Genetic Algorithms with Variant Particle Swarm Optimization Based Mutation for Generic Controller Placement in Software-Defined Networks
Abstract
:1. Introduction
2. Background and Related Work
2.1. Distributed Control Plane
2.2. Placement Optimization Problems
2.3. Solving Placement Optimization Problems
3. Formulating GCP
4. Solving GCP
4.1. Population Initialization and Fitness Evaluation
4.2. Selection
4.3. Crossover
4.4. Mutation
Algorithm 1 Pesudo-code for PSO-based mutation function. |
1: INPUT: Current child set and its fitness set output by crossover function; a global best position set and its corresponding global best fitness set. |
2: Initial new child set |
3: for each child in current child set output by crosser function do |
4: Let a particle be the current child |
5: Initial as the placement of this particle |
6: Initial and as 0 |
7: Initial and as 0 |
8: for each objective ii do |
9: Get from global best position set |
10: Get from global best fitness set |
11: Calculate using (12) |
12: update |
13: update |
14: end for |
15: Compute of current particle using (13) |
16: Compute of current particle using (14) |
17: Add to the new child set |
18: end for |
19: OUTPUT: The new child set |
5. Evaluations
5.1. Optimizing OBJ1
5.1.1. Accuracy
5.1.2. Convergence Time
5.1.3. Population Size
5.2. Optimizing OBJ1 and OBJ2
5.2.1. Accuracy
5.2.2. Convergence Time
5.2.3. Population Size
5.3. Optimizing OBJ1 and OBJ3
5.3.1. Accuracy
5.3.2. Convergence Time
5.3.3. Population Size
5.4. Optimizing All Three Objectives
5.4.1. Accuracy
5.4.2. Convergence Time
5.4.3. Population Size
5.4.4. Varying Global Best Positions
5.5. Discussion
5.5.1. Performance Improvement
5.5.2. Symmetry in the Proposed Approach
5.5.3. Solving Other Optimization Problems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- In, V.; Palacios, A. Symmetry in Complex Network Systems; Springer International Publishing: Berlin, Germany, 2018. [Google Scholar]
- Wijethilaka, S.; Liyanage, M. Survey on network slicing for internet of things realization in 5g networks. IEEE Commun. Surv. Tutor. 2021, 23, 957–994. [Google Scholar] [CrossRef]
- Wang, B.; Su, J. FlexMonitor: A Flexible Monitoring Framework in SDN. Symmetry 2018, 10, 713. [Google Scholar] [CrossRef] [Green Version]
- Hantouti, H.; Benamar, N.; Bagaa, M.; Taleb, T. Symmetry-Aware SFC Framework for 5G Networks. IEEE Netw. 2021. [Google Scholar] [CrossRef]
- Open Networking Foundation. Software-Defined Networking: The New Norm for Networks. Available online: https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/ (accessed on 28 April 2021).
- Chica, J.C.C.; Imbachi, J.C.; Vega, J.F.B. Security in SDN: A comprehensive survey. J. Netw. Comput. Appl. 2020, 159, 102595. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Z.; Hu, T.; Yi, P.; Lan, J. A survey of controller placement problem in software-defined networking. IEEE Access 2019, 7, 24290–24307. [Google Scholar] [CrossRef]
- Heller, B.; Sherwood R, R.; McKeown, N. The controller placement problem. In Proceedings of the ACM the First Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland, 13–17 August 2012; pp. 7–12. [Google Scholar]
- Zhang, T.; Giaccone, P.; Bianco, A.; De Domenico, S. The role of the inter-controller consensus in the placement of distributed SDN controllers. Comput. Commun. 2017, 113, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lange, S.; Gebert, S.; Zinner, T.; Tran-Gia, P.; Hock, D.; Jarschel, M.; Hoffmann, M. Heuristic approaches to the controller placement problem in large scale SDN networks. IEEE Trans. Netw. Serv. Manag. 2015, 12, 4–17. [Google Scholar] [CrossRef]
- Yao, G.; Bi, J.; Li, Y.; Guo, L. On the Capacitated Controller Placement Problem in Software Defined Networks. IEEE Commun. Lett. 2014, 18, 1339–1342. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Maulik, U.; Bandyopadhyay, S.; Coello Coello, C.A. A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Trans. Evol. Comput. 2014, 18, 4–19. [Google Scholar] [CrossRef]
- Das, T.; Sridharan, V.; Gurusamy, M. A survey on controller placement in sdn. IEEE Commun. Surv. Tutor. 2019, 22, 472–503. [Google Scholar] [CrossRef]
- Karafotias, G.; Hoogendoorn, M.; Eibenand, Á.E. Parameter control in evolutionary algorithms: Trends and challenges. IEEE Trans. Evol. Comput. 2015, 19, 167–187. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Kukkarni, R.V.; Venayagamoorthy, G.K. Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Trans. Syst. Man Cybern. Part C 2011, 41, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Chen, W.N.; Zhang, J.; Lin, Y.; Chen, N.; Zhan, Z.H.; Chung, H.S.H.; Shi, Y.H. Particle swarm optimization with an aging leader and challengers. IEEE Trans. Evol. Comput. 2012, 17, 241–258. [Google Scholar] [CrossRef]
- MathWorks. Available online: https://www.mathworks.com/products/matlab.html (accessed on 28 April 2021).
