; Gerday, C. Psychrophilic enzymes: Hot topics in cold adaptation. Nat. Rev. Microbiol. 2003, 1, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, A.; Saunders, N.F.W.; Ertan, H.; Raftery, M.; Guilhaus, M.; Curmi, P.M.G.; Cavicchioli, R. A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol. Microbiol. 2004, 53, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.A.; Hill, P.J.; Dodd, C.E.; Laybourn-Parry, J. Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 2004, 150, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Morozkina, E.V.; Slutskaya, E.S.; Fedorova, T.V.; Tugay, T.I.; Golubeva, L.I.; Koroleva, O.V. Extremophilic microorganisms: Biochemical adaptation and biotechnological application. Appl. Biochem. Microbiol. 2010, 46, 1–14. [Google Scholar] [CrossRef]
- Rohwerder, T.; Sand, W. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes. Eng. Life Sci. 2007, 7, 301–309. [Google Scholar] [CrossRef]
- Dopson, M.; Baker-Austin, C.; Hind, A.; Bowman, J.P.; Bond, P.L. Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl. Environ. Microbiol. 2004, 70, 2079–2088. [Google Scholar] [CrossRef] [PubMed]
- González-Toril, E.; Llobet-Brossa, E.; Casamayor, E.O.; Amann, R.; Amils, R. Microbial ecology of an extreme acidic environment, the Tinto River. Appl. Environ. Microbiol. 2003, 69, 4853–4865. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; Dopson, M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 2007, 15, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, K. Alkaliphiles: Some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 1999, 63, 735–750. [Google Scholar] [PubMed]
- Grant, W.D. Alkaline environments and biodiversity. In Extremophiles: Basic Concepts; Gerdsy, C., Glansdorff, N., Eds.; Encyclopedia of Life Support Systems: Paris, France, 2003. [Google Scholar]
- Martins, R.F.; Davids, W.; Al-Sond, W.A.; Levander, F.; Radström, P.; Hatti-Kaul, R. Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles 2001, 5, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.; Nilsson, E.; Arlinger, J.; Hallbeck, L.; O’Neill, A. Distribution, diversity and activity of microorganisms in the hyper-alkaline spring waters of Maqarin in Jordan. Extremophiles 2004, 8, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Gareeb, A.P.; Setati, M.E. Assessment of alkaliphilic haloarchaeal diversity in Sua pan evaporator ponds in Botswana. Afr. J. Biotechnol. 2009, 8, 259–267. [Google Scholar]
- Krulwich, T.A.; Ito, M.; Hicks, D.B.; Gilmour, R.; Guffanti, A.A. pH homeostasis and ATP synthesis: Studies of two processes that necessitate inward proton translocation in extremely alkaliphilic Bacillus species. Extremophiles 1998, 2, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, K. Alkaliphiles: Genetic Properties and Applications of Enzymes; Springer: Berlin, Germany, 2006. [Google Scholar]
- DasSarma, S.; Arora, P. Halophiles, Encyclopedia of Life Sciences; Nature Publishing Group: London, UK, 2002. [Google Scholar]
- Litchfield, C.D.; Gillevet, P.M. Microbial diversity and complexity in hypersaline environments: A preliminary assessment. J. Ind. Microbiol. Biotechnol. 2002, 28, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Madern, D.; Ebel, C.; Zaccai, G. Halophilic adaptation of enzymes. Extremophiles 2000, 4, 91–98. [Google Scholar] [CrossRef] [PubMed]
- DasSarma, S. Extreme halophiles are models for Astrobiology. Microbe 2006, 1, 120–126. [Google Scholar]
