Revolutionizing Pediatric Surgery: The Transformative Role of Regional Anesthesia—A Narrative Review
Abstract
:1. Introduction
2. Methods
- Studies involving pediatric patients (0–18 years) undergoing surgery with regional anesthesia.
- Articles in English report original research, reviews, or meta-analyses.
- Publications focused on clinical outcomes, safety, and innovations in pediatric regional anesthesia.
- Non-English publications.
- Animal studies and experimental models unrelated to pediatric clinical practice.
- Conference abstracts without complete data.
3. Results
4. Discussion
4.1. Comparing Regional Anesthesia with General Anesthesia
- Reduced Neurodevelopmental Risk: General anesthesia has been associated with potential neurotoxicity in pediatric patients, especially in neonates and infants [24]. Prolonged exposure to GA agents such as sevoflurane and isoflurane during critical periods of brain development has been linked to cognitive and behavioral impairments [2]. In contrast, regional anesthesia minimizes or eliminates the need for GA, reducing the risk of long-term neurodevelopmental consequences [25].
- Superior Pain Management: Regional anesthesia provides targeted and prolonged pain relief, often surpassing the analgesic efficacy of systemic medications used with GA [13]. Techniques such as caudal epidural blocks and peripheral nerve blocks ensure adequate postoperative analgesia, reducing the reliance on opioids [23].
- Improved Neurophysiological Monitoring: In surgeries requiring neurophysiological monitoring, such as scoliosis correction, regional anesthesia allows for lighter planes of sedation, preserving somatosensory-evoked potentials (SSEPs) and motor-evoked potentials (MEPs) [29,30]. General anesthesia, particularly with inhalational agents, can suppress these signals, complicating intraoperative monitoring [31].
- Reduced Surgery Stress Response: General and regional anesthesia differ significantly in their impact on the surgical stress response [28]. General anesthesia primarily suppresses consciousness but does not entirely block nociceptive signaling, often leading to a systemic stress response characterized by elevated levels of cortisol and catecholamines [32]. In contrast, regional anesthesia directly interrupts nociceptive pathways at the surgery site, significantly reducing the release of stress hormones and inflammatory mediators [9]. This stress response attenuation results in more stable intraoperative hemodynamics and a lower risk of stress-related complications such as metabolic imbalances or immune suppression [33]. These effects are particularly advantageous in vulnerable populations, such as pediatric or critically ill patients, who benefit from a reduced physiological burden during surgery.
4.2. Advantages of Regional Anesthesia
4.2.1. Superior Pain Control
4.2.2. Reduction in Systemic Opioid Use
4.2.3. Decreased Anesthetic Requirements
4.2.4. Improved Recovery Profiles
4.2.5. Reduced Stress Response
4.2.6. Safety and Precision with Ultrasound Guidance
4.3. Risks of Local Anesthetic Systemic Toxicity (LAST) and Prevention Strategies
4.4. Adjuvants to Local Anesthetics in Pediatrics
- Clonidine: An alpha-2 adrenergic agonist, clonidine prolongs the duration of analgesia by enhancing the nerve-blocking effects of local anesthetics [61]. Additionally, it has sedative properties, which may benefit pediatric patients requiring prolonged postoperative comfort [62]. However, clonidine can cause side effects such as hypotension, bradycardia, and sedation, which need careful monitoring, especially in younger children or those with hemodynamic instability [63].
- Dexmedetomidine: Another alpha-2 adrenergic agonist, dexmedetomidine provides sedative and analgesic properties without significant respiratory depression [64]. It is particularly beneficial in caudal and peripheral blocks, extending the duration of analgesia [65]. Side effects of dexmedetomidine include bradycardia and transient hypotension [64]. Still, these are generally well-tolerated and manageable.
- Dexamethasone: A corticosteroid, dexamethasone is widely used to prolong the duration of nerve blocks by reducing local inflammation and sensitization of nociceptors [66]. Its use is associated with significantly longer analgesia duration and improved postoperative comfort [67]. While systemic side effects such as hyperglycemia and immunosuppression are potential concerns with higher doses or prolonged use, they are rarely significant at the doses used for regional anesthesia [68].
- Epinephrine: While epinephrine has historically been used to prolong block duration by causing vasoconstriction and reducing systemic absorption of local anesthetics, its utility in pediatric anesthesia is limited due to potential cardiovascular effects such as tachycardia, hypertension, and arrhythmias [69]. The risk-to-benefit ratio makes it less favorable than newer agents like dexmedetomidine or dexamethasone. Moreover, epinephrine only slightly prolongs the duration of action of local anesthetics [70].
- Ketamine: Ketamine, an NMDA receptor antagonist, has been used as an adjuvant in regional anesthesia for its analgesic and anti-inflammatory effects [74]. While it can enhance block efficacy, concerns about neurotoxicity in younger children and the potential for psychomimetic side effects restrict its routine use [75].
4.5. Dosages of Medications in Pediatric Regional Anesthesia
4.6. Complications Related to Improper Aspiration During Injection
4.7. Methemoglobinemia Due to Prilocaine in Newborns
4.8. Common Regional Anesthesia Techniques in Pediatric Surgery
4.8.1. Infiltration Anesthesia
- Lidocaine
- Concentration: 0.5–1%.