- Spring, N.; Mahajan, R.; Wetherall, D. Measuring ISP topologies with Rocketfuel. ACM Sigcomm Comput. Commun. Rev. 2002, 32, 133–145. [Google Scholar] [CrossRef]
- Liao, L.; Leung, V.C. Genetic algorithms with particle swarm optimization based mutation for distributed controller placement in SDNs. In Proceedings of the 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Berlin, Germany, 6–8 November 2017; pp. 1–6. [Google Scholar]
- Gude, N.; Koponen, T.; Pettit, J.; Pfaff, B.; Casado, M.; McKeown, N.; Shenker, S. NOX: Towards an operating system for networks. ACM Sigcomm Comput. Commun. Rev. 2008, 38, 105–110. [Google Scholar] [CrossRef]
- Tootoonchian, A.; Ganjali, Y. Hyperflow: A distributed control plane for openflow. In Proceedings of the 2010 Internet Network Management Conference on Research on Enterprise Networking, Berkeley, CA, USA, 27 April 2010. [Google Scholar]
- Koponen, T.; Casado, M.; Gude, N.; Stribling, J.; Poutievski, L.; Zhu, M.; Shenker, S. Onix: A distributed control platform for large-scale production networks. In Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation, Vancouver, BC, Canada, 4–6 October 2010; Volume 10. [Google Scholar]
- Berde, P.; Gerola, M.; Hart, J.; Higuchi, Y.; Kobayashi, M.; Koide, T.; Parulkar, G. ONOS: Towards an open, distributed SDN OS. In Proceedings of the ACM Third Workshop on Hot Topics in Software Defined Networking, Chicago, IL, USA, 22 August 2014; pp. 1–6. [Google Scholar]
- Medved, J.; Varga, R.; Tkacik, A.; Gray, K. Opendaylight: Towards a model-driven sdn controller architecture. In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, Sydney, Australia, 19 June 2014. [Google Scholar]
- Qi, H.; Li, K. Software Defined Networking Applications in Distributed Datacenters; Springer International Publishing: Cham, Switzerland; New York, NY, USA, 2016. [Google Scholar]
- Müller, L.F.; Oliveira, R.R.; Luizelli, M.C.; Gaspary, L.P.; Barcellos, M.P. Survivor: An enhanced controller placement strategy for improving SDN survivability. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8–12 December 2014; pp. 1909–1915. [Google Scholar]
- Ros Francisco, J.; Ruiz Pedro, M. On reliable controller placements in software-defined networks. Comput. Commun. 2016, 77, 41–51. [Google Scholar]
- Gao, C.; Wang, H.; Zhu, F.; Yi, S. A Particle Swarm Optimization Algorithm for Controller Placement Problem in Software Defined Network. In Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing, Zhangjiajie, China, 18–20 November 2015; pp. 44–54. [Google Scholar]
- Lin, S.C.; Wang, P.P.; Luo, M. Control traffic balancing in software defined networks. Comput. Netw. 2016, 106, 260–271. [Google Scholar] [CrossRef]
- Wang, T.; Liu, F.; Guo, J.; Xu, H. Dynamic sdn controller assignment in data center networks: Stable matching with transfers. In Proceedings of the IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; pp. 1–9. [Google Scholar]
- Zeng, D.; Teng, C.; Gu, L.; Yao, H.; Liang, Q. Flow setup time aware minimum cost switch-controller association in Software-Defined Networks. In Proceedings of the IEEE 2015 11th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE), Taipei, Taiwan, 19–20 August 2015; pp. 259–264. [Google Scholar]
- Yao, L.; Hong, P.; Zhang, W.; Li, J.; Ni, D. Controller placement and flow based dynamic management problem towards SDN. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 363–368. [Google Scholar]
- Faizul Bari, M.; Roy, A.R.; Chowdhury, S.R.; Zhang, Q.; Zhani, M.F.; Ahmed, R.; Boutaba, R. Dynamic controller provisioning in software defined network. In Proceedings of the 9th IEEE International Conference on Network and Service Management, Zurich, Switzerland, 14–18 October 2013. [Google Scholar]
- Cheng, G.; Chen, H.; Hu, H.; Lan, J. Dynamic switch migration towards a scalable SDN control plane. Int. J. Commun. Syst. 2016, 29, 1482–1499. [Google Scholar] [CrossRef]
