Improved Search for Neutron to Mirror-Neutron Oscillations in the Presence of Mirror Magnetic Fields with a Dedicated Apparatus at the PSI UCN Source
Abstract
:1. Motivation
- mixing violates baryon number by two units () whereas mixing violates it by one unit ();
- The mass degeneracy between the neutron and antineutron stems from CPT invariance. Between the neutron and mirror neutron it is a consequence of mirror parity which in principle can be spontaneously broken;
- Existing limits on the characteristic oscillation time are rather stringent. Namely, the experimental direct limit on the oscillation time is s [39]. Indirect limits from nuclear stability are even stronger, s [40]. As for oscillation, its characteristic time can be as low as a few seconds, and in any case much smaller than the neutron lifetime, without contradicting either existing astrophysical and cosmological limits or, unlike oscillations, nuclear stability limits [37]. The reason why such fast oscillations are not directly manifested experimentally in the neutron losses, is that in normal conditions it is suppressed by environmental factors as the presence of matter and/or magnetic fields [37,41].
Previous Experimental Efforts
2. Experiment
2.1. Concept
- Classical storage measurement (sketched in Figure 2): UCNs are filled into a storage volume. To measure the initial UCN density, the shutter to the detector SH2 is opened for the last 10 s of the filling (“monitoring”) then closed. The filling shutter SH1 is closed, and UCNs are stored for a given storage time. Then, the second shutter SH2 opens and UCNs are emptied and counted in a detector (“counting”). The time spectrum of UCNs arriving in the detector during such a typical cycle is shown in Figure 3.
- Leakage measurement (sketched in Figure 4): UCNs are filled into the storage volume and the filling shutter SH1 is closed, but SH2 and hence the storage volume towards the detector are permanently open. An additional shutter suspended from the top (a modification of SH3 which reaches to the bottom of the storage vessel) allows to have a small, adjustable opening to the detector. Hence UCNs are counted continuously. The measured UCN rate at the detector during such a cycle is illustrated in Figure 5. In this scheme the experiment is not only sensitive to variations in total counts but also to the change of the leakage time spectrum.
2.2. Ultracold Neutron System
2.3. Improvements of the Ultracold Neutron System in 2021
- In order to increase the UCN storage properties of the storage volume, the entire stainless-steel body of the vessel was electro-polished. This increased the storage time constant as the entire surface and especially the welding seams became cleaner;
- The UCN guide on the bottom of the storage vessel towards the detector is made from stainless steel with a Fermi potential = 185 neV. Coating of the surface with a material of higher , namely NiMo with a = 220 neV [72] was applied in order to further reduce wall losses in this region;
- New UCN guides from the beamport to the storage vessel, with a ID = 180 mm NiMo-coated glass guides and a ID = 200 mm polished stainless-steel guide, effectively doubled the cross-section of the guides, however, with the drawback of the metal guide part having a larger surface roughness than glass. Still, this resulted in an increase in the UCN filling rate;
- A new plate shutter (a dynamic version of SH3, shown in Figure 4, that would open and close the storage volume to the detector) was designed and tested. At the same time the shutter SH2 of the standard bottle used in 2020 was coated with NiMo and found to be superior;
- With our UCN simulation tuned to the further detailed measurements, we re-investigate changing the height of the storage vessel with respect to the beamport.
2.4. Magnetic Field System
- Dynamic: the currents in each coil are set according to a modified version of the “dynamic” algorithm described in [75], aiming to match the readings of each of the first 10 fluxgates to the goal field using a PI feedback algorithm;
- Static: the currents in each coil are set to values to achieve the desired fields based on offline measurements, assuming the external field remains constant.
2.5. Mapping of the Magnetic Field
2.6. Data Acquisition System
- relaxed timing: synchronization via NTP (millisecond precision) sufficient;
- data generation limited: no fast storage backend necessary;
- standalone UCN detector with separate DAQ (this is necessary because the here used Cascade detector comes with its own DAQ software with data only synchronized via timing);
- simplified on-line analysis: no cycle-to-cycle information exchange.