- Oren, A. Adaptation of halophilic archaea to life at high salt concentrations. In Salinity: Environment—Plants—Molecules; Lauchli, A., Luttge, U., Eds.; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Michael, T.; Madigan, M.; Orent, A. Thermophilic and halophilic extremophiles. Curr. Opin. Microbiol. 1999, 2, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Abe, F.; Horikoshi, K. The biotechnological potential of piezophiles. Trends Biotechnol. 2001, 19, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Yayanos, A.A. Microbiology to 10,500 meters in the deep-sea. Annu. Rev. Microbiol. 1995, 49, 777–805. [Google Scholar] [CrossRef] [PubMed]
- Kato, C.; Inoue, A.; Horikoshi, K. Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol. 1996, 14, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Kotelnikova, S. Microbial production and oxidation of methane in deep subsurface. Earth-Sci. Rev. 2002, 58, 367–395. [Google Scholar] [CrossRef]
- Takai, K.; Moser, D.P.; DeFlaun, M.; Onstott, T.C.; Fredrickson, J.K. Archaeal diversity in waters from deep South African gold mines. Appl. Environ. Microbiol. 2001, 67, 5750–5760. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Keprta, K.L.; Wentworth, S.J.; McKay, D.S.; Taunton, A.E.; Allen, C.C.; Romanek, C.S.; Gibson, E.K. Subsurface terrestrial microfossils from Columbia River Basalt samples: Analogs of features in Martian meteorite Allan Hills 84001. Meteorit. Planet. Sci. 1997, 32, 128–129. [Google Scholar]
- Dartnell, L. Extremophiles. In Life in the Universe: A Beginner’s Guide; Dartnell, L., Ed.; Oneworld Publications: Cambridge, UK, 2007. [Google Scholar]
- Sharma, A.; Scott, J.H.; Cody, G.D.; Fogel, M.L.; Hazen, R.M.; Hemley, R.J.; Huntress, W.T. Microbial activity at gigapascal pressures. Science 2002, 295, 1514–1516. [Google Scholar] [CrossRef] [PubMed]
- Nakasone, K.; Ikegami, A.; Kato, C.; Usami, R.; Horikoshi, K. Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 1998, 2, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.H. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 2002, 1595, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Aertsen, A.; Meersman, F.; Hendrick, M.E.G.; Vogel, R.F.; Michiels, C.W. Biotechnology under high pressure: Applications and implications. Trends Biotechnol. 2009, 27, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Lal, A.K. Origin of life. Astrophys. Space Sci. 2008, 317, 267–278. [Google Scholar] [CrossRef]
- Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 2008, 6, 805–814. [Google Scholar] [PubMed]
- Stetter, K.O. Hyperthermophilic life on Earth—And on Mars? In Planetary Systems and the Origins of Life; Pudritz, R., Higgs, P., Stone, J., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Waters, E.; Hohn, M.J.; Ahel, I.; Graham, D.E.; Adams, M.D.; Barnstead, M.; Beeson, K.Y.; Bibbs, L.; Bolanos, R.; Keller, M.; Kretz, K.; Lin, X.; Mathur, E.; Ni, J.; Podar, M.; Richardson, T.; Sutton, G.G.; Simon, M.; Soll, D.; Stetter, K.O.; Short, J.M.; Noordewier, M. The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism. Proc. Nat. Acad. Sci. USA 2003, 100, 12984–12988. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.T.; German, C.R. On the global distribution of hydrothermal vent fields. Geophys. Monogr. 2004, 148, 245–266. [Google Scholar]
- Kelley, D.S.; Baross, J.A.; Delaney, J.R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet Sci. 2002, 30, 385–491. [Google Scholar] [CrossRef]