- Dose: 3–5 mg/kg (maximum dose without epinephrine: 5 mg/kg).
- Onset: Rapid (1–2 min).
- Duration: Short (30–60 min).
- Bupivacaine
- Concentration: 0.125–0.25%.
- Dose: 1–2 mg/kg (maximum dose without epinephrine: 2.5 mg/kg).
- Onset: Slower than lidocaine (5–10 min).
- Duration: Longer (2–4 h).
- Ropivacaine
- Concentration: 0.2%.
- Dose: 2–3 mg/kg (maximum dose: 3 mg/kg).
- Onset: Intermediate (5–10 min).
- Duration: Long (2–6 h).
4.8.2. Caudal Epidural Block
4.8.3. Peripheral Nerve Blocks
4.8.4. Truncal Blocks
4.8.5. Neuraxial Anesthesia
4.9. Expanding Possibilities with Ultrasound Guidance
4.10. Beyond Pain Management
4.11. Limitations and Future Directions
4.11.1. Limitations
4.11.2. Future Directions
- Comparative Efficacy Studies: Trials comparing different regional anesthesia techniques with general anesthesia or combined approaches in terms of perioperative pain control, recovery time, and safety.
- Long-Term Neurodevelopmental Outcomes: Studies evaluating the impact of regional anesthesia on neurodevelopment, particularly in neonates and infants, given concerns about the potential neurotoxicity of general anesthesia.
- Optimal Dosing of Local Anesthetics and Adjuvants: Further research on the optimal dosages of commonly used local anesthetics and adjuvants, particularly in younger children, to minimize toxicity while ensuring effective analgesia.
- Cost-Effectiveness Analyses: Economic evaluations comparing regional anesthesia versus general anesthesia in pediatric surgery to determine its broader impact on healthcare costs and resource utilization.
- Innovations in Technology: Studies exploring the role of emerging technologies, such as artificial intelligence-guided ultrasound or novel nerve block techniques, in enhancing the precision and safety of regional anesthesia.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Sarno, L.; Gatto, A.; Korn, D.; Pansini, V.; Curatola, A.; Ferretti, S.; Capossela, L.; Graglia, B.; Chiaretti, A. Pain management in pediatric age. An update. Acta Bio Medica Atenei Parm. 2023, 94, e2023174. [Google Scholar]
- Xiao, A.; Feng, Y.; Yu, S.; Xu, C.; Chen, J.; Wang, T.; Xiao, W. General anesthesia in children and long-term neurodevelopmental deficits: A systematic review. Front. Mol. Neurosci. 2022, 15, 972025. [Google Scholar] [CrossRef]
- Ecoffey, C.; Bosenberg, A.; Lonnqvist, P.; Suresh, S.; Delbos, A.; Ivani, G. Practice advisory on the prevention and management of complications of pediatric regional anesthesia. J. Clin. Anesth. 2022, 79, 110725. [Google Scholar] [CrossRef] [PubMed]
- Dohlman, L.E.; Kwikiriza, A.; Ehie, O. Benefits and barriers to increasing regional anesthesia in resource-limited settings. Local Reg. Anesth. 2020, 13, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Domagalska, M.; Reysner, T. Pain management in total knee arthroplasty. A comprehensive review. Chirurgia Narządów Ruchu i Ortopedia Polska 2022, 87, 173–180. [Google Scholar] [CrossRef]
- Shams, D.; Sachse, K.; Statzer, N.; Gupta, R.K. Regional anesthesia complications and contraindications. Clin. Sports Med. 2022, 41, 329–343. [Google Scholar] [CrossRef]
- Fallon, M.; Sopata, M.; Dragon, E.; Brown, M.T.; Viktrup, L.; West, C.R.; Bao, W.; Agyemang, A. A randomized placebo-controlled trial of the anti-nerve growth factor antibody tanezumab in subjects with cancer pain due to bone metastasis. Oncologist 2023, 28, e1268–e1278. [Google Scholar] [CrossRef]
- Morton, N.S.; Fairgrieve, R.; Moores, A.; Wallace, E. Anesthesia for the Full-term and Ex-premature Infant. In Gregory’s Pediatric Anesthesia; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 524–547. [Google Scholar]
- Reysner, T.; Wieczorowska-Tobis, K.; Kowalski, G.; Grochowicka, M.; Pyszczorska, M.; Mularski, A.; Reysner, M. The Influence of Regional Anesthesia on the Systemic Stress Response. Reports 2024, 7, 89. [Google Scholar] [CrossRef]
- Yang, F.; Zhao, H.; Zhang, K.; Wu, X.; Liu, H. Research progress and treatment strategies for anesthetic neurotoxicity. Brain Res. Bull. 2020, 164, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.K.M.; Brambrink, A.M. Neurotoxicity of General Anesthetics. Essentials of Neurosurgical Anesthesia & Critical Care: Strategies for Prevention, Early Detection, and Successful Management of Perioperative Complications; Springer Nature: Cham, Switzerland, 2020; pp. 91–104. [Google Scholar]
- Zhu, X.; Yang, M.; Mu, J.; Wang, Z.; Zhang, L.; Wang, H.; Yan, F. The Effect of General Anesthesia vs. Regional Anesthesia on Postoperative Delirium—A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 844371. [Google Scholar] [CrossRef] [PubMed]