- Trigger: connected to the trigger signals sent by the proton accelerator HIPA to the UCN source in preparation of beam pulses;
- Shutters: control of the upstream and downstream UCN shutters (SH1, SH2), both pneumatically actuated, via a Beckhoff EtherCAT control and read-back module (Ethercat is an Ethernet fieldbus standard communication system by Beckhoff Automation GmbH & Co. KG, 33415 Verl, Germany, www.beckhoff.com, accessed on 11 November 2021);
- Coils: control and feedback of the magnetic-field generation system (see Section 2.4), also via Beckhoff EtherCAT modules;
- UCN Detector: a standalone commercial CASCADE detector, triggered synchronously from the HIPA UCN trigger signals. Communication with the DAQ system via HTTP requests.
2.7. Supplementary Measurements with Neutrons
- Measurement of the UCN velocity distribution using the oscillating detector “OTUS”, as described in [78], developed at Jagiellonian University, Cracow;
- Studies of the evolution of the UCN density distribution in the storage vessel using an endoscopic UCN detector with , which is currently under development at the University of Mainz.
2.8. Demonstrated Performance
- test the UCN properties of the guides, storage chamber and shutters,
- evaluate the effectiveness of the proposed strategies to normalize nonstatistical fluctuations in the UCN source output, and
- complete realistic physics data-taking at some of the most well-motivated mirror-magnetic-field values.
3. Simulations
3.1. Simulation of UCN Transport and Storage
3.2. Evaluation of Upgrades to UCN Components
- Coating the shutter SH2 and tube towards the detector with NiMo = 220 neV;
- Installation of a new plate shutter flush with the storage volume bottom;
- Upgrade of the filling guide to a 200 mm-large-diameter stainless steel tube from the beamport B_SH to the entrance shutter SH1;
- Upgrade of the filling guide to a 180 mm NiMo-coated glass guide from the beamport B_SH to the entrance shutter SH1;
- Raising the entire setup by 0.5 m as plotted in Figure 17 using a 200 mm-diameter stainless steel filling guide.
3.3. Projected Sensitivity Based on 2020 Measurements and Field Simulations
4. Measurement Plans
- 40 μT–360 μT, where experimental bounds are very weak and could be substantially improved by a short data-taking run.
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, T.D.; Yang, C.-N. Question of Parity Conservation in Weak Interactions. Phys. Rev. 1956, 104, 254–258. [Google Scholar] [CrossRef]
- Yu, I.; Kobzarev, L.; Okun, B.; Ya, I. Pomeranchuk, On the possibility of experimental observation of mirror particles. Sov. J. Nucl. Phys. 1966, 3, 837–841. [Google Scholar]
- Foot, R.; Lew, H.; Volkas, R.R. A Model with fundamental improper space-time symmetries. Phys. Lett. B 1991, 272, 67–70. [Google Scholar] [CrossRef]
- Berezhiani, Z. Mirror world and its cosmological consequences. Int. J. Mod. Phys. A 2004, 19, 3775–3806. [Google Scholar] [CrossRef]
- Berezhiani, Z. Through the looking-glass: Alice’s adventures in mirror world. In From Fields to Strings: Circumnavigating Theoretical Physics; World Scientific Publishing Co Pte Ltd.: Singapore, 2005; Volume 3, pp. 2147–2195. [Google Scholar]
- Foot, R. Mirror dark matter: Cosmology, galaxy structure and direct detection. Int. J. Mod. Phys. A 2014, 29, 1430013. [Google Scholar] [CrossRef] [Green Version]
- Okun, L.B. Mirror particles and mirror matter: 50 years of speculations and search. Phys. Usp. 2007, 50, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Comelli, D.; Villante, F.L. The Early mirror universe: Inflation, baryogenesis, nucleosynthesis and dark matter. Phys. Lett. B 2001, 503, 362–375. [Google Scholar] [CrossRef] [Green Version]
