Simple New Proofs of the Characteristic Functions of the F and Skew-Normal Distributions
Abstract
:1. Introduction
2. Deriving the CFs by ODEs
2.1. Derivation for the F Distribution
2.2. Derivation for the Skew-Normal Distribution
3. Deriving the CF of the Multivariate F Distribution
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Bisgaard, T.M.; Sasvári, Z. Characteristic Functions and Moment Sequences; Nova Science Publishers, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Lukacs, E. Developments in Characteristic Function Theory; Macmillan Publishing Co., Inc.: New York, NY, USA, 1983. [Google Scholar]
- Fisher, R.A. On a distribution yielding the error functions of several well-known statistics. Proc. Int. Congr. Math. 1924, 2, 805–813. [Google Scholar]
- Ifram, A.F. On the characteristic function of the F- and t-distributions. Sankhya Ser. A 1970, 32, 350–352. [Google Scholar]
- Johnson, N.L.; Kotz, S. Continuous Univariate Distributions, 2; Houghton-Mifflin: Boston, MA, USA, 1970; p. 78. [Google Scholar]
- Awad, A.M. Remark on the characteristic function of the F distribution. Sankhya Ser. A 1980, 42, 128–129. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series; National Bureau of Standards: Washington, DC, USA, 1983; Chapter 26.
- Phillips, P.C.B. The true characteristic function of the F distribution. Biometrika 1982, 69, 261–264. [Google Scholar] [CrossRef]
- Tricomi, F.G. Funzioni Ipergeometriche Confluenti; Edizioni Cremonese: Roma, Italy, 1954. [Google Scholar]
- Witkovsky, V. On the exact computation of the density and of the quantiles of linear combinations of t and F random variables. J. Stat. Plan. Inference 2010, 94, 1–13. [Google Scholar] [CrossRef]
- Hwang, S.; Satchell, S.E. Some exact results for an asset pricing test based on the average F distribution. Theor. Econ. Lett. 2012, 2, 435–437. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Xiong, Z.; Luo, Y.; Wei, X.; Zhang, G. Effectiveness of the Euclidean distance in high dimensional spaces. Optik 2015, 126, 5614–5619. [Google Scholar] [CrossRef]
- O’Hagan, A.; Leonard, T. Bayes estimation subject to uncertainty about parameter constraints. Biometrika 1976, 63, 201–203. [Google Scholar] [CrossRef]
- Cook, R.D.; Weisberg, S. An Introduction to Regression Graphics; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Azzilini, A.; Capitanio, A. The Skew-Normal and Related Families; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Forina, M.; Armanino, C.; Castino, M.; Ubigli, M. Multivariatedata analysis as a discriminating method of the origin of wines. Vitis 1986, 25, 189–201. [Google Scholar]
- Pewsey, A. The wrapped skew-normal distribution on the circle. Commun. Stat. 2000, 29, 2459–2472. [Google Scholar] [CrossRef]
- Gupta, A.K.; Nguyen, T.T.; Sanqui, J.A.T. Characterization of the skew-normal distribution. Ann. Inst. Stat. Math. 2004, 56, 351–360. [Google Scholar] [CrossRef]
- Kim, H.M.; Genton, M.G. Characteristic functions of scale mixtures of multivariate skew-normal distributions. J. Multivar. Anal. 2011, 102, 1105–1117. [Google Scholar] [CrossRef] [Green Version]
- Potgieter, C.J.; Genton, M.G. Characteristic function-based semiparametric inference for skew-symmetric models. Scand. J. Stat. 2012, 40, 471–490. [Google Scholar] [CrossRef]
- Jiménez-Gamero, M.D.; Kim, H.M. Fast goodness-of-fit tests based on the characteristic function. Comput. Stat. Data Anal. 2015, 89, 172–191. [Google Scholar] [CrossRef]
- Gaunt, R.E. A simple proof of the characteristic function of Student’s t-distribution. Commun. Stat. 2019. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.L.; Kotz, S. Continuous Multivariate Distributions; John Wiley: New York, NY, USA, 1972. [Google Scholar]
- Phillips, P.C.B. The Characteristic Function of the Dirichlet and Multivariate F Distributions. In Cowles Foundation for Research in Economics; Cowles Foundation Discussion Papers 865; Yale University: New Haven, CT, USA, 1988. [Google Scholar]
- Azzalini, A.; Dalla Valle, A. The multivariate skew-normal distribution. Biometrika 1996, 83, 715–726. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Kummer, E.E. Über die hypergeometrische Reihe F(a; b; x). J. Die Reine Angew. Math. 1836, 15, 39–83. [Google Scholar]
- Faddeeva, V.N.; Terent’ev, N.M. Tables of Values of the Function w(z) =for Complex Argument. Fok, V.A., Ed.; translated from the Russian by Fry. D. G.; Mathematical Tables Series; Pergamon Press: Oxford, UK, 1961; Volume 11. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Kim, S.-B.; Kim, S.-J.; Kim, H.-M. Simple New Proofs of the Characteristic Functions of the F and Skew-Normal Distributions. Symmetry 2020, 12, 2041. https://doi.org/10.3390/sym12122041
Zhao J, Kim S-B, Kim S-J, Kim H-M. Simple New Proofs of the Characteristic Functions of the F and Skew-Normal Distributions. Symmetry. 2020; 12(12):2041. https://doi.org/10.3390/sym12122041
Chicago/Turabian StyleZhao, Jun, Sung-Bum Kim, Seog-Jin Kim, and Hyoung-Moon Kim. 2020. "Simple New Proofs of the Characteristic Functions of the F and Skew-Normal Distributions" Symmetry 12, no. 12: 2041. https://doi.org/10.3390/sym12122041
APA StyleZhao, J., Kim, S.-B., Kim, S.-J., & Kim, H.-M. (2020). Simple New Proofs of the Characteristic Functions of the F and Skew-Normal Distributions. Symmetry, 12(12), 2041. https://doi.org/10.3390/sym12122041