- Pinto, N.; Sawardekar, A.; Suresh, S. Regional anesthesia: Options for the pediatric patient. Anesthesiol. Clin. 2020, 38, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Masaracchia, M.M.; Dean, K.A. Pediatric Regional Anesthesia: New Techniques, Better Outcomes? Curr. Anesthesiol. Rep. 2021, 11, 223–232. [Google Scholar] [CrossRef]
- Haskins, S.C.; Bronshteyn, Y.; Perlas, A.; El-Boghdadly, K.; Zimmerman, J.; Silva, M.; Boretsky, K.; Chan, V.; Kruisselbrink, R.; Byrne, M. American Society of Regional Anesthesia and Pain Medicine expert panel recommendations on point-of-care ultrasound education and training for regional anesthesiologists and pain physicians—Part I: Clinical indications. Reg. Anesth. Pain Med. 2021, 46, 1031–1047. [Google Scholar] [CrossRef] [PubMed]
- Feehan, T.; Packiasabapathy, S. Pediatric regional anesthesia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Cobos Anbuhl, A. Regional Anesthesia in Children. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2024. [Google Scholar]
- Spacca, B.; Luglietto, D.; Vatavu, O.; D’Incerti, L.; Tuccinardi, G.; Butti, D.; Bussolin, L.; Mussa, F.; Genitori, L. Operational Improvement in Pediatric Neurosurgery. In Frailty in Children: From the Perioperative Management to the Multidisciplinary Approach; Springer: Berlin/Heidelberg, Germany, 2023; pp. 159–189. [Google Scholar]
- Karunarathna, I.; Kusumarathna, K.; Gunarathna, I.; Gunathilake, S.; Senarathna, R.; Wijayawardana, K.; Disanayake, D.; Kurukulasooriya, P.; Samarasinghe, A.; Bandara, S. Navigating Pediatric Anatomy and Physiology in Anesthesia: Key Considerations for Safe Perioperative Care. Uva Clinical Lab Retrieved from ResearchGate. 2024. Available online: https://www.researchgate.net/publication/380030115_Navigating_Pediatric_Anatomy_and_Physiology_in_Anesthesia_Key_Considerations_for_Safe_Perioperative_Care (accessed on 13 December 2024).
- Hansen, T.W.; Wong, R.J.; Stevenson, D.K. Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn. Physiol. Rev. 2020, 100, 1291–1346. [Google Scholar] [CrossRef] [PubMed]
- Fettiplace, M.; Joudeh, L.; Bungart, B.; Boretsky, K. Local anesthetic dosing and toxicity of pediatric Truncal catheters: A narrative review of published practice. Reg. Anesth. Pain Med. 2024, 49, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Taenzer, A.H.; Herrick, M.; Hoyt, M.; Ramamurthi, R.; Walker, B.; Flack, S.H.; Bosenberg, A.; Franklin, A.; Polaner, D.M. Variation in pediatric local anesthetic dosing for peripheral nerve blocks: An analysis from the pediatric regional anesthesia network (PRAN). Reg. Anesth. Pain Med. 2020, 45, 964–969. [Google Scholar] [CrossRef]
- Heydinger, G.; Tobias, J.; Veneziano, G. Fundamentals and innovations in regional anaesthesia for infants and children. Anaesthesia 2021, 76, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, J.; Goldin, A.; Arthur, L.G.; Beres, A.L.; Guner, Y.S.; Hu, Y.-Y.; Kawaguchi, A.L.; Kelley-Quon, L.I.; McAteer, J.P.; Miniati, D. The effects of early anesthesia on neurodevelopment: A systematic review. J. Pediatr. Surg. 2021, 56, 851–861. [Google Scholar] [CrossRef]
- Walsh, B.H.; Paul, R.A.; Inder, T.E.; Shimony, J.S.; Smyser, C.D.; Rogers, C.E. Surgery requiring general anesthesia in preterm infants is associated with altered brain volumes at term equivalent age and neurodevelopmental impairment. Pediatr. Res. 2021, 89, 1200–1207. [Google Scholar] [CrossRef]
- Reysner, T.; Kowalski, G.; Grochowicka, M.; Domagalska, D. The pericapsular nerve group (PENG) block for hip surgery. A narrative review. Chirurgia Narządów Ruchu i Ortopedia Polska 2023, 88, 17–24. [Google Scholar] [CrossRef]
- Domagalska, M.; Reysner, T.; Kowalski, G.; Daroszewski, P.; Mularski, A.; Wieczorowska-Tobis, K. Pain Management, Functional Recovery, and Stress Response Expressed by NLR and PLR after the iPACK Block Combined with Adductor Canal Block for Total Knee Arthroplasty—A Prospective, Randomised, Double-Blinded Clinical Trial. J. Clin. Med. 2023, 12, 7088. [Google Scholar] [CrossRef]
- Domagalska, M.; Ciftsi, B.; Janusz, P.; Reysner, T.; Kolasinski, J.; Wieczorowska-Tobis, K.; Kowalski, G. The neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) levels following erector spinae plane block (ESPB) in posterior lumbar decompression: A randomized, controlled trial. Eur. Spine J. 2023, 32, 4192–4199. [Google Scholar] [CrossRef] [PubMed]
