Molecular Interactions between Asphaltene and Surfactants in a Hydrocarbon Solvent: Application to Asphaltene Dispersion
Abstract
:1. Introduction
2. Methodology
Force Field and Simulation Initialization
3. Results and Discussion
3.1. Radial Distribution Function (RDF) Analysis
3.2. Solubility Parameter
4. Conclusions
- The SDS surfactant had a lower RDF spike compared to the systems containing TX-100 and asphaltene without surfactant. However, for AS3, AS5, and AS6, no significant and meaningful difference between RDF plots for asphaltene in the presence of SDS and TX-100 could be observed. The probable reason behind this observation is because of the large asphaltene molecule size of these asphaltene molecules compared to AS1 and AS2. Hence, a macromolecular structure between asphaltene pairs in a short-range distance could not be observed for AS3, AS5, and AS6. Furthermore, asphaltene precipitation depends on asphaltene’s aromaticity; the higher aromaticity, the higher tendency to be aggregated. In other words, a higher H/C ratio means lower aromaticity, which results in decreasing the aggregation tendency of asphaltene molecules. The aromaticity of asphaltenes AS1 and AS2 was higher than that of AS3, AS5, and AS6, which resulted in increasing the asphaltene aggregation behavior.
- Both SDS and TX-100 surfactants could disperse both island (AS1) and archipelago (AS2) asphaltenes, revealing that they can be used as a dispersant for both types. Besides the architecture, the asphaltene molecular size and weight can play an essential role in forming a nano-aggregate with and without having surfactant dispersant.
- Comparing solubility parameters of asphaltenes, surfactants, and heptane revealed that both surfactants were capable of being soluble into asphaltene aggregates. It means that these surfactants can disperse asphaltene molecules in the solvent and reduce their aggregation tendency. For asphaltenes AS1, AS2, and AS3, SDS surfactant was more likely to be miscible/soluble with asphaltenes; however, for asphaltenes AS5 and AS6, TX-100 was more soluble than SDS in an asphaltene–solvent solution.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Abbreviations | |
CED | Cohesive Energy Density |
EOR | Enhanced Oil Recovery |
IFT | Interfacial Tension |
MD | Molecular Dynamics |
NHL | Nose–Hoover–Langevin |
RDF | Radial Distribution Function |
VAPEX | Vapor Extraction |
Variables | |
t | Time, (ps) |
T | Temperature, (K) |
V | Simulation box’s volume |
Vm | Molar volume of the liquid at the given temperature |
ΔHv | Vaporization enthalpy |
δ | Solubility Parameter |
References
- Ross, S.; Morrison, E.D. Colloidal Systems and Interfaces; Web. Publisher: U.S. Department of Energy: Washington, DC, USA, 1988.
- Li, Y.; El-Sayed, M.A. The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution. J. Phys. Chem. B 2001, 105, 8938–8943. [Google Scholar] [CrossRef]
- Joanny, J.F.; Leibler, L.; De Gennes, P.G. Effects of polymer solutions on colloid stability. J. Polym. Sci. Polym. Phys. Ed. 1979, 17, 1073–1084. [Google Scholar] [CrossRef]
- Gray, M.R.; Tykwinski, R.R.; Stryker, J.M.; Tan, X. Supramolecular assembly model for aggregation of petroleum asphaltenes. Energy Fuels 2011, 25, 3125–3134. [Google Scholar] [CrossRef]
- Victorov, A.; Smirnova, N. Thermodynamic model of petroleum fluids containing polydisperse asphaltene aggregates. Ind. Eng. Chem. Res. 1998, 37, 3242–3251. [Google Scholar] [CrossRef]
- Ilyin, S.O.; Arinina, M.; Polyakova, M.Y.; Bondarenko, G.; Konstantinov, I.; Kulichikhin, V.; Malkin, A. Asphaltenes in heavy crude oil: Designation, precipitation, solutions, and effects on viscosity. J. Pet. Sci. Eng. 2016, 147, 211–217. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.; Zhao, S.; Shi, Q.; Xu, C. Molecular structure and association behavior of petroleum asphaltene. In Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2015; pp. 1–38. [Google Scholar]