- Takai, K.; Komatsu, T.; Inagaki, F.; Horikoshi, K. Distribution of archaea in a black smoker chimney structure. Appl. Environ. Microbiol. 2001, 67, 3618–3629. [Google Scholar] [CrossRef] [PubMed]
- Gribaldo, S.; Brochier-Armanet, C. The origin and evolution of archaea: A state of the art. Phil. Trans. R. Soc. Lond. B 2006, 361, 1007–1022. [Google Scholar] [CrossRef]
- Boussau, B.; Blanquart, S.; Necsulea, A.; Lartillot, N.; Gouy, M. Parallel adaptations to high temperatures in the Archaean eon. Nature 2008, 456, 942–945. [Google Scholar] [CrossRef] [PubMed]
- Rampelotto, P.H.; Rosa, M.B.; Schuch, N.J.; Schuch, A.P.; Pinheiro, D.K.; Munakata, N. Exobiology at southern Brazil: Spore dosimetry and the UV solar radiation. In Bioastronomy 2007: Molecules, Microbes and Extraterrestrial Life; Werthimer, D., Meech, K., Siefert, J., Mumma, M., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2010. [Google Scholar]
- Krasnopolsky, V.A. Atmospheric chemistry on Venus, Earth, and Mars: Main features and comparison. Planet. Space Sci. 2010, (in press). [Google Scholar]
- Jakosky, B.M.; Phillips, R.J. Mars’ volatile and climate history. Nature 2001, 412, 237–244. [Google Scholar] [CrossRef] [PubMed]
- McEwen, A.S.; Hansen, C.J.; Delamere, W.A.; Eliason, E.M.; Herkenhoff, K.E.; Keszthelyi, L.; Gulick, V.C.; Kirk, R.L.; Mellon, M.T.; Grant, J.A.; Thomas, N.; Weitz, C.M.; Squyres, S.W.; Bridges, N.T.; Murchie, S.L.; Seelos, F.; Seelos, K.; Okubo, C.H.; Milazzo, M.P.; Tornabene, L.L.; Jaeger, W.L.; Byrne, S.; Russell, P.S.; Griffes, J.L.; Martínez-Alonso, S.; Davatzes, A.; Chuang, F.C.; Thomson, B.J.; Fishbaugh, K.E.; Dundas, C.M.; Kolb, K.J.; Banks, M.E.; Wray, J.J. A closer look at water-related geologic activity on Mars. Science 2007, 317, 1706–1709. [Google Scholar] [CrossRef] [PubMed]
- Howard, A.D. Simulating the development of Martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing. Geomorphology 2007, 91, 332–363. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.C.; Phillips, R.J.; Zuber, M.T. Meridiani Planum and the global hydrology of Mars. Science 2007, 446, 7132–7135. [Google Scholar]
- Gendrin, A.; Mangold, N.; Bibring, J.P.; Langevin, Y.; Gondet, B.; Poulet, F.; Bonello, G.; Quantin, C.; Mustard, J.; Arvidson, R.; LeMouélic, S. Sulfates in Martian layered terrains: The OMEGA/Mars Express view. Science 2005, 307, 1587–1591. [Google Scholar] [CrossRef] [PubMed]
- Bibring, J.P.; Arvidson, R.E.; Gendrin, A.; Gondet, B.; Langevin, Y.; Le Mouelic, S.; Mangold, N.; Morris, R.V.; Mustard, J.F.; Poulet, F.; Quantin, C.; Sotin, C. Coupled ferric oxides and sulfates on the Martian surface. Science 2007, 317, 1206–1210. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Makuch, D.; Irwin, L.N.; Lipps, J.H.; LeMone, D.; Dohm, J.M.; Fairén, A.G. Scenarios for the evolution of life on Mars. J. Geophys. Res. 2005, 110, E12S23. [Google Scholar]
- Yung, Y.L.; Russell, M.J.; Parkinson, C.D. The search for life on Mars. J. Cosmol. 2010, 5, 1121–1130. [Google Scholar]
- McKay, C.P.; Andersen, D.T.; Pollard, W.H.; Heldmann, J.L.; Doran, P.T.; Fritsen, C.H.; Priscu, J.C. Polar lakes, streams, and springs as analogs for the hydrological cycle on Mars. In Water on Mars and Life; Tokano, T., Ed.; Springer: Berlin, Germany, 2005. [Google Scholar]
- Schulze-Makuch, D.; Fairén, A.G.; Davila, A.F. The case for life on Mars. Int. J. Astrobiology 2008, 7, 117–141. [Google Scholar] [CrossRef]