- Daroszewski, P.; Huber, J.; Kaczmarek, K.; Janusz, P.; Główka, P.; Tomaszewski, M.; Domagalska, M.; Kotwicki, T. Comparison of Motor Evoked Potentials Neuromonitoring Following Pre-and Postoperative Transcranial Magnetic Stimulation and Intraoperative Electrical Stimulation in Patients Undergoing Surgical Correction of Idiopathic Scoliosis. J. Clin. Med. 2023, 12, 6312. [Google Scholar] [CrossRef]
- Daroszewski, P.; Garasz, A.; Huber, J.; Kaczmarek, K.; Janusz, P.; Główka, P.; Tomaszewski, M.; Kotwicki, T. Update on neuromonitoring procedures applied during surgery of the spine–observational study. Reumatologia 2023, 61, 21. [Google Scholar] [CrossRef]
- Domagalska, M.; Ciftsi, B.; Janusz, P.; Reysner, T.; Daroszewski, P.; Kowalski, G.; Wieczorowska-Tobis, K.; Kotwicki, T. Effectiveness of the Bilateral and Bilevel Erector Spinae Plane Block (ESPB) in Pediatric Idiopathic Scoliosis Surgery: A Randomized, Double-Blinded, Controlled Trial. J. Pediatr. Orthop. 2024, 44, e634–e640. [Google Scholar] [CrossRef] [PubMed]
- Cusack, B.; Buggy, D. Anaesthesia, analgesia, and the surgical stress response. BJA Educ. 2020, 20, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Hirose, M.; Okutani, H.; Hashimoto, K.; Ueki, R.; Shimode, N.; Kariya, N.; Takao, Y.; Tatara, T. Intraoperative assessment of surgical stress response using nociception monitor under general anesthesia and postoperative complications: A narrative review. J. Clin. Med. 2022, 11, 6080. [Google Scholar] [CrossRef]
- Kowalski, G.; Leppert, W.; Adamski, M.; Szkutnik-Fiedler, D.; Baczyk, E.; Domagalska, M.; Bienert, A.; Wieczorowska-Tobis, K. Rectal enema of bupivacaine in cancer patients with tenesmus pain–case series. J. Pain Res. 2019, 12, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Domagalska, M.; Wieczorowska-Tobis, K.; Reysner, T.; Geisler-Wojciechowska, A.; Grochowicka, M.; Kowalski, G. Pericapsular Nerves Group (PENG) Block in Children under Five Years of Age for Analgesia in Surgery for Hip Dysplasia: Case Report. J. Pers. Med. 2023, 13, 454. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, S.A.; Woodroof, J.; Murphy, A.J.; Davidoff, A.M.; Morgan, K.J. Does epidural analgesia really enhance recovery in pediatric surgery patients? Pediatr. Surg. Int. 2021, 37, 1201–1206. [Google Scholar] [CrossRef]
- Hafeman, M.; Greenspan, S.; Rakhamimova, E.; Jin, Z.; Moore, R.P.; Al Bizri, E. Caudal block vs. transversus abdominis plane block for pediatric surgery: A systematic review and meta-analysis. Front. Pediatr. 2023, 11, 1173700. [Google Scholar] [CrossRef]
- Domagalska, M.; Ciftci, B.; Kolasinski, J.; Kowalski, G.; Wieczorowska-Tobis, K. Bilateral Bi-Level Erector Spinae Plane Blocks as a Part of Opioid-Sparing Multimodal Analgesia in Scoliosis Surgery: A Case Series of Six Pediatric Patients. Medicina 2023, 59, 1429. [Google Scholar] [CrossRef] [PubMed]
- Frawley, G.; Marchesini, V.; Loh, B.; Koziol, J. Pediatric lower limb peripheral nerve blocks: Indications, effectiveness, and the incidence of adverse events. Pediatr. Anesth. 2022, 32, 946–953. [Google Scholar] [CrossRef]
- Gaelen, J.I.; Wu, C.; Yang, A.; Rajeswaran, S.; Lazar, A.; Cheon, E.C.; Vargas, A.A. Use of regional anesthesia within a pediatric interventional radiology suite reduced periprocedural opioid use without delaying the overall workflow: A retrospective study. Reg. Anesth. Pain Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; De Souza, E.; Perez, F.; Suárez-Nieto, M.V.; Wang, E.; Anderson, T.A. Perioperative Regional Anesthesia Pain Outcomes in Children: A Retrospective Study of 3160 Regional Anesthetics in Routine Practice. Clin. J. Pain 2024, 40, 72–81. [Google Scholar] [PubMed]
- Bass, K.D.; Heiss, K.F.; Kelley-Quon, L.I.; Raval, M.V. Opioid use in children’s surgery: Awareness, current state, and advocacy. J. Pediatr. Surg. 2020, 55, 2448–2453. [Google Scholar] [CrossRef]
- Wang, G.S.; Olsen, H.; Severtson, G.; Green, J.L.; Dart, R.C. The impact of the prescription opioid epidemic on young children: Trends and mortality. Drug Alcohol Depend. 2020, 211, 107924. [Google Scholar] [CrossRef] [PubMed]
- Graff, V.; Gabutti, L.; Treglia, G.; Pascale, M.; Anselmi, L.; Cafarotti, S.; Regina, D.L.; Mongelli, F.; Saporito, A. Perioperative costs of local or regional anesthesia versus general anesthesia in the outpatient setting: A systematic review of recent literature. Braz. J. Anesthesiol. 2023, 73, 316–339. [Google Scholar] [CrossRef] [PubMed]
