How Does the Environmental Load of Household Consumption Depend on Residential Location?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Dataset
2.3. Carbon Emission Allocation to Final Consumption
2.4. Consumption Clusters and Statistical Analysis
- Shelter (electricity, heating, water, waste management, maintenance, rent, etc.);
- Transport (car fuel, purchase and maintenance of vehicles, public transport, flights, etc.);
- Food and non-alcoholic beverages;
- Consumer goods and services (clothing, footwear, household equipment, alcohol, tobacco, communication, miscellaneous goods and services);
- Leisure (recreation, culture, accommodation, restaurants);
- Education and healthcare.
3. Results
3.1. Carbon Load of Household Consumption in Estonia
3.2. Differences in per Capita Carbon Load Across Settlement Hierarchy Levels
3.3. The Carbon Load of Household Consumption and the Impact of Sociodemographic Factors
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations. Spatial Planning: Key Instruments for Development and Effective Governance with Special Reference to Countries in Transition; United Nations Economic Commission for Europe: Geneva, Switzerland, 2008; p. 46. [Google Scholar]
- European Commission. ESDP: European Spatial Development Perspective towards Balanced and Sustainable Development of the Territory; European Commission—Committee on Spatial Development: Luxembourg, Luxembourg, 1999; p. 87. [Google Scholar]
- Hertwich, E.G.; Peters, G.P. Carbon footprint of nations: A global, trade-linked analysis. Environ. Sci. Technol. 2009, 43, 6414–6420. [Google Scholar] [CrossRef] [PubMed]
- Dodman, D. Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ. Urban 2009, 21, 185–201. [Google Scholar] [CrossRef]
- Smas, L. Konsumtion, det Urbana Livet och Stadens Morfologi [Consumption, Urban Life, and the Morphology of Cities]. In Transaktioner ur ett Tidrumsligt Perspektiv [Transactions from a Space-Time Perspective]. Kulturgeografiskt Seminarium 1. Rapporter/Meddelanden/Uppsatter Fran Kulturgeografiska Institutionen; University of Stockholm: Stockholm, Sweden, 2005. [Google Scholar]
- Goodman, M.K.; Goodman, D.; Redclift, M. Introduction: Situating Consumption, Space and Place. In Consuming Space: Placing Consumption in Perspective; Goodman, M.K., Goodman, D., Redclift, M., Eds.; Ashgate: Farnham, UK, 2010; pp. 3–40. [Google Scholar]
- Hudson, R. Economic Geographies: Circuits, Flows and Spaces; SAGE Publications: London, UK; Thousand Oaks, CA, USA; New Delhi, India, 2005; p. 248. [Google Scholar]
- Keller, M. Representations of Consumer Culture in Post-Soviet Estonia: Transformations and Tensions. Ph.D. Thesis, University of Tartu, Tartu, Estonia, 2004. [Google Scholar]
- Christaller, W. Die Zentralen Orte in Süddeutschland; Gustav Fischer: Jena, Germany, 1933. [Google Scholar]
- Poom, A.; Ahas, R.; Orru, K. The impact of residential location and settlement hierarchy on ecological footprint. Environ. Plan. A 2014, 46, 2369–2384. [Google Scholar] [CrossRef]
- Lenzen, M.; Wier, M.; Cohen, C.; Hayami, H.; Pachauri, S.; Schaeffer, R. A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan. Energy 2006, 31, 181–207. [Google Scholar] [CrossRef]
- Berry, B.J.L. Shopping Centers and the Geography of Urban Areas. A Theoretical and Empirical Study of the Spatial Structure of Intraurban Retail and Service Business. Ph.D. Thesis, University of Washington, Seattle, DC, USA, 1958. [Google Scholar]
- Burgalassi, D.; Luzzati, T. Urban spatial structure and environmental emissions: A survey of the literature and some empirical evidence for Italian NUTS 3 regions. Cities 2015, 49, 134–148. [Google Scholar] [CrossRef]
- Jorgenson, A.K.; Burns, T.J. The political-economic causes of change in the ecological footprints of nations, 1991–2001: A quantitative investigation. Soc. Sci. Res. 2007, 36, 834–853. [Google Scholar] [CrossRef]