- Ignatiev, A.Y.; Volkas, R.R. Mirror dark matter and large scale structure. Phys. Rev. D 2003, 68, 023518. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Ciarcelluti, P.; Comelli, D.; Villante, F.L. Structure formation with mirror dark matter: CMB and LSS. Int. J. Mod. Phys. D 2005, 14, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Dolgov, A.; Mohapatra, R. Asymmetric inflationary reheating and the nature of mirror universe. Phys. Lett. B 1996, 375, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.G. Astrophysical implications of the mirror world with broken mirror parity. arXiv 1996, arXiv:9602326. [Google Scholar]
- Berezhiani, Z.; Cassisi, S.; Ciarcelluti, P.; Pietrinferni, A. Evolutionary and structural properties of mirror star MACHOs. Astropart. Phys. 2006, 24, 495–510. [Google Scholar] [CrossRef] [Green Version]
- Holdom, B. Two U(1)’s and Epsilon Charge Shifts. Phys. Lett. B 1986, 166, 196–198. [Google Scholar] [CrossRef]
- Glashow, S.L. Positronium Versus the Mirror Universe. Phys. Lett. B 1986, 167, 35–36. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Lepidi, A. Cosmological bounds on the ’millicharges’ of mirror particles. Phys. Lett. B 2009, 681, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Vigo, C.; Gerchow, L.; Radics, B.; Raaijmakers, M.; Rubbia, A.; Crivelli, P. New bounds from positronium decays on massless mirror dark photons. Phys. Rev. Lett. 2020, 124, 101803. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Dolgov, A.D.; Tkachev, I.I. Dark matter and generation of galactic magnetic fields. Eur. Phys. J. C 2013, 73, 2620. [Google Scholar] [CrossRef] [Green Version]
- Foot, R. Mirror dark matter and the new DAMA/LIBRA results: A Simple explanation for a beautiful experiment. Phys. Rev. D 2008, 78, 043529. [Google Scholar] [CrossRef] [Green Version]
- Cerulli, R.; Villar, P.; Cappella, F.; Bernabei, R.; Belli, P.; Incicchitti, A.; Addazi, A.; Berezhiani, Z. DAMA annual modulation and mirror Dark Matter. Eur. Phys. J. C 2017, 77, 83. [Google Scholar] [CrossRef] [Green Version]
- Addazi, A.; Berezhiani, Z.; Bernabei, R.; Belli, P.; Cappella, F.; Cerulli, R.; Incicchitti, A. DAMA annual modulation effect and asymmetric mirror matter. Eur. Phys. J. C 2015, 75, 400. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z. Unified picture of the particle and sparticle masses in SUSY GUT. Phys. Lett. B 1998, 417, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Belfatto, B.; Berezhiani, Z. How light the lepton flavor changing gauge bosons can be. Eur. Phys. J. C 2019, 79, 202. [Google Scholar] [CrossRef]
- Belfatto, B.; Beradze, R.; Berezhiani, Z. The CKM unitarity problem: A trace of new physics at the TeV scale? Eur. Phys. J. C 2020, 80, 149. [Google Scholar] [CrossRef]
- Addazi, A.; Berezhiani, Z.; Kamyshkov, Y. Gauged B-L number and neutron–antineutron oscillation: Long-range forces mediated by baryophotons. Eur. Phys. J. C 2017, 77, 301. [Google Scholar] [CrossRef] [Green Version]
- Babu, K.S.; Mohapatra, R.N. Limiting Equivalence Principle Violation and Long-Range Baryonic Force from Neutron-Antineutron Oscillation. Phys. Rev. D 2016, 94, 054034. [Google Scholar] [CrossRef] [Green Version]
- Rubakov, V.A. Grand unification and heavy axion. JETP Lett. 1997, 65, 621–624. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Gianfagna, L.; Giannotti, M. Strong CP problem and mirror world: The Weinberg-Wilczek axion revisited. Phys. Lett. B 2001, 500, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Sakharov, A.D. Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe. JETP Lett. 1967, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Bento, L.; Berezhiani, Z. Leptogenesis via Collisions: Leaking Lepton Number to the Hidden Sector. Phys. Rev. Lett. 2001, 87, 231304. [Google Scholar] [CrossRef] [Green Version]