- Wierzchos, J.; Ascaso, C.; McKay, C.P. Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 2006, 6, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Warren-Rhodes, K.A.; Rhodes, K.L.; Pointing, S.B.; Ewing, S.A.; Lacap, D.C.; Gómez-Silva, B.; Amundson, R.; Friedmann, E.I.; McKay, C.P. Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 2006, 52, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Davila, A.F.; Gomez-Silva, B.; de los Rios, A.; Ascaso, C.; Olivares, H.; McKay, C.P.; Wierzchos, J. Halite deliquescence facilitates endolithic microbial survival in the hyper—arid core of the Atacama Desert. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef]
- Squyres, S.W.; Grotzinger, J.P.; Arvidson, R.E.; Bell, J.F.; Calvin, W.; Christensen, P.R.; Clark, B.C.; Crisp, J.A.; Farrand, W.H.; Herkenhoff, K.E.; Johnson, J.R.; Klingelhöfer, G.; Knoll, A.H.; McLennan, S.M.; McSween, H.Y.; Morris, R.V.; Rice, J.W.; Rieder, R.; Soderblom, L.A. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 2004, 306, 1709–1714. [Google Scholar]
- Osterloo, M.M.; Hamilton, V.E.; Bandfield, J.L.; Glotch, T.D.; Baldridge, A.M.; Christensen, P.R.; Tornabene, L.L.; Anderson, F.S. Chloride-bearing materials in the southern highlands of Mars. Science 2008, 319, 1651–1654. [Google Scholar] [CrossRef] [PubMed]
- McKay, C.P.; Friedmann, E.I.; Frankel, R.B.; Bazylinski, D.A. Magnetotactic bacteria on Earth and on Mars. Astrobiology 2003, 2, 263–270. [Google Scholar] [CrossRef]
- Navarro-González, R.; Rainey, F.A.; Molina, P.; Bagaley, D.R.; Hollen, B.J.; de la Rosa, J.; Small, A.M.; Quinn, R.C.; Grunthaner, F.J.; Cáceres, L.; Gomez-Silva, B.; McKay, C.P. Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 2003, 7, 1018–1021. [Google Scholar] [CrossRef]
- Cary, S.C.; McDonald, I.R.; Barrett, J.E.; Cowan, D.A. On the rocks: The microbiology of Antarctic Dry Valley soils. Nat. Rev. Microbiol. 2010, 8, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Cowan, D.; Tow, L.A. Endangered Antarctic environments. Annu. Rev. Microbiol. 2004, 58, 649–690. [Google Scholar] [CrossRef] [PubMed]
- Pointing, S.B.; Chan, Y.; Lacap, D.C.; Lau, M.C.; Jurgens, J.A.; Farrell, R.L. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Nat. Acad. Sci. USA 2009, 106, 19964–19969. [Google Scholar] [CrossRef] [PubMed]
- Heldmann, J.L.; Toon, O.B.; Pollard, W.H.; Mellon, M.T.; Pitlick, J.; McKay, C.P.; Andersen, D.T. Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Malin, M.C.; Edgett, K.S.; Posiolova, L.V.; McColley, S.M.; Noe Dobrea, E.Z. Present-day impact cratering rate and contemporary gully activity on Mars. Science 2006, 314, 1573–1577. [Google Scholar] [CrossRef] [PubMed]
- Szathmary, E.; Ganti, T.; Pocs, T.; Horvath, A.; Kereszturi, A.; Berczi, S.; Sik, A. Life in the Dark Dune Spots of Mars: A Testable Hypothesis. In Planetary Systems and the Origins of Life; Pudritz, R., Higgs, P., Stone, J., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Fernández-Remolar, D.C.; Morris, R.V.; Gruener, J.E.; Amils, R.; Knoll, A.H. The Río Tinto basin, Spain: Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet. Sci. Lett. 2005, 240, 149–167. [Google Scholar] [CrossRef]