- Heinonen, J.; Kyrö, R.; Junnila, S. Dense downtown living more carbon intense due to higher consumption: A case study of Helsinki. Environ. Res. Lett. 2011. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Lenzen, M.; Steinberger, J.K. Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications. Energy Policy 2013, 63, 696–707. [Google Scholar] [CrossRef]
- Chua, B.-H. World cities, globalisation and the spread of consumerism: A view from Singapore. Urban Stud. 1998, 35, 981–1000. [Google Scholar] [CrossRef]
- Gregory, D.; Johnston, R.; Pratt, G.; Watts, M.; Whatmore, S. The Dictionary of Human Geography, 5th ed; Wiley-Blackwell: Chichester, UK, 2009. [Google Scholar]
- Guy, C.M. Controlling new retail spaces: The impress of planning policies in Western Europe. Urban Stud. 1998, 35, 953–979. [Google Scholar] [CrossRef]
- Di Donato, M.; Lomas, P.L.; Carpintero, Ó. Metabolism and environmental impacts of household consumption: A review on the assessment, methodology, and drivers. J. Ind. Ecol. 2015, 19, 904–916. [Google Scholar] [CrossRef]
- Noorman, K.J.; Biesiot, W.; Schoot Uiterkamp, A.J.M. Household Metabolism in the Context of Sustainability and Environmental Quality. In Green Households? Domestic Consumers, Environment, and Sustainability; Noorman, K.J., Schoot Uiterkamp, A.J.M., Eds.; Earthscan: London, UK, 1998; pp. 7–34. [Google Scholar]
- Druckman, A.; Sinclair, P.; Jackson, T. A geographically and socio-economically disaggregated local household consumption model for the UK. J. Clean. Prod. 2008, 16, 870–880. [Google Scholar] [CrossRef] [Green Version]
- Moll, H.C.; Noorman, K.J.; Kok, R.; Engström, R.; Throne-Holst, H.; Clark, C. Pursuing more sustainable consumption by analyzing household metabolism in European countries and cities. J. Ind. Ecol. 2005, 9, 259–275. [Google Scholar] [CrossRef] [Green Version]
- Kerkhof, A.C.; Nonhebel, S.; Moll, H.C. Relating the environmental impact of consumption to household expenditures: An input-output analysis. Ecol. Econ. 2009, 68, 1160–1170. [Google Scholar] [CrossRef]
- Herendeen, R.A. Total energy cost of household consumption in Norway, 1973. Energy 1978, 3, 615–630. [Google Scholar] [CrossRef]
- Herendeen, R.A.; Ford, C.; Hannon, B. Energy cost of living, 1972–1973. Energy 1981, 6, 1433–1450. [Google Scholar] [CrossRef]
- Muñiz, I.; Galindo, A. Urban form and the ecological footprint of commuting. The case of Barcelona. Ecol. Econ. 2005, 55, 499–514. [Google Scholar]
- Newman, P.W.G.; Kenworthy, J.R. Gasoline consumption and cities. A comparison of U.S. cities with a global survey. J. Am. Plan. Assoc. 1989, 55, 24–37. [Google Scholar] [CrossRef]
- Larson, W.; Liu, F.; Yezer, A. Energy footprint of the city: Effects of urban land use and transportation policies. J. Urban Econ. 2012, 72, 147–159. [Google Scholar] [CrossRef]
- Holden, E.; Norland, I.T. Three challenges for the compact city as a sustainable urban form: Household consumption of energy and transport in eight residential areas in the Greater Oslo Region. Urban Stud. 2005, 42, 2145–2166. [Google Scholar] [CrossRef]
- Ewing, R.; Rong, F. The impact of urban form on U.S. residential energy use. Hous. Policy Debate 2008, 19, 1–30. [Google Scholar] [CrossRef]
- Brown, M.A.; Southworth, F.; Sarzynski, A. The geography of metropolitan carbon footprints. Policy Soc. 2009, 27, 285–304. [Google Scholar] [CrossRef]
- Næss, P.; Vogel, N. Sustainable urban development and the multi-level transition perspective. Environ. Innov. Soc. Trans. 2012, 4, 36–50. [Google Scholar] [CrossRef]
- Lefèvre, B. Urban transport energy consumption: Determinants and strategies for its reduction. An analysis of the literature. Sapiens 2009, 2, 1–17. [Google Scholar]
- Ewing, R.; Cervero, R. Travel and the built environment. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Stead, D.; Marshall, S. The relationships between urban form and travel patterns. An international review and evaluation. Eur. J. Transp. Infrastruct. Res. 2001, 1, 113–141. [Google Scholar]
- Cao, X.; Mokhtarian, P.L.; Handy, S.L. The relationship between the built environment and nonwork travel: A case study of Northern California. Transp. Res. A Pol. 2009, 43, 548–559. [Google Scholar] [CrossRef]
