A Note on the w-Pseudo-Orders in Ordered (Semi)Hyperrings
Abstract
:1. Introduction
2. Preliminaries
- (1)
- .
- (2)
- .
- (3)
- and , and .
- (4)
- and .
- (5)
- .
3. Construction of Ordered (Semi)Hyperrings via -Pseudo-Orders
- (1)
- ;
- (2)
- and imply ;
- (3)
- implies and ;
- (4)
- implies and ;
- (5)
- and imply and ;
- (6)
- and imply and .
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marty, F. Sur une Generalization de la Notion de Groupe, 8th ed.; Congres Math. Scandinaves: Stockholm, Sweden, 1934; pp. 45–49. [Google Scholar]
- Davvaz, B.; Leoreanu-Fotea, V. Hyperring Theory and Applications; International Academic Press: New York, NY, USA, 2007. [Google Scholar]
- Heidari, D.; Davvaz, B. On ordered hyperstructures. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2011, 73, 85–96. [Google Scholar]
- Kehayopulu, N.; Tsingelis, M. On subdirectly irreducible ordered semigroups. Semigroup Forum 1995, 50, 161–177. [Google Scholar] [CrossRef]
- Kehayopulu, N.; Tsingelis, M. Pseudoorder in ordered semigroups. Semigroup Forum 1995, 50, 389–392. [Google Scholar] [CrossRef]
- Davvaz, B.; Corsini, P.; Changphas, T. Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder. Eur. J. Combin. 2015, 44, 208–217. [Google Scholar] [CrossRef]
- Rao, Y.; Kosari, S.; Shao, Z.; Akhoundi, M.; Omidi, S. A study on A-I-Γ-hyperideals and (m,n)-Γ-hyperfilters in ordered Γ-Semihypergroups. Discrete Dyn. Nat. Soc. 2021, 2021, 10. [Google Scholar] [CrossRef]
- Gu, Z.; Tang, X. Ordered regular equivalence relations on ordered semihypergroups. J. Algebra 2016, 450, 384–397. [Google Scholar] [CrossRef]
- Tang, J.; Feng, X.; Davvaz, B.; Xie, X.Y. A further study on ordered regular equivalence relations in ordered semihypergroups. Open Math. 2018, 16, 168–184. [Google Scholar] [CrossRef] [Green Version]
- Omidi, S.; Davvaz, B. Ordered Krasner hyperrings. Iran. J. Math. Sci. Inform. 2017, 12, 35–49. [Google Scholar]
- Omidi, S.; Davvaz, B. Foundations of ordered (semi)hyperrings. J. Indones. Math. Soc. 2016, 22, 131–150. [Google Scholar]
- Omidi, S.; Davvaz, B. Construction of ordered regular equivalence relations on ordered semihyperrings. Honam Math. J. 2018, 40, 601–610. [Google Scholar]
- Rao, Y.; Kosari, S.; Shao, Z.; Omidi, S. Some properties of derivations and m-k-hyperideals in ordered semihyperrings. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2021, 83, 87–96. [Google Scholar]
- Rao, Y.; Xu, P.; Shao, Z.; Kosari, S. Left k-bi-quasi hyperideals in ordered semihyperrings. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2021, 83, 125–134. [Google Scholar]
- Rao, Y.; Xu, P.; Shao, Z.; Kosari, S.; Omidi, S. Some properties of relative bi-(int-)Γ-hyperideals in ordered Γ-semihypergroups. Front. Phys. 2020, 8, 413. [Google Scholar] [CrossRef]
- Krasner, M. A class of hyperrings and hyperfields. Int. J. Math. Math Sci. 1983, 6, 307–312. [Google Scholar] [CrossRef]
- Vougiouklis, T. On some representation of hypergroups. Ann. Sci. Univ. Clermont-Ferrand II Math. 1990, 26, 21–29. [Google Scholar]
- Kou, Z.; Kosari, S.; Monemrad, M.; Akhoundi, M.; Omidi, S. A note on the connection between ordered semihyperrings. Symmetry 2021, 13, 2035. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, X.; Guan, H.; Rashmanlou, H. A Note on the w-Pseudo-Orders in Ordered (Semi)Hyperrings. Symmetry 2021, 13, 2371. https://doi.org/10.3390/sym13122371
Qiang X, Guan H, Rashmanlou H. A Note on the w-Pseudo-Orders in Ordered (Semi)Hyperrings. Symmetry. 2021; 13(12):2371. https://doi.org/10.3390/sym13122371
Chicago/Turabian StyleQiang, Xiaoli, Hao Guan, and Hossein Rashmanlou. 2021. "A Note on the w-Pseudo-Orders in Ordered (Semi)Hyperrings" Symmetry 13, no. 12: 2371. https://doi.org/10.3390/sym13122371
APA StyleQiang, X., Guan, H., & Rashmanlou, H. (2021). A Note on the w-Pseudo-Orders in Ordered (Semi)Hyperrings. Symmetry, 13(12), 2371. https://doi.org/10.3390/sym13122371