- Jian, C.; Tang, T. Understanding Asphaltene Aggregation and Precipitation through Theoretical and Computational Studies; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; pp. 1–47. [Google Scholar]
- Ashoori, S.; Shahsavani, B.; Ahmadi, M.A.; Rezaei, A. Developing thermodynamic micellization approach to model asphaltene precipitation behavior. J. Dispers. Sci. Technol. 2014, 35, 1325–1338. [Google Scholar] [CrossRef]
- Hasanvand, M.Z.; Ahmadi, M.A.; Behbahani, R.M. Solving asphaltene precipitation issue in vertical wells via redesigning of production facilities. Petroleum 2015, 1, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Hashmi, S.M.; Firoozabadi, A. Effect of dispersant on asphaltene suspension dynamics: Aggregation and sedimentation. J. Phys. Chem. B 2010, 114, 15780–15788. [Google Scholar] [CrossRef]
- Subramanian, D.; Firoozabadi, A. Effect of Surfactants and water on inhibition of asphaltene precipitation and deposition. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference; Society of Petroleum Engineers (SPE), Abu Dhabi, UAE, 9–12 November 2015. [Google Scholar]
- Ahmadi, M.A.; Chen, Z. Challenges and future of chemical assisted heavy oil recovery processes. Adv. Colloid Interfaces Sci. 2020, 275, 102081. [Google Scholar] [CrossRef]
- Kwon, E.H.; Go, K.S.; Nho, N.-S.; Kim, K.H. Effect of alkyl chain length of ionic surfactants on selective removal of asphaltene from oil sand bitumen. Energy Fuels 2018, 32, 9304–9313. [Google Scholar] [CrossRef]
- Atta, A.M.; Abdullah, M.M.; Al-Lohedan, H.A.; Ezzat, A.O.; Ezzat, A.O. Demulsification of heavy crude oil using new nonionic cardanol surfactants. J. Mol. Liq. 2018, 252, 311–320. [Google Scholar] [CrossRef]
- Alhreez, M.; Wen, D. Molecular structure characterization of asphaltene in the presence of inhibitors with nanoemulsions. RSC Adv. 2019, 9, 19560–19570. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, M.A.; Shadizadeh, S.R. Implementation of a high-performance surfactant for enhanced oil recovery from carbonate reservoirs. J. Pet. Sci. Eng. 2013, 110, 66–73. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Arabsahebi, Y.; Shadizadeh, S.R.; Behbahani, S.S. Preliminary evaluation of mulberry leaf-derived surfactant on interfacial tension in an oil-aqueous system: EOR application. Fuel 2014, 117, 749–755. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Galedarzadeh, M.; Shadizadeh, S.R. Wettability alteration in carbonate rocks by implementing new derived natural surfactant: Enhanced oil recovery applications. Transp. Porous Media 2014, 106, 645–667. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Shadizadeh, S.R. Spotlight on the new natural surfactant flooding in carbonate rock samples in low salinity condition. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, M.A.; Shadizadeh, S.R. Nano-surfactant flooding in carbonate reservoirs: A mechanistic study. Eur. Phys. J. Plus 2017, 132, 246. [Google Scholar] [CrossRef]
- Chang, C.-L.; Fogler, H.S. Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. Effect of the chemical structure of amphiphiles on asphaltene stabilization. Langmuir 1994, 10, 1749–1757. [Google Scholar] [CrossRef]
- González, G.; Middea, A. Peptization of asphaltene by various oil soluble amphiphiles. Colloids Surf. 1991, 52, 207–217. [Google Scholar] [CrossRef]
- Hegazey, R.M.; Farag, A.; Nessim, M.I.; El-Feky, A.A.; Moustafaab, Y.M.; Hashem, A.I. Dispersion of asphaltene precipitation in Egyptian crude oil using corrosion inhibitors. Pet. Sci. Technol. 2014, 32, 2337–2344. [Google Scholar] [CrossRef]