- Prieto-Ballesteros, O.; Martínez-Frías, J.; Schutt, J.; Sutter, B.; Heldmann, J.L.; Bell, M.S.; Battler, M.; Cannon, H.; Gómez-Elvira, J.; Stoker, C.R. The subsurface geology of Río Tinto: Material examined during a simulated Mars Drilling Mission for the Mars Astrobiology Research and Technology Experiment (MARTE). Astrobiology 2008, 8, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Stoker, C.R.; Cannon, H.N.; Dunagan, S.E.; Lemke, L.G.; Glass, B.J.; Miller, D.; Gomez-Elvira, J.; Davis, K.; Zavaleta, J.; Winterholler, A.; Roman, M.; Rodriguez-Manfredi, J.A.; Bonaccorsi, R.; Bell, M.S.; Brown, A.; Battler, M.; Chen, B.; Cooper, G.; Davidson, M.; Fernández-Remolar, D.; Gonzales-Pastor, E.; Heldmann, J.L.; Martínez-Frías, J.; Parro, V.; Prieto-Ballesteros, O.; Sutter, B.; Schuerger, A.C.; Schutt, J.; Rull, F. The 2005 MARTE robotic drilling experiment in Río Tinto, Spain: Objectives, approach, and results of a simulated mission to search for life in the Martian subsurface. Astrobiology 2008, 8, 921–945. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Remolar, D.C.; Prieto-Ballesteros, O.; Rodríguez, N.; Gómez, F.; Amils, R.; Gómez-Elvira, J.; Stoker, C.R. Underground habitats in the Río Tinto Basin: A model for subsurface life habitats on Mars. Astrobiology 2008, 8, 1023–1047. [Google Scholar] [CrossRef]
- Christensen, P.R.; Wyatt, M.B.; Glotch, T.D.; Rogers, A.D.; Anwar, S.; Arvidson, R.E.; Bandfield, J.L.; Blaney, D.L.; Budney, C.; Calvin, W.M.; Fallacaro, A.; Fergason, R.L.; Gorelick, N.; Graff, T.G.; Hamilton, V.E.; Hayes, A.G.; Johnson, J.R.; Knudson, A.T.; McSween, H.Y.; Mehall, G.L.; Mehall, L.K.; Moersch, J.E.; Morris, R.V.; Smith, M.D.; Squyres, S.W.; Ruff, S.W.; Wolff, M.J. Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity Rover. Science 2004, 306, 1733–1739. [Google Scholar] [CrossRef] [PubMed]
- Klingelhöfer, G.; Morris, R.V.; Bernhardt, B.; Schroder, C.; Rodionov, D.S.; de Souza, P.A.; Yen, A.; Gellert, R.; Evlanov, E.N.; Zubkov, B.; Foh, J.; Bonnes, U.; Kankeleit, E.; Gutlich, P.; Ming, D.W.; Renz, F.; Wdowiak, T.; Squyres, S.W.; Arvidson, R.E. Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 2004, 306, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Amils, R.; González-Toril, E.; Fernández-Remolar, D.C.; Gómez, F.; Aguilera, A.; Rodríguez, N.; Malki, M.; García-Moyano, A.; Fairén, A.G.; de la Fuente, V.; Sanz, J.L. Extreme environments as Mars terrestrial analogs: The Río Tinto case. Planet. Space Sci. 2007, 55, 370–381. [Google Scholar] [CrossRef]
- Bonaccorsi, R.; Stoker, C.R. Science results from a Mars drilling simulation (Río Tinto, Spain) and ground truth for remote science observations. Astrobiology 2008, 8, 967–985. [Google Scholar] [CrossRef] [PubMed]
- Stevens, T.O.; McKinley, J.P. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 1995, 270, 450–455. [Google Scholar] [CrossRef]
- Krumholz, L.R. Microbial communities in the deep subsurface. Hydrogeol. J. 2000, 8, 4–10. [Google Scholar]
- Chapelle, F.H.; O’Neill, K.; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R. A hydrogen-based subsurface microbial community dominated by methanogens. Nature 2002, 415, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Boynton, W.V.; Feldman, W.C.; Squyres, S.W.; Prettyman, T.H.; Bruckner, J.; Evans, L.G.; Reedy, R.C.; Starr, R.; Arnold, J.R.; Drake, D.M.; Englert, P.A.; Metzger, A.E.; Mitrofanov, I.; Trombka, J.I.; D’Uston, C.; Wanke, H.; Gasnault, O.; Hamara, D.K.; Janes, D.M.; Marcialis, R.L.; Maurice, S.; Mikheeva, I.; Taylor, G.J.; Tokar, R.; Shinohara, C. Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 2002, 297, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Plaut, J.J.; Picardi, G.; Safaeinili, A.; Ivanov, A.B.; Milkovich, S.M.; Cicchetti, A.; Kofman, W.; Mouginot, J.; Farrell, W.M.; Phillips, R.J.; Clifford, S.M.; Frigeri, A.; Orosei, R.; Federico, C.; Williams, I.P.; Gurnett, D.A.; Nielsen, E.; Hagfors, T.; Heggy, E.; Stofan, E.R.; Plettemeier, D.; Watters, T.R.; Leuschen, C.J.; Edenhofer, P. Subsurface radar sounding of the South Pole deposits of Mars. Science 2007, 316, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Formisano, V.; Atreya, S.; Encrenaz, T.; Ignatiev, N.; Giuranna, M. Detection of methane in the atmosphere of Mars. Science 2004, 306, 1758–1761. [Google Scholar] [CrossRef] [PubMed]