- Dowdy, R.A.; Mansour, S.T.; Cottle, J.H.; Mabe, H.R.; Weprin, H.B.; Yarborough, L.E.; Ness, G.M.; Jacobs, T.M.; Cornelius, B.W. Cardiac arrest upon induction of general anesthesia. Anesth. Prog. 2021, 68, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Relland, L.M.; Neel, M.L.; Gehred, A.; Maitre, N.L. Regional anesthesia in neonates and infants outside the immediate perioperative period: A systematic review of studies with efficacy and safety considerations. Pediatr. Anesth. 2021, 31, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Piva, I.R.; Greco, M. Anesthesia techniques, intraoperative management, and early postoperative recovery. In Geriatric Surgery and Perioperative Care; Elsevier: Amsterdam, The Netherlands, 2025; pp. 73–84. [Google Scholar]
- Fayed, N.; Cameron, S.; Fraser, D.; Cameron, J.I.; Al-Harbi, S.; Simpson, R.; Wakim, M.; Chiu, L.; Choong, K. Priority outcomes in critically ill children: A patient and parent perspective. Am. J. Crit. Care 2020, 29, e94–e103. [Google Scholar] [CrossRef]
- Colter, P.; Slinn, S.; Bowen, L. Paediatric day case surgery. Anaesth. Intensive Care Med. 2022, 23, 264–269. [Google Scholar] [CrossRef]
- Williams, N.A.; Brik, A.B.; Petkus, J.M.; Clark, H. Importance of play for young children facing illness and hospitalization: Rationale, opportunities, and a case study illustration. Early Child Dev. Care 2021, 191, 58–67. [Google Scholar] [CrossRef]
- Dobson, G.P. Trauma of major surgery: A global problem that is not going away. Int. J. Surg. 2020, 81, 47–54. [Google Scholar] [CrossRef]
- Ackerman, R.S.; Luddy, K.A.; Icard, B.E.; Fernández, J.P.; Gatenby, R.A.; Muncey, A.R. The effects of anesthetics and perioperative medications on immune function: A narrative review. Anesth. Analg. 2021, 133, 676–689. [Google Scholar] [CrossRef] [PubMed]
- Viderman, D.; Dossov, M.; Seitenov, S.; Lee, M.-H. Artificial intelligence in ultrasound-guided regional anesthesia: A scoping review. Front. Med. 2022, 9, 994805. [Google Scholar] [CrossRef]
- DelPizzo, K.; Fiasconaro, M.; Wilson, L.A.; Liu, J.; Poeran, J.; Freeman, C.; Memtsoudis, S.G. The utilization of regional anesthesia among pediatric patients: A retrospective study. HSS J.® 2020, 16, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Chavez, S.; Gottlieb, M.; Montrief, T.; Brady, W.J. Local anesthetic systemic toxicity: A narrative review for emergency clinicians. Am. J. Emerg. Med. 2022, 59, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.S.; Boretsky, K. Local anesthetic systemic toxicity in children: A review of recent case reports and current literature. Reg. Anesth. Pain Med. 2021, 46, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Dontukurthy, S.; Tobias, J.D. Update on local anesthetic toxicity, prevention and treatment during regional anesthesia in infants and children. J. Pediatr. Pharmacol. Ther. 2021, 26, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Mock, N.D.; Griggs, K.M.; Mileto, L.A. Local anesthetic systemic toxicity during labor, birth, and immediate postpartum: Clinical review. MCN Am. J. Matern./Child Nurs. 2021, 46, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Yu, P.; Niu, J.; Yu, S. Mechanisms and efficacy of intravenous lipid emulsion treatment for systemic toxicity from local anesthetics. Front. Med. 2021, 8, 756866. [Google Scholar] [CrossRef]
- Lönnqvist, P.-A. SP38. 1 Update on adjuvants for paediatric PNBs. Reg. Anesth. Pain Med. 2022, 47, A43–A46. [Google Scholar]
- Barbero, G.E.; de Miguel, M.; Sierra, P.; Merritt, G.; Bora, P.; Borah, N.; Ciarallo, C.; Ing, R.; Bosenberg, A.; de Nadal, M. Clonidine as an adjuvant to bupivacaine for suprazygomatic maxillary nerve blocks in cleft lip and palate repair: A randomized, prospective, double-blind study. Cleft Palate-Craniofacial J. 2021, 58, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Visoiu, M.; Scholz, S.; Malek, M.M.; Carullo, P.C. The addition of clonidine to ropivacaine in rectus sheath nerve blocks for pediatric patients undergoing laparoscopic appendectomy: A double blinded randomized prospective study. J. Clin. Anesth. 2021, 71, 110254. [Google Scholar] [CrossRef]
- Jiang, J.; Shen, H.; Zhang, J.; Wu, Z.; Shao, X.; Cui, J.; Zhang, B.; Ma, X. Comparative study of the adverse events associated with adjuvant use of dexmedetomidine and clonidine in local anesthesia. Front. Med. 2021, 8, 602966. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Z.; Feng, C.; Jin, Y.; Zhao, X. Dexmedetomidine as an adjuvant in peripheral nerve block. Drug Des. Dev. Ther. 2023, 17, 1463–1484. [Google Scholar] [CrossRef]