- Jones, C.; Kammen, D.M. Spatial distribution of U.S. household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density. Environ. Sci. Technol. 2013, 48, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.A.; Targa, F.; Aytur, S.A. Transport Implications of urban containment policies: A study of the largest twenty-five US metropolitan areas. Urban Stud. 2006, 43, 1879–1897. [Google Scholar] [CrossRef]
- Stead, D. Relationships between land use, socioeconomic factors, and travel patterns in Britain. Environ. Plan. B 2001, 28, 499–528. [Google Scholar] [CrossRef]
- Zhao, P.; Pendlebury, J. Spatial planning and transport energy transition towards a low carbon system. disP Plan. Rev. 2014, 50, 20–30. [Google Scholar] [CrossRef]
- Rickwood, P.; Glazebrook, G.; Searle, G. Urban structure and energy—A review. Urban Policy Res. 2008, 26, 57–81. [Google Scholar] [CrossRef]
- Heinonen, J.; Junnila, S. Residential energy consumption patterns and the overall housing energy requirements of urban and rural households in Finland. Energy Build. 2014, 76, 295–303. [Google Scholar] [CrossRef]
- Kaza, N. Understanding the spectrum of residential energy consumption: A quantile regression approach. Energy Policy 2010, 38, 6574–6585. [Google Scholar] [CrossRef]
- Estiri, H. Household energy consumption and housing choice in the U.S. residential sector. Hous. Policy Debate 2016, 26, 231–250. [Google Scholar] [CrossRef]
- Estiri, H. The indirect role of households in shaping US residential energy demand patterns. Energy Policy 2015, 86, 585–594. [Google Scholar] [CrossRef]
- Guerra Santin, O.; Itard, L.; Visscher, H. The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock. Energy Build. 2009, 41, 1223–1232. [Google Scholar] [CrossRef]
- Kuzyk, L.W. The ecological footprint housing component: A geographic information system analysis. Ecol. Indic. 2012, 16, 31–39. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kahn, M.E. The greenness of cities: Carbon dioxide emissions and urban development. J. Urban Econ. 2010, 67, 404–418. [Google Scholar] [CrossRef]
- Wende, W.; Huelsmann, W.; Marty, M.; Penn-Bressel, G.; Bobylev, N. Climate protection and compact urban structures in spatial planning and local construction plans in Germany. Land Use Policy 2010, 27, 864–868. [Google Scholar] [CrossRef]
- Ottelin, J.; Heinonen, J.; Junnila, S. New energy efficient housing has reduced carbon footprints in outer but not in inner urban areas. Environ. Sci. Technol. 2015, 49, 9574–9583. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, J.; Jalas, M.; Juntunen, J.K.; Ala-Mantila, S.; Junnila, S. Situated lifestyles: II. The impacts of urban density, housing type and motorization on the greenhouse gas emissions of the middle-income consumers in Finland. Environ. Res. Lett. 2013. [Google Scholar] [CrossRef]
- O’Regan, B.; Morrissey, J.; Foley, W.; Moles, R. The relationship between settlement population size and sustainable development measured by two sustainability metrics. Environ. Impact Assess. 2009, 29, 169–178. [Google Scholar] [CrossRef]
- Slagstad, H.; Brattebo, H. LCA for household waste management when planning a new urban settlement. Waste Manag. 2012, 32, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Põldnurk, J. Optimisation of the economic, environmental and administrative efficiency of the municipal waste management model in rural areas. Resour. Conserv. Recycl. 2015, 97, 55–65. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Werner, S.; Möller, B.; Persson, U.; Boermans, T.; Trier, D.; Østergaard, P.A.; Nielsen, S. Heat roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014, 65, 475–489. [Google Scholar] [CrossRef]
- Ristimäki, M.; Säynäjoki, A.; Heinonen, J.; Junnila, S. Combining life cycle costing and life cycle assessment for an analysis of a new residential district energy system design. Energy 2013, 63, 168–179. [Google Scholar] [CrossRef]
- Anker-Nilssen, P. Household energy use and the environment—A conflicting issue. Appl. Energy 2003, 76, 189–196. [Google Scholar] [CrossRef]