- Bento, L.; Berezhiani, Z. Baryon asymmetry, dark matter and the hidden sector. Fortsch. Phys. 2002, 50, 489–495. [Google Scholar] [CrossRef]
- Berezhiani, Z. Unified picture of ordinary and dark matter genesis. Eur. Phys. J. Spec. Top. 2008, 163, 271–289. [Google Scholar] [CrossRef]
- Berezhiani, Z. Matter, dark matter, and antimatter in our Universe. Int. J. Mod. Phys. A 2018, 33, 1844034. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Berezhiani, Z.G.; Senjanovic, G. Planck scale physics and neutrino masses. Phys. Rev. Lett. 1992, 69, 3013–3016. [Google Scholar] [CrossRef] [Green Version]
- Foot, R.; Volkas, R. Neutrino physics and the mirror world: How exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiment. Phys. Rev. D 1995, 52, 6595–6606. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.G.; Mohapatra, R.N. Reconciling present neutrino puzzles: Sterile neutrinos as mirror neutrinos. Phys. Rev. D 1995, 52, 6607–6611. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Bento, L. Neutron-mirror-neutron oscillations: How fast might they be? Phys. Rev. Lett. 2006, 96, 081801. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.G., II. Neutron-Antineutron Oscillations: Theoretical Status and Experimental Prospects. Phys. Rep. 2016, 612, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Baldo-Ceolin, M.; Benetti, P.; Bitter, T.; Bobisut, F.; Calligarich, E.; Dolfini, R.; Dubbers, D.; El-Muzeini, P.; Genoni, M.; Gibin, D.; et al. A new experimental limit on neutron-antineutron oscillations. Zeit. F. Phys. C 1994, 63, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Abe, K. Search for n-nbar oscillation in Super-Kamiokande. arXiv 2011, arXiv:1109.4227v2.2011. [Google Scholar]
- Berezhiani, Z. More about neutron—Mirror neutron oscillation. Eur. Phys. J. C 2009, 64, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Bento, L. Fast neutron-mirror-neutron oscillation and ultra high energy cosmic rays. Phys. Lett. B 2006, 635, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Gazizov, A. Neutron Oscillations to Parallel World: Earlier End to the Cosmic Ray Spectrum? Eur. Phys. J. C 2012, 72, 2111. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, R.N.; Nasri, S.; Nussinov, S. Some implications of neutron mirror neutron oscillation. Phys. Lett. B 2005, 627, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Biondi, R.; Mannarelli, M.; Tonelli, F. Neutron-mirror neutron mixing and neutron stars. Eur. Phys. J. C 2021, 81, 1036. [Google Scholar] [CrossRef]
- Goldman, I.; Mohapatra, R.N.; Nussinov, S. Bounds on neutron-mirror neutron mixing from pulsar timing. Phys. Rev. D 2019, 100, 123021. [Google Scholar] [CrossRef] [Green Version]
- Ciancarella, R.; Pannarale, F.; Addazi, A.; Marciano, A. Constraining mirror dark matter inside neutron stars. Phys. Dark Univ. 2021, 32, 100796. [Google Scholar] [CrossRef]
- Coc, A.; Pospelov, M.; Uzan, J.-P.; Vangioni, E. Modified big bang nucleosynthesis with nonstandard neutron sources. Phys. Rev. D 2014, 90, 085018. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z. Neutron lifetime puzzle and neutron–mirror neutron oscillation. Eur. Phys. J. C 2019, 79, 484. [Google Scholar] [CrossRef] [Green Version]
- Green, G.L.; Geltenbort, P. The neutron enigma. Sci. Am. 2016, 4, 29. [Google Scholar] [CrossRef]
- Berezhiani, Z. Neutron-antineutron oscillation and baryonic majoron: Low scale spontaneous baryon violation. Eur. Phys. J. C 2016, 76, 705. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z. A possible shortcut for neutron–antineutron oscillation through mirror world. Eur. Phys. J. C 2021, 81, 33. [Google Scholar] [CrossRef]
