Concepts and Strategies of Organic Plant Breeding in Light of Novel Breeding Techniques
Abstract
:1. Introduction
- (1)
- Varieties derived from conventional plant breeding that are suitable for organic farming with the exception of genetically modified varieties (conventional breeding, organically propagated, or, if necessary, derogations are made for conventionally propagated but post-harvest untreated seed).
- (2)
- Varieties derived from plant breeding programs with a special focus on the breeding goals or selection environments for organic farming, and organic seed propagation (product-oriented breeding for organic farming, organically propagated).
- (3)
- Varieties derived from organic breeding programs or organic on farm breeding, which have been bred under organic farming conditions considering to the above mentioned criteria (process-oriented organic plant breeding, organically bred and propagated).
2. The Values and Regulation Setting of Organic Agriculture
2.1. The Arguments of the Organic Sector’s Ban on Genetic Engineering
2.2. Continuous Developments and the Need for Clear Evaluation Criteria
3. Developing Alternative Breeding Concepts
3.1. Future Direction for Crop Improvement in Organic Agriculture
- Chain-based breeding: The whole chain is involved, either contributing in cash, or in kind. For successful chain-based breeding, it is important that all chain players have economic benefit, directly, or indirectly. An example is the Dutch potato breeding system based on collaborations between commercial breeding companies and various potato growers involved in the early selection process [70].
- Community-based breeding: A group of people, together forming a community, sharing an idea or vision. For successful community-based breeding, it is important that the community has a clear common vision and goal. An example can be farmer-based breeding: a group of farmers working together (Kultursaat in Germany). A group of farmers and bakers can also form a community (Resources de Semence Paysanne in France).
3.2. How to Stimulate Organic Variety Development?
3.3. Institutionalisation of Organic Plant Breeding
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bawden, R. The community challenge: The learning response. In Social Learning Systems and Communities of Practice; Blackmore, C., Ed.; Springer: London, UK, 2010; pp. 39–56. [Google Scholar]
- Douglas, M. How Institutions Think; Routledge & Kegan Paul: London, UK, 1986. [Google Scholar]
- Nuijten, E.; van Bueren, E.L. Towards a more community oriented and chain-based breeding. Understanding underlying principles for successful new models. In Strategies for Organic and Low-Input Integrated Breeding and Management, Book of Abstracts, Proceedings of the Diversity Strategies for Organic and Low Input Agricultures and Their Food System, Nantes, France, 7–9 July 2014; Organic Eprints: Tjele, Denmark, 2014; pp. 19–20. [Google Scholar]
- Verweij, M. Whose behaviour is affected by international anarchy? In Cultural Theory as Political Science; Thompson, M., Grendstad, G., Selle, P., Eds.; Routledge: London, UK; New York, NY, USA, 1999; pp. 27–42. [Google Scholar]
- Maat, H. Science cultivating practice: A history of agricultural science in The Netherlands and its colonies 1863–1986. In The International Library of Environmental, Agricultural and Food Ethics Series 1; Springer: Dutch, The Netherlands, 2001. [Google Scholar]
- Pretty, J.N. Participatory learning for sustainable agriculture. World Dev. 1995, 23, 1247–1263. [Google Scholar] [CrossRef]
- Nuijten, E. Combining research styles of the natural and social sciences in agricultural research. NJAS J. Life Sci. 2011, 57, 197–205. [Google Scholar] [CrossRef]
- Hisschemöller, M.; Hoppe, R. Coping with intractable controversies: The case for problem structuring in policy design and analysis. Knowl. Policy 1995, 8, 40–60. [Google Scholar] [CrossRef]
- Ceccarelli, S. GM Crops, Organic Agriculture and Breeding for Sustainability. Sustainability 2014, 6, 4273–4286. [Google Scholar] [CrossRef]
- Jacobsen, S.; Sørensen, M.; Pedersen, S.M.; Weiner, J. Feeding the world: Genetically modified crops versus agricultural biodiversity. Agron. Sustain. Dev. 2013, 33, 651–652. [Google Scholar] [CrossRef]
- Lucht, J.M. Public acceptance of plant biotechnology and GM crops. Viruses 2015, 7, 4254–4281. [Google Scholar] [CrossRef] [PubMed]
- Fraser, E.; Legwegoh, A.; Krishna, K.; CoDyre, M.; Dias, G.; Hazen, S.; Johnson, R.; Martin, R.; Ohberg, L.; Sethuratnam, S.; et al. Biotechnology or organic? Extensive or intensive? Global or local? A critical review of potential pathways to resolve the global food crisis. Trends Food Sci. Technol. 2016, 48, 78–87. [Google Scholar] [CrossRef]
- International Federation of Organic Agriculture Movements (IFOAM). Principles of Organic Agriculture Preamble; IFOAM Organics International: Bonn, Germany, 2016. Available online: http://www.ifoam.bio/en/organic-landmarks/principles-organic-agriculture (accessed on 13 November 2016).