- Kerkhof, A.C.; Benders, R.M.J.; Moll, H.C. Determinants of variation in household CO2 emissions between and within countries. Energy Policy 2009, 37, 1509–1517. [Google Scholar] [CrossRef]
- Weber, C.L.; Matthews, H.S. Quantifying the global and distributional aspects of American household carbon footprint. Ecol. Econ. 2008, 66, 379–391. [Google Scholar] [CrossRef]
- Baiocchi, G.; Minx, J.; Hubacek, K. The impact of social factors and consumer behavior on carbon dioxide emissions in the United Kingdom. J. Ind. Ecol. 2010, 14, 50–72. [Google Scholar] [CrossRef]
- Tammaru, T.; Musterd, S.; van Ham, M.; Marcinczak, S. A Multi-Factor Approach to Understanding Socio-Economic Segregation in European Capital Cities. In Socio-Economic Segregation in European Capital Cities. East Meast West; Tammaru, T., Marcinczak, S., van Ham, M., Musterd, S., Eds.; Routledge: London, UK; New York, NY, USA, 2016; pp. 1–29. [Google Scholar]
- Ala-Mantila, S.; Heinonen, J.; Junnila, S. Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis. Ecol. Econ. 2014, 104, 129–139. [Google Scholar] [CrossRef]
- Tukker, A.; Jansen, B. Environmental impacts of products: A detailed review of studies. J. Ind. Ecol. 2006, 10, 159–182. [Google Scholar] [CrossRef]
- Sánchez-Chóliz, J.; Duarte, R.; Mainar, A. Environmental impact of household activity in Spain. Ecol. Econ. 2007, 62, 308–318. [Google Scholar] [CrossRef]
- Wier, M.; Lenzen, M.; Munksgaard, J.; Smed, S. Effects of household consumption patterns on CO2 requirements. Econ. Syst. Res. 2001, 13, 259–274. [Google Scholar] [CrossRef]
- Heinonen, J.; Junnila, S. A carbon consumption comparison of rural and urban lifestyles. Sustainability 2011, 3, 1234–1249. [Google Scholar] [CrossRef]
- Heinonen, J.; Junnila, S. Implications of urban structure on carbon consumption in metropolitan areas. Environ. Res. Lett. 2011. [Google Scholar] [CrossRef]
- Heinonen, J.; Jalas, M.; Juntunen, J.K.; Ala-Mantila, S.; Junnila, S. Situated lifestyles: I. How lifestyles change along with the level of urbanization and what the greenhouse gas implications are—A study of Finland. Environ. Res. Lett. 2013. [Google Scholar] [CrossRef]
- Shammin, M.R.; Herendeen, R.A.; Hanson, M.J.; Wilson, E.J.H. A multivariate analysis of the energy intensity of sprawl versus compact living in the U.S. for 2003. Ecol. Econ. 2010, 69, 2363–2373. [Google Scholar] [CrossRef]
- Druckman, A.; Jackson, T. The carbon footprint of UK households 1990–2004: A socio-economically disaggregated, quasi-multi-regional input–output model. Ecol. Econ. 2009, 68, 2066–2077. [Google Scholar] [CrossRef] [Green Version]
- Büchs, M.; Schnepf, S.V. Who emits most? Associations between socio-economic factors and UK households’ home energy, transport, indirect and total CO2 emissions. Ecol. Econ. 2013, 90, 114–123. [Google Scholar]
- Marksoo, A. Tallinn Eesti rahvarände süsteemis [Tallinn in the Estonian migration system]. In Eesti Geograafia Seltsi Aastaraamat [Yearbook of Estonian Geographic Society]; Raukas, A., Jõgi, J., Marksoo, A., Punning, M., Tarand, A., Eds.; Valgus: Tallinn, Estonia, 1990; Volume 25, pp. 53–66. [Google Scholar]
- Tammaru, T.; Kulu, H.; Kask, I. Siserände üldsuunad [Trends in internal migration]. In Ränne üleminekuaja Eestis [Migration in transitional Estonia]; Tammaru, T., Kulu, H., Eds.; Statistics Estonia: Tallinn, Estonia, 2003; pp. 5–27. [Google Scholar]
- Marksoo, A. On the development concept of small towns in the Estonian SSR. In Estonia: Geographical Researches; Punning, J.-M., Ed.; Academy of Sciences of the Estonian SSR, Estonian Geographical Society: Tallinn, Estonia, 1980; pp. 110–126. [Google Scholar]
- Marksoo, A. Regularities of Urbanization and Demographical Processes in the Estonian SSR. In Problems of Territorial Organization of Geographical Systems; Mardiste, H., Marksoo, A., Eds.; Tartu State University: Tartu, Estonia, 1984; pp. 32–56. [Google Scholar]
- Statistics Estonia. Statistical Databases: Economy and Social Life. Available online: http://pub.stat.ee/px-web.2001/dialog/statfile1.asp (accessed on 22 Feberary 2016).