- Pokotilovski, N. On the experimental search for neutron → mirror neutron oscillations. Phys. Lett. B 2006, 639, 214–217. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Frost, M.; Kamyshkov, Y.; Rybolt, B.; Varriano, L. Neutron disappearance and regeneration from a mirror state. Phys. Rev. D 2017, 96, 035039. [Google Scholar] [CrossRef] [Green Version]
- Ban, G.; Bodek, K.; Daum, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Khomutov, N.; Kirch, K.; Kistryn, S.; Knecht, A.; et al. Direct experimental limit on neutron—Mirror-neutron oscillations. Phys. Rev. Lett. 2007, 99, 161603. [Google Scholar] [CrossRef] [Green Version]
- Serebrov, A.; Aleksandrov, E.; Dovator, N.; Dmitriev, S.; Fomin, A.; Geltenbort, P.; Kharitonov, A.; Krasnoschekova, I.; Lasakov, M.; Murashkin, A.; et al. Experimental search for neutron-mirror neutron oscillations using storage of ultracold neutrons. Phys. Lett. B 2008, 663, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Abel, C.; Ayres, N.J.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Chanel, E.; Chiu, P.-J.; Crawford, C.; Daum, M.; et al. A search for neutron to mirror-neutron oscillations using the nEDM apparatus at PSI. Phys. Lett. B 2021, 812, 135993. [Google Scholar] [CrossRef]
- Altarev, I.; Baker, C.A.; Ban, G.; Bodek, K.; Daum, M.; Fierlinger, P.; Geltenbort, P.; Green, K.; Grinten, M.G.D.V.; Gutsmiedl, E.; et al. Neutron to Mirror-Neutron Oscillations in the Presence of Mirror Magnetic Fields. Phys. Rev. D 2009, 80, 032003. [Google Scholar] [CrossRef] [Green Version]
- Serebrov, A.P.; Aleksandrov, E.B.; Dovator, N.A.; Dmitriev, S.P.; Fomin, A.K.; Geltenbort, P.; Kharitonov, A.G.; Krasnoschekova, I.A.; Lasakov, M.S.; Murashkin, A.N.; et al. Search for neutron-mirror neutron oscillations in a laboratory experiment with ultracold neutrons. Nucl. Instrum. Meth. A 2009, 611, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Bodek, K.; Kistryn, S.; Kuźniak, M.; Zejma, J.; Burghoff, M.; Knappe-Grüneberg, S.; Sander-Thoemmes, T.; Schnabel, A.; Trahms, L.; Ban, G.; et al. Additional results from the first dedicated search for neutronmirror neutron oscillations. Nucl. Instrum. Meth. A 2009, 611, 141–143. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Nesti, F. Magnetic anomaly in UCN trapping: Signal for neutron oscillations to parallel world? Eur. Phys. J. C 2012, 72, 1974. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, Z.; Biondi, R.; Geltenbort, P.; Krasnoshchekova, I.; Varlamov, V.; Vassiljev, A.; Zherebtsov, O. New experimental limits on neutron-mirror neutron oscillations in the presence of mirror magnetic field. Eur. Phys. J. C 2018, 78, 717. [Google Scholar] [CrossRef] [Green Version]
- MohanMurthy, P.T. A Search for Neutron to Mirror-Neutron Oscillations. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2019. No. 26525. [Google Scholar]
- Broussard, L.J.; Barrow, J.L.; DeBeer-Schmitt, L.; Dennis, T.; Fitzsimmons, M.R.; Frost, M.J.; Gilbert, C.E.; Gonzalez, F.M.; Heilbronn, L.; Iverson, E.B.; et al. Experimental Search for Neutron to Mirror Neutron Oscillations as an Explanation of the Neutron Lifetime Anomaly. arXiv 2021, arXiv:2111.05543. [Google Scholar]
- Bison, G.; Blau, B.; Daum, M.; Goeltl, L.; Henneck, R.; Kirch, K.; Lauss, B.; Ries, D.; Schmidt-Wellenburg, P.; Zsigmond, G. Neutron optics of the PSI ultracold neutron source: Characterization and simulation. Eur. Phys. J. A 2020, 56, 33. [Google Scholar] [CrossRef]
- Lauss, B. A New Facility for Fundamental Particle Physics: The High-Intensity Ultracold Neutron Source at the Paul Scherrer Institute. AIP Conf. Proc. 2012, 1441, 576–578. [Google Scholar] [CrossRef] [Green Version]