- Chang, C.-L.; Fogler, H.S. Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. Study of the asphaltene-amphiphile interactions and structures using fourier transform infrared spectroscopy and small-angle X-ray scattering techniques. Langmuir 1994, 10, 1758–1766. [Google Scholar] [CrossRef]
- León, O.; Rogel, E.; Urbina, A.; Andújar, A.; Lucas, A. Study of the adsorption of alkyl benzene-derived amphiphiles on asphaltene particles. Langmuir 1999, 15, 7653–7657. [Google Scholar] [CrossRef]
- Rogel, E.; León, O. Study of the adsorption of alkyl-benzene-derived amphiphiles on an asphaltene surface using molecular dynamics simulations. Energy Fuels 2001, 15, 1077–1086. [Google Scholar] [CrossRef]
- Chávez-Miyauchi, T.E.; Zamudio-Rivera, L.S.; Barba, V. Aromatic polyisobutylene succinimides as viscosity reducers with asphaltene dispersion capability for heavy and extra-heavy crude oils. Energy Fuels 2013, 27, 1994–2001. [Google Scholar] [CrossRef]
- Atta, A.M.; Elsaeed, A.M. Use of rosin-based nonionic surfactants as petroleum crude oil sludge dispersants. J. Appl. Polym. Sci. 2011, 122, 183–192. [Google Scholar] [CrossRef]
- Junior, L.C.R.; Ferreira, M.S.; Ramos, A.C.D.S. Inhibition of asphaltene precipitation in Brazilian crude oils using new oil soluble amphiphiles. J. Pet. Sci. Eng. 2006, 51, 26–36. [Google Scholar] [CrossRef]
- Moncayo-Riascos, I.; De León, J.; Hoyos, B.A. Molecular dynamics methodology for the evaluation of the chemical alteration of wettability with organosilanes. Energy Fuels 2016, 30, 3605–3614. [Google Scholar] [CrossRef]
- Velásquez, A.; Hoyos, B.A. Viscosity of heptane-toluene mixtures. Comparison of molecular dynamics and group contribution methods. J. Mol. Model. 2017, 23, 58. [Google Scholar] [CrossRef]
- Jian, C.; Poopari, M.R.; Liu, Q.; Zerpa, N.; Zeng, H.; Tang, T. Reduction of water/oil interfacial tension by model asphaltenes: The governing role of surface concentration. J. Phys. Chem. B 2016, 120, 5646–5654. [Google Scholar] [CrossRef]
- Murgich, J. Molecular simulation and the aggregation of the heavy fractions in crude oils. Mol. Simul. 2003, 29, 451–461. [Google Scholar] [CrossRef]
- Murgich, J.; Abanero, J.A.; Strausz, O.P. Molecular recognition in aggregates formed by asphaltene and resin molecules from the athabasca oil sand. Energy Fuels 1999, 13, 278–286. [Google Scholar] [CrossRef]
- Wu, G.; He, L.; Chen, D. Sorption and distribution of asphaltene, resin, aromatic and saturate fractions of heavy crude oil on quartz surface: Molecular dynamic simulation. Chemosphere 2013, 92, 1465–1471. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Hou, Q.; Wang, Y.; Chen, Z. Interfacial and molecular interactions between fractions of heavy oil and surfactants in porous media: Comprehensive review. Adv. Colloid Interface Sci. 2020, 102242. [Google Scholar] [CrossRef]
- Jian, C.; Tang, T.; Bhattacharjee, S. Molecular dynamics investigation on the aggregation of Violanthrone78-based model asphaltenes in toluene. Energy Fuels 2014, 28, 3604–3613. [Google Scholar] [CrossRef]
- Yaseen, S.; Mansoori, G.A. Molecular dynamics studies of interaction between asphaltenes and solvents. J. Pet. Sci. Eng. 2017, 156, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Kuznicki, T.; Masliyah, J.H.; Bhattacharjee, S. Molecular dynamics study of model molecules resembling asphaltene-like structures in aqueous organic solvent systems. Energy Fuels 2008, 22, 2379–2389. [Google Scholar] [CrossRef]
- Silva, H.S.; Alfarra, A.; Vallverdu, G.; Bégué, D.; Bouyssiere, B.; Baraille, I. Asphaltene aggregation studied by molecular dynamics simulations: Role of the molecular architecture and solvents on the supramolecular or colloidal behavior. Pet. Sci. 2019, 16, 669–684. [Google Scholar] [CrossRef] [Green Version]