- Ministry of Economic Affairs and Communications. Transpordi Arengukava 2014–2020 [Estonian Transportation Roadmap 2014–2020]; Ministry of Economic Affairs and Communications: Tallinn, Estonia, 2013; p. 70.
- Tiit, E.-M.; Servinski, M. Eesti Maakondade Rahvastik: Hinnatud ja Loendatud [Population of Estonian Counties: Estimated and Counted]; Statistikaamet: Tallinn, Estonia, 2015; p. 420. [Google Scholar]
- Nugin, R. I think that they should go. Let them see something. The context of rural youth’s out-migration in post-socialist Estonia. J. Rural Stud. 2014, 34, 51–64. [Google Scholar] [CrossRef]
- EEA. Resource-Efficient Green Economy and EU Policies; European Environmental Agency, Publications Office of the European Union: Luxembourg City, Luxembourg, 2014; p. 107. [Google Scholar]
- Ministry of Economic Affairs and Communications. ENMAK 2030+ Eesti Energiamajanduse Arengukava Aastani 2030 [Estonian Energy Roadmap 2030+]; Ministry of Economic Affairs and Communications: Tallinn, Estonia, 2015.
- Kurnitski, J.; Kuusk, K.; Tark, T.; Uutar, A.; Kalamees, T.; Pikas, E. Energy and investment intensity of integrated renovation and 2030 cost optimal savings. Energy Build. 2014, 75, 51–59. [Google Scholar] [CrossRef]
- Statistics Estonia. Statistical Databases: Economy. Available online: http://pub.stat.ee/px-web.2001/dialog/statfile1.asp (accessed on 5 January 2015).
- Ministry of Economic Affairs and Communications. ENMAK 2020 Energiamajanduse Riiklik Arengukava Aastani 2020. (Energy Roadmap 2020); Ministry of Economic Affairs and Communications: Tallinn, Estonia, 2009.
- United Nations. COICOP: Classification of Individual Consumption According to Purpose. Available online: http://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=5 (accessed on 5 January 2015).
- Statistics Estonia. Leibkonna Eelarve Uuring 2010. Metoodika. Household Budget Survey 2010. Methodology; Statistics Estonia: Tallinn, Estonia, 2012; p. 76.
- Bicknell, K.B.; Ball, R.J.; Cullen, R.; Bigsby, H.R. New methodology for the ecological footprint with an application to the New Zealand economy. Ecol. Econ. 1998, 27, 149–160. [Google Scholar] [CrossRef]
- Leontief, W. Input-Output Economics; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Leontief, W. The Structure of American Economy, 1919–1929: An Empirical Application of Equilibrium Analysis; Harvard University Press: Cambridge, UK, 1941. [Google Scholar]
- Hertwich, E.G. The life cycle environmental impacts of consumption. Econ. Syst. Res. 2011, 23, 27–47. [Google Scholar] [CrossRef]
- Minx, J.C.; Wiedmann, T.; Wood, R.; Peters, G.P.; Lenzen, M.; Owen, A.; Scott, K.; Barrett, J.; Hubacek, K.; Baiocchi, G.; et al. Input–output analysis and carbon footprinting: An overview of applications. Econ. Syst. Res. 2009, 21, 187–216. [Google Scholar] [CrossRef]
- Ferng, J.-J. Using composition of land multiplier to estimate ecological footprints associated with production activity. Ecol. Econ. 2001, 37, 159–172. [Google Scholar] [CrossRef]
- Cellura, M.; Longo, S.; Mistretta, M. The energy and environmental impacts of Italian households consumptions: An input-output approach. Renew. Sustain. Energy Rev. 2011, 15, 3897–3908. [Google Scholar] [CrossRef]
