On (p,q)-Analogues of Laplace-Typed Integral Transforms and Applications
Abstract
:1. Introduction
2. Preliminaries
3. Properties of -Analogues of Laplace-Typed Integral Transform
- (i)
- (ii)
- (iii)
- (iv)
- (i)
- (ii)
- (iii)
- (iv)
- (i)
- (ii)
- (iii)
- (iv)
- (i)
- (ii)
- (iii)
- (iv)
- (i)
- ;
- (ii)
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- .
- (i)
- (ii)
- (iii)
- (i)
- (ii)
- (iii)
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H. The intrinsic structure and properties of Laplace-typed integral transforms. Math. Probl. Eng. 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Schiff, J.L. The Laplace Transform Theory and Application; Springer: New York, NY, USA, 1999. [Google Scholar]
- Watugala, G.K. Sumudu transform: A new integral transform to solve differential equations and control engineering problem. Int. J. Math. Educ. Sci. Technol. 1993, 24, 35–43. [Google Scholar] [CrossRef]
- Belgacem, F.B.M.; Karaballi, A.A. Sumudu transform fundamental properties investigations and applications. J. Appl. Math. Stoch. Anal. 2006, 2006, 1–23. [Google Scholar] [CrossRef]
- Medina, G.D.; Ojeda, N.R.; Pereira, J.H.; Romero, L.G. Fractional Laplace transform and fractional calculus. Int. Math. Forum 2017, 12, 991–1000. [Google Scholar] [CrossRef]
- Abdelrahim Mahgoub, M.M. The new integral transform Mohand transform. Adv. Theor. Appl. Math. 2017, 12, 113–120. [Google Scholar]
- Abdelrahim Mahgoub, M.M. The new integral transform Sawi transform. Adv. Theor. Appl. Math. 2019, 14, 81–87. [Google Scholar]
- Kamal, H.; Sedeeg, A. The new integral transform Kamal transform. Adv. Theor. Appl. Math. 2016, 11, 451–458. [Google Scholar]
- Ahmadi, S.A.P.; Hosseinzadeh, H.; Cherati, A.Y. A new integral transform for solving higher order linear ordinary Laguerre and Hermite differential equations. Nonlinear Dyn. Syst. Theory. 2019, 19, 243–252. [Google Scholar] [CrossRef]
- Kim, H. The solution of Laguerre’s equation by using G-transform. Int. J. Appl. Eng. Res. 2017, 12, 16083–16086. [Google Scholar]
- Kim, H. On the form and properties of an integral transform with strenght in integral transforms. Far East J. Math. Sci. 2017, 102, 2831–2844. [Google Scholar]
- Sattaso, S.; Nonlaopon, K.; Kim, H. Further properties of Laplace-typed integral transforms. Dyn. Syst. Appl. 2019, 28, 195–215. [Google Scholar]
- Geum, Y.H.; Rathie, A.K.; Kim, H. Matrix expression of convolution and its generalized continuous form. Symmetry 2020, 12, 1791. [Google Scholar] [CrossRef]
- Saratha, S.R.; Krishnan, G.S.S.; Bagyalakshmi, M. Analysis of a fractional epidemic model by fractional generalised homotopy analysis method using modified Riemann—Liouville derivative. Appl. Math. Model. 2021, 92, 525–545. [Google Scholar] [CrossRef]
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 41, 305–314. [Google Scholar] [CrossRef]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar]
- Sole, A.D.; Kac, V. On integral representations of q-gamma and q-beta functions. arXiv 2005, arXiv:math/0302032. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex function. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
- Prabseang, J.; Nonlaopon, K.; Tariboon, J. Quantum Hermite-Hadamard inequalities for double integral and q-differentiable convex functions. J. Math. Inequal. 2019, 13, 675–686. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K. A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 2012, 35. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K.; Purnaras, I.K. Existence results for nonlinear q-difference equations with nonlocal boundary conditions. Comm. Appl. Nonlinear Anal. 2012, 19, 59–72. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Albayrak, D.; Purohit, S.D.; Uçar, F. On q-analogues of Sumudu transform. Analele Stiintifice ale Univ. Ovidius Constanta Ser. Mat. 2013, 21, 239–260. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.S.; Kim, T.; Kwon, H.I. On the q-analog of the Laplace transform. Russ. J. Math. Phys. 2014, 21, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Al-Omari, S.K.Q. q-Analogues and properties of the Laplace-type integral operator in the quantum calculus theory. J. Inequal. Appl. 2020, 2020, 203. [Google Scholar] [CrossRef]