- Wang, X.; Dai, J.; Dai, L.; Guo, H.; Zhou, A.; Pan, D. Caudal dexmedetomidine in pediatric caudal anesthesia: A systematic review and meta-analysis of randomized controlled trials. Medicine 2020, 99, e21397. [Google Scholar] [CrossRef]
- Albrecht, E.; Kern, C.; Kirkham, K. A systematic review and meta-analysis of perineural dexamethasone for peripheral nerve blocks. Anaesthesia 2015, 70, 71–83. [Google Scholar] [CrossRef]
- Reysner, M.; Reysner, T.; Janusz, P.; Kowalski, G.; Shadi, M.; Daroszewski, P.; Wieczorowska-Tobis, K.; Kotwicki, T. Dexamethasone as a perineural adjuvant to a ropivacaine popliteal sciatic nerve block for pediatric foot surgery: A randomized, double-blind, placebo-controlled trial. Reg. Anesth. Pain Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Patodi, V.; Jain, K.; Choudhary, M.; Sethi, S.K.; Jain, N.; Mathur, V. Effect of Dexamethasone as an Adjunct on Efficacy of Ropivacaine in Caudal Block for Postoperative Analgesia in Paediatric Infra-Umbilical Surgeries: A Randomised Double-blind Controlled Study. J. Clin. Diagn. Res. 2021, 15, UC31–UC35. [Google Scholar]
- Edinoff, A.N.; Fitz-Gerald, J.S.; Holland, K.A.A.; Reed, J.G.; Murnane, S.E.; Minter, S.G.; Kaye, A.J.; Cornett, E.M.; Imani, F.; Khademi, S.-H. Adjuvant drugs for peripheral nerve blocks: The role of NMDA antagonists, neostigmine, epinephrine, and sodium bicarbonate. Anesthesiol. Pain Med. 2021, 11, e117146. [Google Scholar] [CrossRef]
- Bobik, P.; Kosel, J.; Świrydo, P.; Tałałaj, M.; Czaban, I.; Radziwon, W. Comparison of the pharmacological properties of 0.375% bupivacaine with epinephrine, 0.5% ropivacaine and a mixture of bupivacaine with epinephrine and lignocaine–a randomized prospective study. J. Plast. Surg. Hand Surg. 2020, 54, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Amin, O.A.I.; Ibrahem, M.A.; Salem, D.A.E. Nalbuphine versus midazolam as an adjuvant to intrathecal bupivacaine for postoperative analgesia in patients undergoing cesarean section. J. Pain Res. 2020, 13, 1369–1376. [Google Scholar] [CrossRef]
- Nguyen, A.D.; Cox, H. Effectiveness of Using Magnesium Sulfate as an Adjuvant for Pain Control in Tap Blocks: A Systematic Review. Ph.D. Thesis, Franciscan Missionaries of Our Lady University, Baton Rouge, LA, USA, 2023. [Google Scholar]
- Zeng, J.; Chen, Q.; Yu, C.; Zhou, J.; Yang, B. The use of magnesium sulfate and peripheral nerve blocks: An updated meta-analysis and systematic review. Clin. J. Pain 2021, 37, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Cao, C.; Chen, J.; Kong, F.; Nian, S.; Li, Z.; Li, N. Efficacy and safety of ketamine as an adjuvant to regional anesthesia: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Anesth. 2024, 94, 111415. [Google Scholar] [CrossRef]
- Zanfaly, H.E. Ketamine as an Adjuvant to Bupivacaine in Caudal Block for Pediatric Patients Undergoing Lower Abdominal Surgeries. Zagazig Univ. Med. J. 2024, 30, 2832–2840. [Google Scholar]
- Mathew, A.; Kerolus, K.; Bitonti, N.; Guzman, A.; Moore, R.; Bergese, S. Back to the Future: Historic Insights and Recent Innovations in Pediatric Regional Anesthesia. J. Clin. Med. 2024, 13, 6704. [Google Scholar] [CrossRef] [PubMed]
- Goodman, C.; Baron, N.L.; Machen, I.; Stevenson, E.; Evans, C.; Davies, S.L.; Iliffe, S. Culture, consent, costs and care homes: Enabling older people with dementia to participate in research. Aging Ment. Health 2011, 15, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Patel, S. Inadvertent administration of intravenous anaesthesia induction agents via the intracerebroventricular, neuraxial or peripheral nerve route–A narrative review. Indian J. Anaesth. 2024, 68, 439–446. [Google Scholar] [CrossRef]
- Roberts, S. Peripheral Nerve Blocks for Children Peripheral Nerve Blocks for Children. Pain 2023. [Google Scholar]
- Okdemir, S. Prilocaine Induced Methemoglobinemia: Two Case Reports. EC Endocrinol. Metab. Res. 2021, 6, 39–41. [Google Scholar]
- Takagi, S.; Ando, S.; Kono, R.; Oono, Y.; Nagasaka, H.; Kohase, H. Methemoglobinemia Induced by Prilocaine in a Child With Noonan Syndrome. Anesth. Prog. 2022, 69, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Woo, N.L.; Cherian, S.; Heaney, M.; Wahl, G. Methaemoglobinaemia secondary to topical prilocaine toxicity: A cautionary circumcision tale. J. Paediatr. Child Health 2021, 57, 149–150. [Google Scholar] [CrossRef] [PubMed]
- Baki, E.D.; Ozkul, S.; Okursoy, O.; Sıvaci, R. Methemoglobınemia After Prilocaine: A Case Report. ARC J. Anesthesiol. 2017, 2, 14–16. [Google Scholar]