- Atreya, S.K.; Mahaffy, P.R.; Wong, A.S. Methane and related trace species on Mars: Origin, loss, implications for life, and habitability. Planet. Space Sci. 2007, 55, 358–369. [Google Scholar] [CrossRef]
- Onstott, T.C.; McGown, D.; Kessler, J.; Lollar, B.S.; Lehmann, K.K.; Clifford, S.M. Martian CH4: Sources, flux, and detection. Astrobiology 2006, 6, 377–395. [Google Scholar] [CrossRef] [PubMed]
- Kuskov, O.L.; Kronrod, V.A. Internal structure of Europa and Callisto. Icarus 2005, 177, 550–556. [Google Scholar] [CrossRef]
- Greenberg, R.; Geissler, P.; Hoppa, G.; Tufts, B.R. Tidal-tectonic processing and their implications for the character of Europa’s icy crust. Rev. Geophys. 2002, 40, 1–33. [Google Scholar] [CrossRef]
- Ruiz, J.; Alvarez-Gómez, J.A.; Tejero, R.; Sánchez, N. Heat flow and thickness of a convective ice shell on Europa for grain size—dependent rheologies. Icarus 2007, 190, 145–154. [Google Scholar] [CrossRef]
- Marion, G.M.; Fritsen, C.H.; Eicken, H.; Payne, M.C. The search for life on Europa: Limiting environmental factors, potential habitats, and Earth analogues. Astrobiology 2003, 3, 785–811. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, R. Tides and the biosphere of Europa. Am. Sci. 2002, 90, 48–55. [Google Scholar] [CrossRef]
- Lipps, J.H.; Rieboldt, S. Habitats and taphonomy of Europa. Icarus 2005, 177, 515–527. [Google Scholar] [CrossRef]
- Marcos, R.F.; Nissar, A. Possible detection of volcanic activity on Europa: Analysis of an optical transient event. Earth Moon Planets 2000, 88, 167–175. [Google Scholar] [CrossRef]
- McCollom, T.M. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res. 1999, 104, 30729–30742. [Google Scholar] [CrossRef]
- Priscu, J.C.; Adams, E.E.; Lyons, W.B.; Voytek, M.A.; Mogk, D.W.; Brown, R.L.; McKay, C.P.; Takacs, C.D.; Welch, K.A.; Wolf, C.F.; Kirshtein, J.D.; Avci, R. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 1999, 286, 2141–2144. [Google Scholar] [CrossRef] [PubMed]
- Siegert, M.J.; Ellis-Evans, J.C.; Tranter, M.; Mayer, C.; Petit, J.; Salamatin, A.; Priscu, J.C. Physical, chemical, and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 2001, 414, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Salamatin, A.N.; Tsyganova, E.; Lipenkov, V.; Petit, J.R. Vostok (Antarctica) ice-core time-scale from datings of different origins. Ann. Glaciol. 2004, 39, 283–292. [Google Scholar] [CrossRef]
- Rogers, S.O.; Theraisnathan, V.; Ma, L.J.; Zhao, Y.; Zhang, G.; Shin, S.G.; Castello, J.D.; Starmer, W.T. Comparisons of protocols to decontaminate environmental ice samples for biological and molecular examinations. Appl. Environ. Microbiol. 2004, 70, 2540–2544. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, T.; Veerapaneni, R.; Rogers, S.O. Isolation of microbes from Lake Vostok accretion ice. Appl. Environ. Microbiol. 2008, 74, 4962–4965. [Google Scholar] [CrossRef] [PubMed]