- Arbenz, M.; Gould, D.; Stopes, C. Organic 3.0 for Truly Sustainable Farming and Consumption; Discussion Paper; IFOAM Organics International: Bonn, Germany, 2015. [Google Scholar]
- Willer, H.; Lernoud, J. (Eds.) The World of Organic Agriculture. Statistics an Emerging Trends 2016; Research Institute of Organic Agriculture (FiBL): Frick, Switzerland; IFOAM Organics International: Bonn, Germany, 2016.
- Brandt, K.; Leifert, C.; Sanderson, R.; Seal, C.J. Agroecosystem Management and Nutritional Quality of Plant Foods: The Case of Organic Fruits and Vegetables. Crit. Rev. Plant Sci. 2011, 30, 177–197. [Google Scholar] [CrossRef]
- Crowder, D.W.; Reganold, J.P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl. Acad. Sci. USA 2015, 112, 7611–7616. [Google Scholar] [CrossRef] [PubMed]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- De Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Kniss, A.R.; Savage, S.D.; Jabbour, R. Corrections: Commercial crop yields reveal strengths and weaknesses for organic agriculture in the United States. PLoS ONE 2016, 11, e0165851. [Google Scholar] [CrossRef] [PubMed]
- Seufert, V.L.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Niggli, U. Sustainability of organic food production: Challenges and innovations. Proc. Nutr. Soc. 2015, 74, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Ponisio, L.C.; M’Gonigle, L.K.; Mace, K.C.; Palomino, J.; de Valpine, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. Biol. Sci. 2015, 282, 20141396. [Google Scholar] [CrossRef] [PubMed]
- Przystalski, M.; Osman, A.; Thiemt, E.M.; Rolland, B.; Ericson, L.; Østergård, H.; Levy, L.; Wolfe, M.; Büchse, A.; Piepho, H.-P.; et al. Comparing the performance of cereal varieties in organic and non-organic cropping systems in different European countries. Euphytica 2008, 163, 417–433. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; Finckh, M.R. Plant Diseases and Management Approaches in Organic Farming Systems. Annu. Rev. Phytopathol. 2016, 54, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Van Bueren, E.L.; Jones, S.S.; Tamm, L.; Murphy, K.M.; Myers, J.R.; Leifert, C.; Messmer, M.M. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS Wagening. J. Life Sci. 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Van Bueren, E.L.; Engelen, C.; Hutten, R. Participatory potato breeding model involving organic farmers and commercial breeding companies in The Netherlands. In Proceedings of the Organic Seed Growers Conference, Corvallis, OR, USA, 30 January–1 February 2014; Hubbard, K., Ed.; Organic Seed Alliance: Port Townsend, WA, USA, 2014; pp. 69–73. [Google Scholar]
- Scholten, O.E.; van Heusden, A.W.; Khrustaleva, L.I.; Burger-Meijer, K.; Mank, R.A.; Antonise, R.G.C.; Harrewijn, J.L.; van Haecke, W.; Oost, E.H.; Peters, R.J.; et al. The long and winding road leading to the successful introgression of downy mildew resistance into onion. Euphytica 2007, 156, 345–353. [Google Scholar] [CrossRef]
- European Commission. Council Regulation (EC) No 834/2007 of 28 June 2007 on Organic Production and Labeling of Organic Products and Repealing Regulation (EEC) No 2092/91. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:189:0001:0023:EN:PDF (accessed on 21 December 2016).