- Ganie, J.A.; Jain, R. On a system of q-Laplace transform of two variables with applications. J. Comput. Appl. Math. 2020, 366, 1–12. [Google Scholar] [CrossRef]
- Uçar, F.; Albayrak, D. On q-Laplace type integral operators and their applications. J. Differ. Equ. Appl. 2011, 18, 1001–1014. [Google Scholar] [CrossRef]
- ALP, N.; Sarikaya, M.Z. q-Laplace transform on quantum integral. Kragujev. J. Math. 2018, 47, 153–164. [Google Scholar]
- Al-Khairy, R.T. q-Laplace type transforms of q-analogues of Bessel functions. J. King Saud Univ. Sci. 2020, 32, 563–566. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Jagannathan, R. A (p,q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711–L718. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. Results Math. 2013, 73, 39. [Google Scholar] [CrossRef]
- Burban, I.M.; Klimyk, A.U. (p,q)-differentiation, (p,q)-integration and (p,q)-hypergeometric functions related to quantum groups. Integral Transform Spec. Funct. 1994, 2, 15–36. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the (p,q)-gamma and the (p,q)-beta functions. arXiv 2015, arXiv:1506.07394. [Google Scholar]
- Milovanovic, G.V.; Gupta, V.; Malik, N. (p,q)-beta functions and applications in approximation. Bol. Soc. Mat. Mex. 2018, 24, 219–237. [Google Scholar] [CrossRef] [Green Version]
- Acar, T. (p,q)-generalization of Szasz-Mirakyan operators. Math. Methods Appl. Sci. 2016, 39, 2685–2695. [Google Scholar] [CrossRef] [Green Version]
- Acar, T.; Aral, A.; Mohiuddine, S.A. Approximation by bivariate (p,q)-Bernstein–Kantorovich operators. Iran J. Sci. Technol. Trans. A Sci. 2018, 42, 655–662. [Google Scholar] [CrossRef]
- Cheng, W.; Gui, C.; Hu, Y. Some approximation properties of a kind of (p,q)-Phillips operators. Math. Slovaca. 2016, 69, 1381–1394. [Google Scholar] [CrossRef]
- Acar, T.; Aral, A.; Mohiuddine, S.A. On Kantorovich modification of (p,q)-Baskakov operators. J. Inequal. Appl. 2016, 2016, 98. [Google Scholar] [CrossRef] [Green Version]
- Aral, A.; Gupta, V. Applications of (p,q)-gamma function to Szász durrmeyer operators. Publ. l’Institut Math. 2017, 102, 211–220. [Google Scholar] [CrossRef]
- Hounkonnou, M.N.; Kyemba, J.D.B. R(p,q)-calculus: Differentiation and integration. SUT J. Math. 2013, 49, 145–167. [Google Scholar]
- Duran, U.; Acikgoz, M.; Araci, S. A study on some new results arising from (p,q)-calculus. TWMS J. Pure Appl. Math. 2020, 11, 57–71. [Google Scholar]
- Prabseang, J.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. Refinements of Hermite-Hadamard inequalities for continuous convex functions via (p,q)-calculus. Mathematics 2021, 9, 446. [Google Scholar] [CrossRef]
- Kalsoom, H.; Amer, M.; Junjua, M.; Hussain, S. Some (p,q)-Estimates of Hermite-Hadamard-type inequalities for coordinated convex and quasi convex function. Mathematics 2019, 7, 683. [Google Scholar] [CrossRef] [Green Version]
- Sadjang, P.N. On two (p,q)-analogues of the Laplace transform. J. Differ. Equ. Appl. 2017, 23, 1562–1583. [Google Scholar]
- Sadjang, P.N. On (p,q)-analogues of the Sumudu transform. arXiv 2019, arXiv:submit/2592285. [Google Scholar]
- Tassaddiq, A.; Bhat, A.A.; Jain, D.K.; Ali, F. On (p,q)-Sumudu and (p,q)-Laplace transforms of the basic analogue of Aleph-function. Symmetry 2020, 12, 390. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jirakulchaiwong, S.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Kim, H. On (p,q)-Analogues of Laplace-Typed Integral Transforms and Applications. Symmetry 2021, 13, 631. https://doi.org/10.3390/sym13040631
Jirakulchaiwong S, Nonlaopon K, Tariboon J, Ntouyas SK, Kim H. On (p,q)-Analogues of Laplace-Typed Integral Transforms and Applications. Symmetry. 2021; 13(4):631. https://doi.org/10.3390/sym13040631
Chicago/Turabian StyleJirakulchaiwong, Sansumpan, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, and Hwajoon Kim. 2021. "On (p,q)-Analogues of Laplace-Typed Integral Transforms and Applications" Symmetry 13, no. 4: 631. https://doi.org/10.3390/sym13040631
APA StyleJirakulchaiwong, S., Nonlaopon, K., Tariboon, J., Ntouyas, S. K., & Kim, H. (2021). On (p,q)-Analogues of Laplace-Typed Integral Transforms and Applications. Symmetry, 13(4), 631. https://doi.org/10.3390/sym13040631