- Headen, T.F.; Boek, E.S.; Skipper, N.T. Evidence for asphaltene nanoaggregation in toluene and heptane from molecular dynamics simulations. Energy Fuels 2009, 23, 1220–1229. [Google Scholar] [CrossRef]
- Kuznicki, T.; Masliyah, J.H.; Bhattacharjee, S. Aggregation and partitioning of model asphaltenes at toluene-water interfaces: Molecular dynamics simulations. Energy Fuels 2009, 23, 5027–5035. [Google Scholar] [CrossRef]
- Mikami, Y.; Liang, Y.; Matsuoka, T.; Boek, E.S. Molecular dynamics simulations of asphaltenes at the oil–water interface: From nanoaggregation to thin-film formation. Energy Fuels 2013, 27, 1838–1845. [Google Scholar] [CrossRef]
- Boek, E.S.; Yakovlev, D.S.; Headen, T.F. Quantitative molecular representation of asphaltenes and molecular dynamics simulation of their aggregation. Energy Fuels 2009, 23, 1209–1219. [Google Scholar] [CrossRef] [Green Version]
- Jian, C.; Tang, T.; Bhattacharjee, S. Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulations. Energy Fuels 2013, 27, 2057–2067. [Google Scholar] [CrossRef]
- Sedghi, M.; Goual, L.; Welch, W.; Kubelka, J. Effect of asphaltene structure on association and aggregation using molecular dynamics. J. Phys. Chem. B 2013, 117, 5765–5776. [Google Scholar] [CrossRef] [PubMed]
- Takanohashi, T.; Sato, S.; Saito, A.I.; Tanaka, R. Molecular dynamics simulation of the heat-induced relaxation of asphaltene aggregates. Energy Fuels 2003, 17, 135–139. [Google Scholar] [CrossRef]
- Ungerer, P.; Rigby, D.; Leblanc, B.; Yiannourakou, M. Sensitivity of the aggregation behaviour of asphaltenes to molecular weight and structure using molecular dynamics. Mol. Simul. 2013, 40, 115–122. [Google Scholar] [CrossRef]
- Takanohashi, T.; Sato, S.; Tanaka, R. Molecular dynamics simulation of structural relaxation of asphaltene aggregates. Pet. Sci. Technol. 2003, 21, 491–505. [Google Scholar] [CrossRef]
- Rogel, E. Simulation of interactions in asphaltene aggregates. Energy Fuels 2000, 14, 566–574. [Google Scholar] [CrossRef]
- Tarefder, R.A.; Arisa, I. Molecular dynamic simulations for determining change in thermodynamic properties of asphaltene and resin because of aging. Energy Fuels 2011, 25, 2211–2222. [Google Scholar] [CrossRef]
- Headen, T.F.; Boek, E.S. Molecular dynamics simulations of asphaltene aggregation in supercritical carbon dioxide with and without limonene. Energy Fuels 2011, 25, 503–508. [Google Scholar] [CrossRef]
- Jian, C.; Tang, T. One-dimensional self-assembly of polyaromatic compounds revealed by molecular dynamics simulations. J. Phys. Chem. B 2014, 118, 12772–12780. [Google Scholar] [CrossRef]
- Headen, T.F.; Boek, E.S.; Jackson, G.; Totton, T.S.; Müller, E.A. Simulation of asphaltene aggregation through molecular dynamics: Insights and limitations. Energy Fuels 2017, 31, 1108–1125. [Google Scholar] [CrossRef]
- Tirjoo, A.; Bayati, B.; Rezaei, H.; Rahmati, M. Molecular dynamics simulation of the effect of ions in water on the asphaltene aggregation. J. Mol. Liq. 2019, 277, 40–48. [Google Scholar] [CrossRef]
- Celia-Silva, L.G.; Vilela, P.B.; Morgado, P.; Lucas, E.; Martins, L.F.G.; Filipe, E.J.M. Preaggregation of asphaltenes in the presence of natural polymers by molecular dynamics simulation. Energy Fuels 2020, 34, 1581–1591. [Google Scholar] [CrossRef]
- Mizuhara, J.; Liang, Y.; Masuda, Y.; Kobayashi, K.; Iwama, H.; Yonebayashi, H. Evaluation of asphaltene adsorption free energy at the oil–water interface: Role of heteroatoms. Energy Fuels 2020, 34, 5267–5280. [Google Scholar] [CrossRef]