- Wolfe, M.S.; Baresel, J.P.; Desclaux, D.; Goldringer, I.; Hoad, S.; Kovacs, G.; Löschenberger, F.; Miedaner, T.; Østergård, H.; van Bueren, E.L. Developments in breeding cereals for organic agriculture. Euphytica 2008, 163, 323–346. [Google Scholar] [CrossRef]
- Schaart, J.G.; van de Wiel, C.C.M.; Lotz, L.A.P.; Smulders, M.J.M. Opportunities for products of new plant breeding techniques. Trends Plant Sci. 2016, 21, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Alrøe, H.; Noe, E. What makes organic agriculture move: Protest, meaning or market?: A polyocular approach to the dynamics and governance of organic agriculture. Int. J. Agric. Resour. Gov. Ecol. 2008, 7, 5–22. [Google Scholar] [CrossRef]
- Lukkitholt, L.W.M. Principles of organic agriculture as formulated by the International Federation of Organic Agriculture Movements. NJAS Wagening. J. Life Sci. 2007, 54, 347–360. [Google Scholar]
- Van Bueren, E.L.; Verhoog, H.; Tiemens-Hulscher, M.; Struik, P.C.; Haring, M.A. Organic agriculture requires process rather than product evaluation of novel breeding techniques. NJAS Wagening. J. Life Sci. 2007, 54, 401–412. [Google Scholar]
- Bullard, L.; Geier, B.; Koechlin, F.; Leskin, D.; Meister, I.; Verhagen, N. Organic agriculture and genetic engineering. Ecol. Farming Mag. 1994, 8, 25–26. [Google Scholar]
- Van Bueren, E.L.; Struik, P.C.; Tiemens-Hulscher, M.; Jacobsen, E. The concepts of intrinsic value and integrity of plants in organic plant breeding and propagation. Crop Sci. 2003, 43, 1922–1929. [Google Scholar] [CrossRef]
- Verhoog, H. Organic agriculture versus genetic engineering. NJAS Wagening. J. Life Sci. 2007, 54, 387–400. [Google Scholar] [CrossRef]
- Samsel, A.; Seneff, S. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. Entropy 2013, 15, 1416–1463. [Google Scholar] [CrossRef]
- Fabrick, J.A.; Unnithan, G.C.; Yelich, A.J.; Ben DeGain, B.; Masson, L.; Zhang, J.; Carrière, Y.; Tabashnik, B.E. Multi-Toxin Resistance Enables Pink Bollworm Survival on Pyramided Bt Cotton. Sci. Rep. 2015, 5, 16554. [Google Scholar] [CrossRef] [PubMed]
- Van Bueren, E.L.; Hulscher, M.; Jongerden, J.; Ruivenkamp, G.T.P.; Haring, M.; Van Mansvelt, J.D.; Den Nijs, A.M.P. Sustainable Organic Plant Breeding—A Vision, Choices, Consequences and Steps; Louis Bolk Institute: Driebergen, The Netherlands, 1999. [Google Scholar]
- European Consortium for Organic Plant Breeding (ECO-PB). Position Paper on Organic Plant Breeding; ECO-PB: Frankfurt, Germany, 2012. [Google Scholar]
- Messmer, M.; Wilbois, K.-P.; Baier, C.; Schäfer, F.; Arncken, C.; Drexler, D.; Hildermann, I. Plant Breeding Techniques—An Assessment for Organic Farming; Dossier No. 2; FiBL: Frick, Switzerland, 2015. [Google Scholar]
- Bundesverfassung der Schweizerischen Eidgenossenschaft. Available online: https://www.admin.ch/opc/de/classified-compilation/19995395/200112020000/101.pdf (accessed on 21 December 2016).