- Suh, S.; Lenzen, M.; Treloar, G.J.; Hondo, H.; Horvath, A.; Huppes, G.; Jolliet, O.; Klann, U.; Krewitt, W.; Moriguchi, Y.; et al. System boundary selection in life-cycle inventories using hybrid approaches. Environ. Sci. Technol. 2004, 38, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Weinzettel, J.; Steen-Olsen, K.; Hertwich, E.G.; Borucke, M.; Galli, A. Ecological footprint of nations: Comparison of process analysis, and standard and hybrid multiregional input-output analysis. Ecol. Econ. 2014, 101, 115–126. [Google Scholar] [CrossRef]
- Nijdam, D.S.; Wilting, H.C.; Goedkoop, M.J.; Madsen, J. Environmental load from Dutch private consumption: How much damage takes place abroad? J. Ind. Ecol. 2005, 9, 147–168. [Google Scholar] [CrossRef]
- Kok, R.; Benders, R.M.J.; Moll, H.C. Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results. Energy Policy 2006, 34, 2744–2761. [Google Scholar] [CrossRef]
- Tukker, A.; Poliakov, E.; Heijungs, R.; Hawkins, T.; Neuwahl, F.; Rueda-Cantuche, J.M.; Giljum, S.; Moll, S.; Oosterhaven, J.; Bouwmeester, M. Towards a global multi-regional environmentally extended input-output database. Ecol. Econ. 2009, 68, 1928–1937. [Google Scholar] [CrossRef]
- Xu, Y.; Dietzenbacher, E. A structural decomposition analysis of the emissions embodied in trade. Ecol. Econ. 2014, 101, 10–20. [Google Scholar] [CrossRef]
- Timmer, M.P.; Dietzenbacher, E.; Los, B.; Stehrer, R.; de Vries, G.J. An illustrated user guide to the world input-output database: The case of global automotive production. Rev. Int. Econ. 2015, 23, 575–605. [Google Scholar] [CrossRef]
- Ministry of the Environment. Greenhouse Gas Emissions in Estonia 1990–2012: National Inventory Report under the UNFCCC and the Kyoto Protocol; Ministry of the Environment: Tallinn, Estonia, 2014; p. 335.
- Eurostat. Metadata. Statistical Classification of Products by Activity in the European Economic Community, 2008 Version. Available online: http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=LST_NOM_DTL&StrNom=CPA_2008&StrLanguageCode=EN&IntPcKey=&StrLayoutCode=HIERARCHIC (accessed on 5 January 2015).
- Eurostat. Correspondence Table COICOP 1999—CPA 2008; Eurostat: Luxembourg, Luxembourg, 2012; p. 134. [Google Scholar]
- Girod, B.; De Haan, P. More or Better? A Model for Changes in Household Greenhouse Gas Emissions due to Higher Income. J. Ind. Ecol. 2010, 14, 31–49. [Google Scholar] [CrossRef]
- Eurostat. The Database of Household Budget Surveys. Available online: http://ec.europa.eu/eurostat/web/household-budget-surveys/database (accessed on 18 July 2016).
- Silm, S.; Ahas, R. Ethnic differences in activity spaces: A study of out-of-home nonemployment activities with mobile phone data. Ann. Assoc. Am. Geogr. 2014, 104, 542–559. [Google Scholar] [CrossRef]
- Kalmus, V.; Keller, M.; Kiisel, M. Emerging consumer types in a transition culture: Consumption patterns of generational and ethnic groups in Estonia. J. Balt Stud. 2009, 40, 53–74. [Google Scholar] [CrossRef]
- Keller, M.; Vihalemm, T. Coping with consumer culture: Elderly urban consumers in post-Soviet Estonia. Trames 2005, 9, 69–91. [Google Scholar]
- Kährik, A.; Leetmaa, K.; Tammaru, T. Residential decision-making and satisfaction among new suburbanites in the Tallinn urban region, Estonia. Cities 2012, 29, 49–58. [Google Scholar] [CrossRef]
- Mokhtarian, P.L.; Cao, X. Examining the impacts of residential self-selection on travel behavior: A focus on methodologies. Transp. Res. B Meth. 2008, 42, 204–228. [Google Scholar] [CrossRef]