- Paranicas, C.; Mauk, B.H.; Khurana, K.; Jun, I.; Garrett, H.; Krupp, N.; Roussos, E. Europa’s nearsurface radiation environment. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Figueredo, P.H.; Greeley, R.; Neuer, S.; Irwin, L.; Schulze-Makuch, D. Locating potential biosignatures on Europa from surface geology observations. Astrobiology 2003, 3, 851–861. [Google Scholar] [CrossRef]
- Gilichinsky, D.A. Permafrost model of extraterrestrial habitat. In Astrobiology: The Quest for the Conditions of Life; Horneck, G., Baumstark-Khan, C., Eds.; Springer: Berlin, Germany, 2002. [Google Scholar]
- Gilichinsky, D.A.; Rivkina, E.; Bakermans, C.; Shcherbakova, V.; Petrovskaya, L.; Ozerskaya, S.; Ivanushkina, N.; Kochkina, G.; Laurinavichuis, K.; Pecheritsina, S.; Fattakhova, R.; Tiedje, J.M. Biodiversity of cryopegs in permafrost. FEMS Microbiol. Ecol. 2005, 53, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.N.; Dieckmann, G.S. Antarctic Sea ice—a habitat for extremophiles. Science 2002, 295, 641–644. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, R. Europa, the ocean moon: Tides, permeable ice, and life. In Planetary Systems and the Origins of Life; Pudritz, R., Higgs, P., Stone, J., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Raulin-Cerceau, F.; Maurel, M.C.; Schneider, J. From Panspermia to Bioastronomy: The evolution of the hypothesis of universal life. Orig. Life. Evol. Biosph. 1998, 28, 597–612. [Google Scholar] [CrossRef] [PubMed]
- Rampelotto, P.H. Are we descendants of extraterrestrials? J. Cosmol. 2009, 1, 86–88. [Google Scholar]
- Fritz, J.; Artemieva, N.; Greshake, A. Ejection of Martian meteorites. Meteoritics Planet. Sci. 2005, 40, 1393–1411. [Google Scholar] [CrossRef]
- Nyquist, L.E.; Bogard, D.D.; Shih, C.Y.; Greshake, A.; Stöffler, D.; Eugster, O. Ages and geologic histories of Martian meteorites. Space Sci. Rev. 2001, 96, 105–164. [Google Scholar] [CrossRef]
- Shuster, D.L.; Weiss, B.P. Martian surface paleotemperatures from thermochronology of meteorites. Science 2005, 309, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Mastrapa, R.M.E.; Glanzberg, H.; Head, J.N.; Melosh, H.J.; Nicholson, W.L. Survival of bacteria exposed to extreme acceleration: Implications for panspermia. Earth Planet. Sci. Lett. 2001, 189, 1–8. [Google Scholar] [CrossRef]
- Melosh, H.J. The rocky road to panspermia. Nature 1988, 21, 687–688. [Google Scholar] [CrossRef]
- Weiss, B.P.; Kirschvink, J.L.; Baudenbacher, F.J.; Vali, H.; Peters, N.T.; MacDonald, F.A.; Wikswo, J.P. A low temperature transfer of ALH84001 from Mars to Earth. Science 2000, 290, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Horneck, G.; Stoeffler, D.; Eschweiler, U.; Hornemann, U. Bacterial spores survive simulated meteorite impact. Icarus 2001, 149, 285–290. [Google Scholar] [CrossRef]
- Rosa, M.B.; Rampelotto, P.H.; Schuch, N.J.; Schuch, A.P.; Munakata, N. Spore dosimetry: Bacillus subtilis TKJ6312 as biosensor of biologically effective solar radiation. Quim. Nova 2009, 32, 282–285. [Google Scholar] [CrossRef]
- Hecker, M.; Völker, U. Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the σB regulon. Mol. Microbiol. 1998, 29, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Rampelotto, P.H.; Rosa, M.B.; Schuch, A.P.; Pinheiro, D.K.; Schuch, N.J.; Munakata, N. Exobiology research in the south of Brazil aiming the monitoring of the biogenically-effective solar radiation. Astrobiology 2007, 7, 502–540. [Google Scholar]