- International Federation of Organic Agriculture Movements (IFOAM). The IFOAM Norms; IFOAM: Bonn, Germany, 2014. [Google Scholar]
- Van Bueren, E.L.; Østergård, H.; De Vriend, H.; Backes, G. Role of molecular markers and marker assisted selection in breeding for organic and low-input agriculture. Euphytica 2010, 175, 51–64. [Google Scholar] [CrossRef]
- Ammann, K. Integrated farming: Why organic farmers should use transgenic crops. New Biotechnol. 2008, 25, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Herrera, L.A.; Ortiz, R. Plant breeding for organic agriculture: Something new? Agric. Food Secur. 2015, 4, 25. [Google Scholar] [CrossRef]
- Schaeffer, S.M.; Nakata, P.A. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. Plant Sci. 2015, 240, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Araki, M.; Ishii, T. Towards social acceptance of plant breeding by genome editing. Trends Plant Sci. 2015, 20, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Barabaschi, D.; Tondellia, A.; Desiderioa, F.; Volanteb, A.; Vaccinoc, P.; Valèb, G.; Cattivellia, L. Next generation breeding. Plant Sci. 2016, 242, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Schiml, S.; Puchta, H. Revolutionizing plant biology: Multiple ways of genome engineering by CRISPR/Cas. Plant Methods 2016, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Lusser, M.; Parisi, C.; Plan, D.; Rodríguez-Cerezo, E. New Plant Breeding Techniques State-of-the-Art and Prospects for Commercial Development; European Commission, Joint Research Centre: Luxembourg, 2011. [Google Scholar]
- Lusser, M.; Parisi, C.; Plan, D.; Rodríguez-Cerezo, E. Deployment of new biotechnologies in plant breeding. Nat. Biotechnol. 2012, 30, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Waltz, E. CRISPR-edited crops free to enter market, skip regulation. Nat. Biotechnol. 2016, 34, 582. [Google Scholar] [CrossRef] [PubMed]
- Wolt, J.D.; Wang, K.; Yang, B. The Regulatory Status of Genome-edited Crops. Plant Biotechnol. J. 2016, 14, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Ryffel, G.U. Orgenic plants: Gene-manipulated plants compatible with organic farming. Biotechnol. J. 2012, 7, 1328–1331. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.M.; Landes, X.; Xiang, W.; Anyshchenko, A.; Falhof, J.; Østerberg, J.T.; Olsen, L.I.; Edenbrandt, A.K.; Vedel, S.Z.; Thorsen, B.J.; et al. Feasibility of new breeding techniques for organic farming. Trends Plant Sci. 2015, 20, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Ossowski, S.; Schneeberger, K.; Lucas-Lledo, J.I.; Warthmann, N.; Clark, R.M.; Shaw, R.G.; Weigel, D.; Lynch, M. The rate and molecular spectrum of spontaneaous mutations in Arabidopsis thaliana. Science 2016, 327, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Palmgren, M.G.; Edenbrandt, A.K.; Vedel, S.E.; Andersen, M.M.; Landes, X.; Østerberg, J.T.; Falhof, J.; Olsen, L.I.; Christensen, S.B.; Sandøe, P.; et al. Are we ready for back-to-nature crop breeding? Trends Plant Sci. 2015, 20, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Bertheau, Y. (Ed.) Genetically Modified and Non-Genetically Modified Food Supply Chains: Co-Existence and Traceability; Wiley Blackwell: Oxford, UK, 2012.
- Gutierrez, A.P.; Ponti, L.; Herren, H.R.; Baumgärtner, J.; Kenmore, P.E. Deconstructing Indian cotton: Weather, yields, and suicides. Environ. Sci. Eur. 2015, 27, 12–28. [Google Scholar] [CrossRef]
- Friends of the Earth. Organic Standards Will Exclude Next Generation of GMOs. 2016. Available online: http://www.foe.org/news/news-releases/2016-11-organic-standards-will-exclude-next-generation-of-gmos (accessed on 30 November 2016).
- IFOAM EU GROUP. New Plant Breeding Techniques—Position Paper. 2015. Available online: http://www.ifoam-eu.org/sites/default/files/ifoameu_policy_npbts_position_final_20151210.pdf (accessed on 21 December 2016).