- De Vos, J.; Witlox, F. Do people live in urban neighbourhoods because they do not like to travel? Analysing an alternative residential self-selection hypothesis. Travel Behav. Soc. 2016, 4, 29–39. [Google Scholar] [CrossRef]
- Biying, Y.; Zhang, J.; Fujiwara, A. Analysis of the residential location choice and household energy consumption behavior by incorporating multiple self-selection effects. Energy Policy 2012, 46, 319–334. [Google Scholar] [CrossRef]
- Pavelka, J.; Draper, D. Leisure negotiation within amenity migration. Ann. Tour. Res. 2015, 50, 128–142. [Google Scholar] [CrossRef]
- Tu, G.; Abildtrup, J.; Garcia, S. Preferences for urban green spaces and peri-urban forests: An analysis of stated residential choices. Landsc. Urban Plan. 2016, 148, 120–131. [Google Scholar] [CrossRef]
- Frenkel, A.; Bendit, E.; Kaplan, S. Residential location choice of knowledge-workers: The role of amenities, workplace and lifestyle. Cities 2013, 35, 33–41. [Google Scholar] [CrossRef]
Hierarchy Level | Description | Population 1 | Share of Population | Share in the Sample |
---|---|---|---|---|
U1 | The capital: Tallinn | 393,222 | 30% | 20% |
H1 | Hinterland municipalities of the capital | 154,341 | 12% | 8% |
U2pf | Regional polyfunctional centers: Pärnu, Tartu | 137,328 | 11% | 7% |
U2i | Regional industrial centers: Jõhvi, Kohtla-Järve, Narva, Sillamäe | 120,891 | 9% | 8% |
H2 | Hinterland municipalities of regional centers | 71,357 | 6% | 5% |
U3 | County centers: Haapsalu, Jõgeva, Kuressaare, Kärdla, Paide, Põlva, Rakvere, Rapla, Valga, Viljandi, Võru | 105,780 | 8% | 13% |
H3 | Hinterland municipalities of county centers | 57,042 | 4% | 7% |
U4 | Small towns (26 towns): e.g., Antsla, Elva, Kiviõli, Kärdla, Kunda, Mustvee, Otepää, Paldiski, Põltsamaa, Tõrva, Võhma | 67,071 | 5% | 8% |
H4 | Rural peripheral municipalities | 181,566 | 14% | 24% 1 |
Variable | U1 | H1 | U2pf | U2i | H2 | U3 | H3 | U4 | H4 |
---|---|---|---|---|---|---|---|---|---|
N | 707 | 292 | 243 | 276 | 179 | 457 | 241 | 280 | 862 |
Single | 25% | 14% | 27% | 27% | 18% | 26% | 25% | 29% | 24% |
Couple | 26% | 25% | 26% | 26% | 23% | 27% | 24% | 25% | 27% |
Household with children | 27% | 40% | 31% | 27% | 39% | 29% | 31% | 27% | 31% |
Other household | 22% | 21% | 16% | 20% | 20% | 19% | 20% | 20% | 19% |
Higher education | 45% | 34% | 41% | 23% | 30% | 28% | 22% | 26% | 18% |
Basic education | 10% | 16% | 13% | 19% | 17% | 17% | 24% | 18% | 26% |
Estonian as first language | 50% | 81% | 85% | 8% | 85% | 89% | 99% | 89% | 97% |
Lowest income decile | 7% | 6% | 10% | 12% | 14% | 10% | 13% | 15% | 14% |
Highest income decile | 13% | 12% | 9% | 4% | 8% | 6% | 5% | 5% | 3% |
Detached or semidetached house | 13% | 55% | 28% | 4% | 62% | 31% | 64% | 50% | 68% |
Large apartment building | 83% | 37% | 54% | 92% | 27% | 57% | 26% | 40% | 20% |
Owner of housing | 77% | 90% | 75% | 89% | 91% | 85% | 86% | 84% | 84% |
District heating | 75% | 31% | 51% | 90% | 21% | 55% | 16% | 36% | 10% |
Stove heating | 15% | 54% | 38% | 4% | 60% | 39% | 73% | 58% | 77% |
Car owner | 55% | 77% | 60% | 42% | 70% | 62% | 70% | 59% | 65% |
Dependent Variable: Log(kg CO2/Year) of the Respective Consumption Cluster | M1 Total | M2 Direct | M3 Indirect | M4 Food and Beverages | M5 Shelter | M6 Transport | M7 Consumer Goods and Services | M8 Leisure | |