- Silva, H.S.; Alfarra, A.; Vallverdu, G.; Bégué, D.; Bouyssiere, B.; Baraille, I. Role of the porphyrins and demulsifiers in the aggregation process of asphaltenes at water/oil interfaces under desalting conditions: A molecular dynamics study. Pet. Sci. 2020, 17, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Moncayo-Riascos, I.; Taborda, E.; Hoyos, B.A.; Franco, C.A.; Cortés, F.B. Theoretical-experimental evaluation of rheological behavior of asphaltene solutions in toluene and p-xylene: Effect of the additional methyl group. J. Mol. Liq. 2020, 303, 112664. [Google Scholar] [CrossRef]
- Cao, T.; Wang, C.; Xiong, Y.; Song, H.; Xie, N.; Qi, L.; Xu, S.; Lin, W.; Xu, Z. Self-assembly and solubility properties of polyaromatic compounds studied by molecular dynamics simulation. Fuel 2020, 277, 118060. [Google Scholar] [CrossRef]
- Ahmadi, M.; Chen, Z. Insight into interfacial behavior of surfactants and asphaltenes: Molecular dynamics simulation study. Energy Fuels 2020, 34. [Google Scholar] [CrossRef]
- Zhang, L.; Greenfield, M.L. Analyzing properties of model asphalts using molecular simulation. Energy Fuels 2007, 21, 1712–1716. [Google Scholar] [CrossRef]
- Biovia, D.S. Materials Studio; Dassault Systèmes: San Diego, CA, USA, 2020. [Google Scholar]
- Israelachvili, J.N. Intermolecular and Surface Forces; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Gao, Y.; Zhang, Y.; Gu, F.; Xu, T.; Wang, H. Impact of minerals and water on bitumen-mineral adhesion and debonding behaviours using molecular dynamics simulations. Constr. Build. Mater. 2018, 171, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhang, Y.; Yang, Y.; Zhang, J.; Gu, F. Molecular dynamics investigation of interfacial adhesion between oxidised bitumen and mineral surfaces. Appl. Surf. Sci. 2019, 479, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Wang, H. Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel 2017, 188, 1–10. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: AnN⋅log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef] [Green Version]
- Apostolakis, J.; Ferrara, P.; Caflisch, A. Calculation of conformational transitions and barriers in solvated systems: Application to the alanine dipeptide in water. J. Chem. Phys. 1999, 110, 2099–2108. [Google Scholar] [CrossRef] [Green Version]
- Su, G.; Zhang, H.; Geng, T.; Yuan, S. Effect of SDS on reducing the viscosity of heavy oil: A molecular dynamics study. Energy Fuels 2019, 33, 4921–4930. [Google Scholar] [CrossRef]
- Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Sun, H.; Jin, Z.; Yang, C.; Akkermans, R.L.C.; Robertson, S.H.; Spenley, N.A.; Miller, S.; Todd, S.M. COMPASS II: Extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 2016, 22, 1–10. [Google Scholar] [CrossRef]
- Zhang, L.; Leboeuf, E.J. A molecular dynamics study of natural organic matter: 1. Lignin, kerogen and soot. Org. Geochem. 2009, 40, 1132–1142. [Google Scholar] [CrossRef]
- Wu, G.; Zhu, X.; Ji, H.; Chen, D. Molecular modeling of interactions between heavy crude oil and the soil organic matter coated quartz surface. Chemosphere 2015, 119, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Xuefen, Z.; Guiwu, L.; Xiaoming, W.; Hong, Y. Molecular dynamics investigation into the adsorption of oil–water–surfactant mixture on quartz. Appl. Surf. Sci. 2009, 255, 6493–6498. [Google Scholar] [CrossRef]
- Hildebrand, J.; Scott, R. The Solubility of Nonelectrolytes 1950; Reinhold: New York, NY, USA, 1964. [Google Scholar]
- Li, B.; Liu, G.; Xing, X.; Chen, L.; Lu, X.; Teng, H.; Wang, J. Molecular dynamics simulation of CO2 dissolution in heavy oil resin-asphaltene. J. CO2 Util. 2019, 33, 303–310. [Google Scholar] [CrossRef]
- Hansen, C.M. The Universality of the solubility parameter. Ind. Eng. Chem. Prod. Res. Dev. 1969, 8, 2–11. [Google Scholar] [CrossRef]