- He, S.; Lyu, X.; Ni, W.; Tian, H.; Liu, R.P.; Hossain, E. Virtual Service Placement for Edge Computing Under Finite Memory and Bandwidth. IEEE Trans. Commun. 2020, 68, 7702–7718. [Google Scholar] [CrossRef]
- Demirci, S.; Sagiroglu, S.; Demirci, M. Energy-efficient virtual security function placement in NFV-enabled networks. Sustain. Comput. Inform. Syst. 2021, 30, 100494. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, S.; Dai, Y. Revenue-maximizing virtualized network function chain placement in dynamic environment. Future Gener. Comput. Syst. 2020, 108, 650–661. [Google Scholar] [CrossRef]
- Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control 2021, 58, 373–387. [Google Scholar] [CrossRef]
- Zhu, Z.; Pan, Y.; Zhou, Q.; Lu, C. Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis. IEEE Trans. Fuzzy Syst. 2021, 29, 1273–1283. [Google Scholar] [CrossRef]
- Sanner, J.l.; Ouzzif, M.; J-aoul, Y.H. Evolutionary algorithms for optimized SDN controllers & NVFs’ placement in SDN networks. In SDN Day 2016; Hal-Inria: Paris, France, 2016. [Google Scholar]
- Jalili, A.; Ahmadi, V.; Keshtgari, M.; Kazemi, M. Controller placement in software-defined WAN using multi objective genetic algorithm. In Proceedings of the 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran, 5–6 November 2015; pp. 656–662. [Google Scholar]
- Liu, S.I.; Wang, H.; Yi, S.; Zhu, F. NCPSO: A solution of the controller placement problem in software defined networks. In Proceedings of the 2015 International Conference on Algorithms and Architectures for Parallel Processing, Zhangjiajie, China, 18–20 November 2015. [Google Scholar]
- The Internet Topology Zoo. Available online: http://www.topology-zoo.org/dataset.html (accessed on 28 April 2021).
- Galuzio, P.P.; de Vasconcelos Segundo, E.H.; dos Santos Coelho, L.; Mariani, V.C. MOBOpt—Multi-objective Bayesian optimization. SoftwareX 2020, 12, 100520. [Google Scholar] [CrossRef]
ASN | Nodes | Carrier | Coverage |
---|---|---|---|
15,290 | 17 | Allstream | Canada |
9942 | 23 | Soul conv. Australia | Australia |
8220 | 25 | Tal-de Germany | Europe |
577 | 29 | Bell Canada | Canada |
3300 | 41 | British Telecom | Europe, Asia, US |
6543 | 41 | Ecospar British | North America, Europe |
1221 | 44 | Telstra Australia | Australia, US |
1239 | 52 | Sprintlink US | US |
3356 | 62 | Level3 US | US |
3320 | 70 | Deutsche telekom AG | German |
701 | 82 | MCI communication | US, Canada |
3561 | 92 | CenturyLink US | Nor. America, Europe, Aisa |
Objective | Our NSGA-II and Exhaustive | Our and Matlab NSGA-IIs | ||
---|---|---|---|---|
Quality | Conv.time | Quality | Conv.time | |
OBJ1 | 25% | 100% | 100% | 100% |
OBJ1 and OBJ2 | - | 100% | 50% | 100% |
OBJ1 and OBJ3 | - | 100% | 100% | 100% |
OBJ1 and OBJ2&OBJ3 | - | 100% | 100% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, L.; Leung, V.C.M.; Li, Z.; Chao, H.-C. Genetic Algorithms with Variant Particle Swarm Optimization Based Mutation for Generic Controller Placement in Software-Defined Networks. Symmetry 2021, 13, 1133. https://doi.org/10.3390/sym13071133
Liao L, Leung VCM, Li Z, Chao H-C. Genetic Algorithms with Variant Particle Swarm Optimization Based Mutation for Generic Controller Placement in Software-Defined Networks. Symmetry. 2021; 13(7):1133. https://doi.org/10.3390/sym13071133
Chicago/Turabian StyleLiao, Lingxia, Victor C. M. Leung, Zhi Li, and Han-Chieh Chao. 2021. "Genetic Algorithms with Variant Particle Swarm Optimization Based Mutation for Generic Controller Placement in Software-Defined Networks" Symmetry 13, no. 7: 1133. https://doi.org/10.3390/sym13071133
APA StyleLiao, L., Leung, V. C. M., Li, Z., & Chao, H.-C. (2021). Genetic Algorithms with Variant Particle Swarm Optimization Based Mutation for Generic Controller Placement in Software-Defined Networks. Symmetry, 13(7), 1133. https://doi.org/10.3390/sym13071133