- Felemban, O.M.; Alshamrani, R.M.; Aljeddawi, D.H.; Bagher, S.M. Effect of virtual reality distraction on pain and anxiety during infiltration anesthesia in pediatric patients: A randomized clinical trial. BMC Oral Health 2021, 21, 321. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.L.; McLeod, C. Local Infiltration Anesthesia with Liposomal Bupivacaine Decreases Postoperative Narcotic Consumption in AIS. J. Pediatr. Orthop. Soc. N. Am. 2022, 4, 432. [Google Scholar] [CrossRef]
- Bajwa, M.S.; Bashir, M.M.; Bajwa, M.H.; Iqbal, Z.; Salahuddin, M.A.; Hussain, A.; Shahzad, F. How long to wait after local infiltration anaesthesia: Systematic review. BJS Open 2023, 7, zrad089. [Google Scholar] [CrossRef] [PubMed]
- Townsend, J.A.; Soxman, J.A.; Malamed, S.F. Local Anesthesia for the Pediatric Patient. In Handbook of Clinical Techniques in Pediatric Dentistry; Wiley: New York, NY, USA, 2021; pp. 29–39. [Google Scholar]
- Cettler, M.; Zielińska, M.; Rosada-Kurasińska, J.; Kubica-Cielińska, A.; Jarosz, K.; Bartkowska-Śniatkowska, A. Guidelines for treatment of acute pain in children–the consensus statement of the Section of Paediatric Anaesthesiology and Intensive Therapy of the Polish Society of Anaesthesiology and Intensive Therapy. Anaesthesiol. Intensive Ther. 2022, 54, 197–218. [Google Scholar] [CrossRef] [PubMed]
- Radkowski, P.; Fadrowska-Szleper, M.; Podhorodecka, K.; Mieszkowski, M. Neurological complications of regional anesthesia: An updated review with clinical guidelines. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2023, 29, e940399. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wei, H.; Zhang, T. Methods of prolonging the effect of caudal block in children. Front. Pediatr. 2024, 12, 1406263. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.; Abdelatif, A.; Menshawey, M.; Mansour, A. Comparison of Analgesic Efficacy of Caudal Dexamethasone versus Intravenous Dexamethasone as an Adjuvant to Caudal Block in Pediatric Patients Undergoing Lower limb orthopedic Surgeries. QJM Int. J. Med. 2020, 113, hcaa039.048. [Google Scholar] [CrossRef]
- Zaporowska-Stachowiak, I.; Kowalski, G.; Łuczak, J.; Kosicka, K.; Kotlinska-Lemieszek, A.; Sopata, M.; Główka, F. Bupivacaine administered intrathecally versus rectally in the management of intractable rectal cancer pain in palliative care. OncoTargets Ther. 2014, 7, 1541–1550. [Google Scholar] [CrossRef]
- Demi, R.Ç.; Duran, M.; Nakır, H.; Doğukan, M.; Tepe, M.; Uludağ, Ö. Correlation of Block Success with Perfusion Index Measurement in Cases of Pediatric Surgery Under Caudal Epidural Block Anesthesia. J. Perianesthesia Nurs. 2024, 39, 666–671. [Google Scholar]
- Domagalska, M.; Ciftci, B.; Reysner, T.; Kolasiński, J.; Wieczorowska-Tobis, K.; Kowalski, G. Pain management and functional recovery after pericapsular nerve group (PENG) block for total hip arthroplasty: A prospective, randomized, double-blinded clinical trial. J. Clin. Med. 2023, 12, 4931. [Google Scholar] [CrossRef]
- Mahrous, R.S.; Ahmed, A.A.; Ahmed, A.M.M. Comparison between ultrasound-guided caudal analgesia versus peripheral nerve blocks for lower limb surgeries in pediatrics: A randomized controlled prospective study. Local Reg. Anesth. 2022, 15, 77–86. [Google Scholar] [CrossRef]
- Dontukurthy, S.; Mofidi, R. The role of interfascial plane blocks in paediatric regional anaesthesia: A narrative review of current perspectives and updates. Anesthesiol. Res. Pract. 2020, 2020, 8892537. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, H.; Zhan, B.; Chen, S. Efficacy of truncal plane blocks in pediatric patients undergoing subcutaneous implantable cardioverter–defibrillator placement. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2088–2093. [Google Scholar] [CrossRef]
- Abo El-hassn, A.K.; Mansour, H.S.; Mohamed, M.Y. Abdominal truncal blocks in Children Undergoing Laparoscopic Surgery. Minia J. Med. Res. 2020, 31, 304–307. [Google Scholar] [CrossRef]
- Dwivedi, D.; Sud, S.; Singh, S.; Sharma, R. Surgeon-assisted continuous transversus abdominis plane block a feasible option for perioperative pain relief in pediatric surgical patients with spinal deformities. J. Indian Assoc. Pediatr. Surg. 2020, 25, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Koszela, K.B.; Sethna, N. Pediatric Neuraxial Anesthesia and Analgesia. 2021. Available online: https://resources.wfsahq.org/wp-content/uploads/UIA-37_Paed-Neuraxial-Anaes.pdf (accessed on 13 December 2024).