- Messmer, M.M.; Burger, H.; Schmidt, W.; Geiger, H.H. Importance of Appropriate Selection Environments for Breeding Maize Adapted to Organic Farming Systems. In Tagungsband der 60. Jahrestagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs; Raumberg-Gumpenstein: Irdning, Austria, 2010; pp. 49–52. [Google Scholar]
- Reid, T.A.; Yang, R.C.; Salmon, D.F.; Navabi, A.; Spaner, D. Realized gains from selection for spring wheat grain yield are different in conventional and organically managed systems. Euphytica 2011, 177, 253–266. [Google Scholar] [CrossRef]
- Luby, C.H.; Lyon, A.H.; Shelton, A.C. A New Generation of Plant Breeders Discovers Fertile Ground in Organic Agriculture. Sustainability 2013, 5, 2722–2726. [Google Scholar] [CrossRef]
- Nuijten, E.; van Bueren, E.L. Key elements for collaborative breeding models for organic markets in Europe. In Proceedings of the Organic Seed Growers Conference, Corvallis, OR, USA, 4–6 February 2016; Davis, K., Ed.; Organic Seed Alliance: Port Townsend, WA, USA, 2016; pp. 47–52. [Google Scholar]
- Chable, V.; Conseil, M.; Serpolay, E.; le Lagadec, F. Organic varieties for cauliflowers and cabbages in Brittany: From genetic resources to participatory plant breeding. Euphytica 2008, 164, 521–529. [Google Scholar] [CrossRef]
- Renaud, E.C.M.; van Bueren, E.L.; Jiggins, J. The Process of Interpreting and Implementing Organic Seed Regulation in the United States. Org. Agric. 2014, 4, 25–42. [Google Scholar] [CrossRef]
- Almekinders, C.J.M.; Mertens, L.; van Loon, J.P.; van Bueren, E.L. Potato breeding in The Netherlands: A successful participatory model with collaboration between farmers and commercial breeders. Food Secur. 2014, 6, 515–524. [Google Scholar] [CrossRef]
- Renaud, E.C.M.; van Bueren, E.L.; Jiggins, J. The meta-governance of organic seed regulation in the USA, European Union and Mexico. Int. J. Agric. Resour. Gov. Ecol. 2016, 12, 262–291. [Google Scholar] [CrossRef]
- Geels, F.W.; Schot, J. Typology of sociotechnical transition pathways. Res. Policy 2007, 36, 399–417. [Google Scholar] [CrossRef]
- Hekkert, M.P.; Suurs, R.A.A.; Negro, S.O.; Kuhlmann, S.; Smits, R.E. Functions of innovation systems: A new approach for analysing technological change. Technol. Forecast. Soc. Chang. 2007, 74, 413–432. [Google Scholar] [CrossRef]
- Biodatabase. Database for Organic Starting Material in The Netherlands. 2016. Available online: http://www.biodatabase.nl/en/ (accessed on 17 November 2016).
- Batterbury, S. Planners or performers? Reflections on indigenous dryland farming in northern Burkina Faso. Agric. Hum. Values 1996, 13, 12–22. [Google Scholar] [CrossRef]
- Nuijten, E.; Temudo, M.; Richards, P.; Okry, F.; Teeken, B.; Mokuwa, A.; Struik, P.C. Towards a new approach for understanding interactions of Technology with Environment and Society in small-scale rice farming. In Realizing Africa’s Rice Promise; Wopereis, M.C.S., Johnson, D.E., Ahmadi, N., Tollens, E., Jalloh, A., Eds.; CABI Publishing: Wallingford, UK, 2013; pp. 355–366. [Google Scholar]
- Osman, A.M.; Almekinders, C.J.M.; Struik, P.C.; van Bueren, E.L. Adapting spring wheat breeding to the needs of the organic sector. NJAS Wagening. J. Life Sci. 2016, 76, 55–63. [Google Scholar] [CrossRef]
- Kolwake, J. Clif Bar Spearheads $10 Million Investment to Fund Five Endowed Chairs Focused on Organic Agricultural Research. 2016. Available online: http://www.clifbar.com/newsroom/clif-bar-spearheads-10-million-investment-to-fund-five-endowed-chairs-focused-on-organic-agricultural-research (accessed on 9 September 2016).