- Zhang, W.; Qing, Y.; Zhong, W.; Sui, G.; Yang, X. Mechanism of modulus improvement for epoxy resin matrices: A molecular dynamics simulation. React. Funct. Polym. 2017, 111, 60–67. [Google Scholar] [CrossRef]
- Theodorou, D.N.; Suter, U.W. Atomistic modeling of mechanical properties of polymeric glasses. Macromolecules 1986, 19, 139–154. [Google Scholar] [CrossRef]
- Giovambattista, N.; Rossky, P.J.; DeBenedetti, P.G. Phase transitions induced by nanoconfinement in liquid water. Phys. Rev. Lett. 2009, 102, 050603. [Google Scholar] [CrossRef] [Green Version]
- Gupta, J.; Nunes, C.; Vyas, S.; Jonnalagadda, S. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J. Phys. Chem. B 2011, 115, 2014–2023. [Google Scholar] [CrossRef]
- Hancock, B. The use of solubility parameters in pharmaceutical dosage form design. Int. J. Pharm. 1997, 148, 1–21. [Google Scholar] [CrossRef]
- Hildebrand, J.H. A Critique of the theory of solubility of non-electrolytes. Chem. Rev. 1949, 44, 37–45. [Google Scholar] [CrossRef]
- Forster, A.; Hempenstall, J.; Tucker, I.; Rades, T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int. J. Pharm. 2001, 226, 147–161. [Google Scholar] [CrossRef]
Variable/Method | Value | Variable/Method | Value |
---|---|---|---|
Temperature | 300 K | Thermostat | Nose–Hoover–Langevin (NHL) [66,67,68] |
Pressure | 1 MPa | Barostat | Berendsen [69] |
Equilibrium Time | 200 ps | Cut-off Radii | 12 Å |
NPT Ensemble | 2000 ps | Coulomb Interactions | Ewald Summation [70,71] |
Convergence Index | 1000 (kJ∙mol−1 nm−1) | Van Der Waals Interactions | Atom-Based Summation |
Boundary Conditions | Periodic Boundaries [72,73] | Time Step | 1 fs |
Force Field | COMPASS [36,74,75,76,77,78] |
Surfactant Name | Asphaltene Formula | H/C Ratio | System Id | Simulation Box Size (nm) |
---|---|---|---|---|
C40H30O2 | 0.75 | AS1 | 3.98 × 3.98 × 3.98 | |
SDS | C40H30O2 | 0.75 | AS1-SDS | 4.06 × 4.06 × 4.06 |
TX-100 | C40H30O2 | 0.75 | AS1-TX | 4.05 × 4.05 × 4.05 |
C44H40N2OS | 0.909 | AS2 | 4.008 × 4.008 × 4.008 | |
SDS | C44H40N2OS | 0.909 | AS2-SDS | 4.09 × 4.09 × 4.09 |
TX-100 | C44H40N2OS | 0.909 | AS2-TX | 4.08 × 4.08 × 4.08 |
C51H60O3S3 | 1.176 | AS3 | 4.05 × 4.05 × 4.05 | |
SDS | C51H60O3S3 | 1.176 | AS3-SDS | 4.13 × 4.13 × 4.13 |
TX-100 | C51H60O3S3 | 1.176 | AS3-TX | 4.12 × 4.12 × 4.12 |
C71H96S | 1.352 | AS5 | 4.1 × 4.1 × 4.1 | |
SDS | C71H96S | 1.352 | AS5-SDS | 4.18 × 4.18 × 4.18 |
TX-100 | C71H96S | 1.352 | AS5-TX | 4.17 × 4.17 × 4.17 |
C63H69NOS2 | 1.095 | AS6 | 4.08 × 4.08 × 4.08 | |
SDS | C63H69NOS2 | 1.095 | AS6-SDS | 4.16 × 4.16 × 4.16 |
TX-100 | C63H69NOS2 | 1.095 | AS6-TX | 4.15 × 4.15 × 4.15 |
AS1 | AS2 | AS3 | AS5 | AS6 | SDS | TX-100 | n-Heptane | |
---|---|---|---|---|---|---|---|---|
CED (×108) (KJ/cm3) | 4.72 | 4.26 | 4.12 | 2.84 | 3.64 | 4.02 | 3.77 | 2.43 |
() | 21.71 | 20.63 | 20.29 | 16.85 | 19.05 | 20.05 | 19.40 | 15.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, M.; Chen, Z. Molecular Interactions between Asphaltene and Surfactants in a Hydrocarbon Solvent: Application to Asphaltene Dispersion. Symmetry 2020, 12, 1767. https://doi.org/10.3390/sym12111767
Ahmadi M, Chen Z. Molecular Interactions between Asphaltene and Surfactants in a Hydrocarbon Solvent: Application to Asphaltene Dispersion. Symmetry. 2020; 12(11):1767. https://doi.org/10.3390/sym12111767
Chicago/Turabian StyleAhmadi, Mohammadali, and Zhangxin Chen. 2020. "Molecular Interactions between Asphaltene and Surfactants in a Hydrocarbon Solvent: Application to Asphaltene Dispersion" Symmetry 12, no. 11: 1767. https://doi.org/10.3390/sym12111767
APA StyleAhmadi, M., & Chen, Z. (2020). Molecular Interactions between Asphaltene and Surfactants in a Hydrocarbon Solvent: Application to Asphaltene Dispersion. Symmetry, 12(11), 1767. https://doi.org/10.3390/sym12111767