- Rampelotto, P.H.; Rosa, M.B.; Schuch, N.J.; Munakata, N. Exobiological application of spore dosimeter in studies involving solar UV radiation. Orig. Life. Evol. Biosph. 2009, 39, 373–374. [Google Scholar]
- De Vera, J.P.; Horneck, G.; Rettberg, P.; Ott, S. The potential of the lichen symbiosis to cope with extreme conditions of outer space—I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity. Intern. J. Astrobiol. 2003, 1, 285–293. [Google Scholar] [CrossRef]
- Nicholson, W.L. Ancient micronauts: Interplanetary transport of microbes by cosmic impacts. Trends. Microbiol. 2009, 17, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Horneck, G. Responses of Bacillus subtilis spores to space environment: Results from experiments in space. Origin. Life Evol. Biosph. 1993, 23, 37–52. [Google Scholar] [CrossRef]
- Nicholson, W.L.; Munakata, N.; Horneck, G.; Melosh, H.J.; Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 2000, 64, 548–572. [Google Scholar] [CrossRef] [PubMed]
- Horneck, G.; Buecker, H.; Reitz, G. Long-term survival of bacterial spores in space. Adv. Space Res. 1994, 10, 41–45. [Google Scholar] [CrossRef]
- Rettberg, P.; Eschweiler, U.; Strauch, K.; Reitz, G.; Horneck, G.; Wänke, H.; Brack, A.; Barbier, B. Survival of microorganisms in space protected by meteorite material: Results of the experiment “EXOBIOLOGIE” of the PERSEUS mission. Adv. Space Res. 2002, 30, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Horneck, G.; Miliekowsky, C.; Melosh, H.J.; Wilson, J.W.; Cucinotta, F.A.; Gladman, B. Viable transfer of microorganisms in the solar system and beyond. In Astrobiology: The Quest for the Conditions of Life; Horneck, G., Baumstark-Khan, C., Eds.; Springer: Berlin, Germany, 2002. [Google Scholar]
- Vreeland, R.H.; Rosenzweig, W.D.; Powers, D.W. Isolation of a 250 million year-old halotolerant bacterium from a primary salt crystal. Nature 2000, 407, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Stoffler, D.; Horneck, G.; Ott, S.; Hornemann, U.; Cockell, C.S.; Moeller, R.; Meyer, C.; de Vera, J.P.; Fritz, J.; Artemieva, N.A. Experimental evidence for the potential impact ejection of viable microorganisms from Mars and Mars-like planets. Icarus 2007, 186, 585–588. [Google Scholar] [CrossRef]
- Burchell, M.J.; Mann, J.R.; Bunch, A.W. Survival of bacteria and spores under extreme shock pressures. Mon. Not. R. Astron. Soc. 2004, 352, 1273–1278. [Google Scholar] [CrossRef]
- Horneck, G.; Stoffler, D.; Ott, S.; Hornemann, U.; Cockell, C.S.; Moeller, R.; Meyer, C.; de Vera, J.P.; Fritz, J.; Schade, S.; Artemieva, N.A. Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: First phase of Lithopanspermia experimentally tested. Astrobiology 2008, 8, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Fajardo-Cavazos, P.; Langenhorst, F.; Melosh, H.J.; Nicholson, W.L. Bacterial spores in granite survive hypervelocity launch by spallation: Implications for Lithopanspermia. Astrobiology 2009, 9, 647–657. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors. Licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rampelotto, P. H. Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology. Sustainability 2010, 2, 1602-1623. https://doi.org/10.3390/su2061602
Rampelotto PH. Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology. Sustainability. 2010; 2(6):1602-1623. https://doi.org/10.3390/su2061602
Chicago/Turabian StyleRampelotto, Pabulo Henrique. 2010. "Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology" Sustainability 2, no. 6: 1602-1623. https://doi.org/10.3390/su2061602