- Cardi, T. Cisgenesis and genome editing: Combining concepts and efforts for a smarter use of genetic resources in crop breeding. Plant Breed. 2016, 135, 139–147. [Google Scholar] [CrossRef]
- COGEM (Commission on Genetic Modificatio). Towards an Integrated Framework for the Assessment of Social and Ethical Issues in Modern Biotechnology; COGEM Advisory Report to the State Secretary for Housing, Planning and the Environment (CGM/030618-02); COGEM: Bilthoven, The Netherlands, 2003. [Google Scholar]
- Howard, P.H. Visualizing Consolidation in the Global Seed Industry: 1996–2008. Sustainability 2009, 1, 1266–1287. [Google Scholar] [CrossRef]
- Haußmann, B.I.G.; Parzies, H.K. Methodologies for generating variability. Part 1 Use of Genetic Resources in Plant Breeding. In Participatory Plant Breeding; Ceccarelli, S., Guimarães, E.P., Weltzien, E., Rajendran, P.G., Eds.; FAO: Rome, Italy, 2009; pp. 107–128. [Google Scholar]
- Lin, B.B. Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. Bioscience 2011, 61, 183–193. [Google Scholar] [CrossRef]
- Reid, T.A.; Yang, R.C.; Salmon, F.D.; Spaner, D. Should spring wheat breeding for organically managed systems be conducted on organically managed land? Euphytica 2009, 169, 239–252. [Google Scholar] [CrossRef]
- Löschenberger, F.; Fleck, A.; Grausgruber, H.; Hetzendorfer, H.; Hof, G.; Lafferty, J.; Marn, M.; Neumayer, A.; Pfaffinger, G.; Birschitzky, J. Breeding for organic agriculture: The example of winter wheat in Austria. Euphytica 2008, 163, 469–481. [Google Scholar] [CrossRef]
- Riviere, P.; Goldringer, I.; Berthellot, J.F.; Galic, N.; Pin, S.; De Kochko, P.; Dawson, J.C. Response to farmer mass selection in early generation progeny of bread wheat landrace crosses. Renew. Agric. Food Syst. 2014, 30, 190–201. [Google Scholar] [CrossRef]
- Döring, T.F.; Knapp, S.; Kovacs, G.; Murphy, K.; Wolfe, M.S. Evolutionary Plant Breeding in Cereals—Into a New Era. Sustainability 2011, 3, 1944–1971. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.-P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Steen Jensen, E.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming: A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Desclaux, D.; Ceccarelli, S.; Navazio, J.; Coley, M.; Trouche, G.; Aguirre, S.; Weltzien, E.; Lançon, J. Centralized or Decentralized Breeding: The Potentials of Participatory Approaches for Low-Input and Organic Agriculture. In Organic Crop Breeding; van Bueren, E.L., Myers, J.R., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 99–124. [Google Scholar]
- Ceccarelli, S. Efficiency of Plant Breeding. Crop Sci. 2015, 55, 87–97. [Google Scholar] [CrossRef]
- Campanelli, G.; Acciarri, N.; Campion, B.; Delvecchio, S.; Leteo, F.; Fusari, F.; Angelini, P.; Ceccarelli, S. Participatory tomato breeding for organic conditions in Italy. Euphytica 2015, 204, 179–197. [Google Scholar] [CrossRef]
- Shelton, A.; Tracey, W.F. Recurrent selection and participatory plant breeding for improvement of two organic open-pollinated sweet corn (Zea mays L.) populations. Sustainability 2015, 7, 5139–5152. [Google Scholar] [CrossRef]
- Pautasso, M.; Dehnen-Schmutz, K.; Ilbery, B.; Jeger, M.J.; Jones, G.; Little, R.; MacLeod, A.; Maye, D.; Parker, S.; Pietravalle, S.; Mills, P. Plant health challenges for a sustainable land use and rural economy. CAB Rev. 2012, 7, 63. [Google Scholar] [CrossRef]
- Mokuwa, A.; Nuijten, E.; Okry, F.; Teeken, B.; Maat, H.; Richards, P.; Struik, P.C. Processes Underpinning Development and Maintenance of Diversity in Rice in West Africa: Evidence from Combining Morphological and Molecular Markers. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Coomes, O.T.; McGuire, S.T.; Garine, E.; Caillon, S.; McKey, D.; Demeulenaere, E.; Jarvis, D.; Aistara, G.; Barnaud, A.; Clouvel, P.; et al. Farmer seed networks make a limited contribution to agriculture? Four common misconceptions. Food Policy 2015, 56, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Kotschi, J.; Wirz, J. Who Pays for Seeds? Thoughts on Financing Organic Plant Breeding; Working Paper; AGRECOL and Section for Agriculture: Marburg, Germany; Dornach, Switzerland, 2015; Available online: http://www.agrecol.de/files/Kotschi_&_Wirz%20Engl_12_05_15.pdf (accessed on 29 August 2016).