- Macrae, J.; Ng, E.; Whyte, H. Anaesthesia for premature infants. BJA Educ. 2021, 21, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Topor, B.; Oldman, M.; Nicholls, B. Best practices for safety and quality in peripheral regional anaesthesia. BJA Educ. 2020, 20, 341–347. [Google Scholar] [CrossRef]
- Dockrell, L.; Buggy, D. The role of regional anaesthesia in the emerging subspecialty of onco-anaesthesia: A state-of-the-art review. Anaesthesia 2021, 76, 148–159. [Google Scholar] [CrossRef]
- Park, I.; Park, J.H.; Shin, H.-J.; Na, H.-S.; Koo, B.-W.; Ryu, J.-H.; Oh, A.-Y. Postoperative analgesic effects of the quadratus lumborum block in pediatric patients: A systematic review and meta-analysis. Korean J. Pain 2024, 37, 59. [Google Scholar] [CrossRef] [PubMed]
- Kamal, F.; El-Rahman, A.; Hassan, R.M.; Helmy, A.F. Efficacy of bilateral PECS II block in postoperative analgesia for ultrafast track pediatric cardiac anesthesia. Egypt. J. Anaesth. 2022, 38, 150–157. [Google Scholar] [CrossRef]
- Restrepo-Holguin, M.; Kopp, S.L.; Johnson, R.L. Motor-sparing peripheral nerve blocks for hip and knee surgery. Curr. Opin. Anesthesiol. 2023, 36, 541–546. [Google Scholar] [CrossRef] [PubMed]
Medication | Dosage Range * | Region of Application | Notes on Use |
---|---|---|---|
Bupivacaine | 1.5–2.5 mg/kg | Peripheral nerve blocks, caudal blocks | Prolonged duration of action, risk of cardiotoxicity at higher doses |
Ropivacaine | 2.0–3.0 mg/kg | Peripheral nerve blocks, epidural blocks | Preferred for reduced cardiotoxicity compared to bupivacaine |
Dexmedetomidine | 0.5–1.0 µg/kg as an adjuvant | Caudal, peripheral, neuraxial blocks | Enhances duration of analgesia, can cause transient bradycardia or hypotension |
Clonidine | 1–2 µg/kg as an adjuvant | Caudal, epidural, peripheral nerve blocks | Prolongs block duration, provides sedation, risk of hypotension and bradycardia |
Dexamethasone | 0.1–0.2 mg/kg (up to 10 mg) as an adjuvant | Peripheral nerve blocks | Anti-inflammatory, prolongs duration of analgesia, minimal systemic side effects at low doses |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reysner, T.; Wieczorowska-Tobis, K.; Mularski, A.; Kowalski, G.; Daroszewski, P.; Reysner, M. Revolutionizing Pediatric Surgery: The Transformative Role of Regional Anesthesia—A Narrative Review. Surgeries 2025, 6, 9. https://doi.org/10.3390/surgeries6010009
Reysner T, Wieczorowska-Tobis K, Mularski A, Kowalski G, Daroszewski P, Reysner M. Revolutionizing Pediatric Surgery: The Transformative Role of Regional Anesthesia—A Narrative Review. Surgeries. 2025; 6(1):9. https://doi.org/10.3390/surgeries6010009
Chicago/Turabian StyleReysner, Tomasz, Katarzyna Wieczorowska-Tobis, Aleksander Mularski, Grzegorz Kowalski, Przemyslaw Daroszewski, and Malgorzata Reysner. 2025. "Revolutionizing Pediatric Surgery: The Transformative Role of Regional Anesthesia—A Narrative Review" Surgeries 6, no. 1: 9. https://doi.org/10.3390/surgeries6010009
APA StyleReysner, T., Wieczorowska-Tobis, K., Mularski, A., Kowalski, G., Daroszewski, P., & Reysner, M. (2025). Revolutionizing Pediatric Surgery: The Transformative Role of Regional Anesthesia—A Narrative Review. Surgeries, 6(1), 9. https://doi.org/10.3390/surgeries6010009