---|---|---|---|---|---|---|---|---|---|
Explanatory Variable: Reference | Parameter | Beta | Beta | Beta | Beta | Beta | Beta | Beta | Beta |
Household type: With children | Single | −0.222 *** | −0.131 *** | −0.285 *** | –0.345 *** | –0.157 *** | n.i. | –0.294 *** | –0.132 *** |
Couple | −0.072 *** | −0.031 | −0.111 *** | –0.068 *** | –0.042 * | –0.173 *** | –0.113 *** | ||
Other without children | −0.036 * | 0.000 | −0.065 *** | –0.048 ** | 0.008 | –0.103 *** | –0.099 *** | ||
Education: Higher | Basic | −0.073 *** | −0.007 | −0.136 *** | –0.050 ** | n.i. | n.i. | –0.106 *** | –0.140 *** |
Secondary | −0.071 *** | −0.043 * | −0.080 *** | –0.042 * | –0.021 | –0.104 *** | |||
First language: Estonian | Other | −0.079 *** | −0.122 *** | n.i. | n.i. | –0.102 *** | –0.093 *** | –0.177 *** | |
Income (continuous) | 0.256 *** | 0.119 *** | 0.316 *** | 0.181 *** | 0.096 *** | 0.176 *** | 0.258 *** | 0.268 *** | |
Settlement hierarchy: U1 Capital | H1 Hinterland of capital | 0.032 | n.i. | 0.073 *** | n.i. | 0.009 | 0.008 | 0.020 | 0.068 ** |
U2pf Regional polyfunctional centers | 0.003 | 0.018 | 0.000 | 0.014 | –0.005 | 0.014 | |||
U2i Regional industrial centers | −0.018 | −0.038 * | –0.004 | –0.046 | –0.067 *** | –0.071 ** | |||
H2 Hinterland of regional centers | 0.005 | 0.000 | –0.013 | 0.053 * | –0.013 | 0.014 | |||
U3 County centers | −0.021 | −0.068 *** | 0.032 | –0.018 | –0.050 * | –0.061 ** | |||
H3 Hinterland of county centers | −0.027 | −0.016 | –0.059 ** | 0.011 | –0.021 | –0.033 | |||
U4 Small towns | −0.017 | −0.041 * | 0.016 | –0.011 | –0.017 | –0.068 *** | |||
H4 Rural peripheral municipalities | −0.051 * | −0.044 * | –0.072 ** | 0.054 | –0.016 | –0.101 *** | |||
Living space, m2 (continuous) | 0.156 *** | 0.167 *** | 0.074 *** | 0.054 ** | 0.232 *** | n.i. | 0.047 ** | 0.035 * | |
Dwelling type: Semi-detached, detached | Row house, small apartment building | n.i. | n.i. | 0.034 * | –0.008 | 0.038 * | 0.017 | 0.033 * | n.i. |
Large apartment building | 0.075 *** | –0.059 ** | 0.049 | 0.087 * | 0.045 * | ||||
Dwelling owner: From household | Other | n.i. | −0.044 ** | 0.034 ** | –0.045 ** | n.i. | n.i. | n.i. | n.i. |
Heating option: Other | District | −0.088 *** | −0.128 *** | n.i. | –0.098 *** | –0.101 ** | n.i. | n.i. | |
Private car: Yes | No | −0.173 *** | −0.155 *** | −0.148 *** | –0.098 *** | n.i. | –0.276 *** | –0.152 *** | –0.116 *** |
Constant | 3.841 *** | 3.556 *** | 3.412 *** | 3.048 *** | 3.432 *** | 2.952 *** | 2.782 *** | 2.450 *** | |
Adj R2 | 0.42 | 0.23 | 0.45 | 0.29 | 0.14 | 0.18 | 0.36 | 0.31 | |
N | 3537 | 3537 | 3537 | 3530 | 3537 | 1946 | 3519 | 3168 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poom, A.; Ahas, R. How Does the Environmental Load of Household Consumption Depend on Residential Location? Sustainability 2016, 8, 799. https://doi.org/10.3390/su8090799
Poom A, Ahas R. How Does the Environmental Load of Household Consumption Depend on Residential Location? Sustainability. 2016; 8(9):799. https://doi.org/10.3390/su8090799
Chicago/Turabian StylePoom, Age, and Rein Ahas. 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?" Sustainability 8, no. 9: 799. https://doi.org/10.3390/su8090799
APA StylePoom, A., & Ahas, R. (2016). How Does the Environmental Load of Household Consumption Depend on Residential Location? Sustainability, 8(9), 799. https://doi.org/10.3390/su8090799