- Garcia-Yi, J. Market-based instruments for the conservation of underutilized crops: In-store experimental auction of native Chili products in Bolivia. Sustainability 2014, 6, 7768–7786. [Google Scholar] [CrossRef]
- Bjørnstad, Å. ‘Do Not Privatize the Giant’s Shoulders’: Rethinking Patents in Plant Breeding. Trends Biotechnol. 2016, 34, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Vanloqueren, G.; Baret, P.V. Why are ecological, low-input, multi-resistant wheat cultivars slow to develop commercially? A Belgian agricultural ‘lock-in’ case study. Ecol. Econ. 2008, 66, 436–446. [Google Scholar] [CrossRef]
- Vanloqueren, G.; Baret, P.V. How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Res. Policy 2009, 38, 971–983. [Google Scholar] [CrossRef]
Breeding Technique | Interference on Genome Level | Interference on Cell Level | Ability of Propagation Is Affected | Overcoming Crossing Barriers | Breeder’s Privilege Is Affected | Farmers Rights to Use Farm Saved Seed Is Affected | Tracing Possible |
---|---|---|---|---|---|---|---|
Marker assisted selection | No | No | No | No | No | No | No |
Cytoplast fusion | No | Yes | Case specific | Yes | Partly | Yes | Yes |
Zinkfinger Nucleases I and II | Yes | Yes | No | No | Yes (patent) | Yes (patent) | No |
Zinkfinger Nuclease III | Yes | Yes | No | Possibly | Yes (patent) | Yes (patent) | Yes |
Cisgenetics | Yes | Yes | No | No | Yes (patent) | Yes (patent) | Case specific |
Transgenetics | Yes | Yes | Possibly | Yes | Yes (patent) | Yes (patent) | Yes |
RNA Interference (RNAi) | Yes | Yes | No | No | Yes (patent) | Yes (patent) | No |
Reverse breeding | Yes | Yes | No | No | Yes (patent) | Yes (patent) | No |
Minichromosomes | Yes | Yes | No | Yes | Yes (patent) | Yes (patent) | Yes |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuijten, E.; Messmer, M.M.; Lammerts van Bueren, E.T. Concepts and Strategies of Organic Plant Breeding in Light of Novel Breeding Techniques. Sustainability 2017, 9, 18. https://doi.org/10.3390/su9010018
Nuijten E, Messmer MM, Lammerts van Bueren ET. Concepts and Strategies of Organic Plant Breeding in Light of Novel Breeding Techniques. Sustainability. 2017; 9(1):18. https://doi.org/10.3390/su9010018
Chicago/Turabian StyleNuijten, Edwin, Monika M. Messmer, and Edith T. Lammerts van Bueren. 2017. "Concepts and Strategies of Organic Plant Breeding in Light of Novel Breeding Techniques" Sustainability 9, no. 1: 18. https://doi.org/10.3390/su9010018
APA StyleNuijten, E., Messmer, M. M., & Lammerts van Bueren, E. T. (2017). Concepts and Strategies of Organic Plant Breeding in Light of Novel Breeding Techniques. Sustainability, 9(1), 18. https://doi.org/10.3390/su9010018