- Lauss, B. Startup of the high-intensity ultracold neutron source at the Paul Scherrer Institute. Hyperf. Int. 2012, 211, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Lauss, B. Ultracold Neutron Production at the Second Spallation Target of the Paul Scherrer Institute. Phys. Proc. 2014, 51, 98. [Google Scholar] [CrossRef] [Green Version]
- Bison, G.; Daum, M.; Kirch, K.; Lauss, B.; Ries, D.; Schmidt-Wellenburg, P.; Zsigmond, G.; Brenner, T.; Geltenbort, P.; Jenke, T.; et al. Comparison of ultracold neutron sources for fundamental physics measurements. Phys. Rev. C 2017, 95, 045503. [Google Scholar] [CrossRef] [Green Version]
- Lauss, B.; Blau, B. UCN, the ultracold neutron source—Neutrons for particle physics. SciPost Phys. Proc. 2021, 5, 004. [Google Scholar] [CrossRef]
- Daum, M.; Franke, B.; Geltenbort, P.; Gutsmiedl, E.; Ivanov, S.; Karch, J.; Kasprzak, M.; Kirch, K.; Kraft, A.; Lauer, T.; et al. Transmission of ultra-cold neutrons through guides coated with materials of high optical potential. Nucl. Instrum. Methods A 2014, 741, 71–77. [Google Scholar] [CrossRef]
- Blau, B.; Daum, M.; Fertl, M.; Geltenbort, P.; Goeltl, L.; Henneck, R.; Kirch, K.; Knecht, A.; Lauss, B.; Schmidt-Wellenburg, P.; et al. A prestorage method to measure neutron transmission of ultracold neutron guides. Nucl. Instrum. Methods A 2016, 807, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Bison, G.; Burri, F.; Daum, M.; Kirch, K.; Krempel, J.; Lauss, B.; Meier, M.; Ries, D.; Schmidt-Wellenburg, P.; Zsigmond, G. An ultracold neutron storage bottle for UCN density measurements. Nucl. Instrum. Methods A 2016, 830, 449. [Google Scholar] [CrossRef] [Green Version]
- Brys, T.; Czekaj, S.; Daum, M.; Fierlinger, P.; George, D.; Henneck, R.; Kasprzak, M.; Kirch, K.; Kuzniak, M.; Kuehne, G.; et al. Magnetic field stabilization for magnetically shielded volumes by external field coils. Nucl. Inst. Meth. A 2005, 554, 527–539. [Google Scholar] [CrossRef] [Green Version]
- Afach, S.; Bison, G.; Bodek, K.; Burri, F.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Grujić, Z.D.; Hélaine, V.; et al. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute. J. Appl. Phys. 2014, 116, 084510. [Google Scholar] [CrossRef] [Green Version]
- Abel, C.; Ayres, N.J.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Chanel, E.; Chiu, P.-J.; Clément, B.; Crawford, C.B.; et al. Mapping of the magnetic field to correct systematic effects in a neutron electric dipole moment experiment. arXiv 2021, arXiv:2103.09039. [Google Scholar]
- Ayres, N.J.; Ban, G.; Bienstman, L.; Bison, G.; Bodek, K.; Bondar, V.; Bouillaud, T.; Chanel, E.; Chen, J.; Chiu, P.-J.; et al. The design of the n2EDM experiment. Eur. Phys. J. C 2021, 81, 512. [Google Scholar] [CrossRef]
- Rozpedzik, D.; Bodek, K.; Lauss, B.; Ries, D.; Schmidt-Wellenburg, P.; Zsigmond, G. Oscillating ultra-cold neutron spectrometer. EPJ Web Conf. 2019, 219, 10007. [Google Scholar] [CrossRef] [Green Version]
- Anghel, A.; Bailey, T.L.; Bison, G.; Blau, B.; Broussard, L.J.; Clayton, S.M.; Cude-Woods, C.; Daum, M.; Hawari, A.; Hild, N.; et al. Solid deuterium surface degradation at ultracold neutron sources. Eur. Phys. J. A 2018, 54, 148. [Google Scholar] [CrossRef]
- Zsigmond, G. The MCUCN simulation code for ultracold neutron physics. Nucl. Instrum. Methods A 2018, 881, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Ries, D. Characterisation and Optimisation of the Source for Ultracold Neutrons at the Paul Scherrer Institute. Ph.D. Thesis, ETH, Zürich, Switzerland, 2016. No. 23671. [Google Scholar]
- Bison, G.; Daum, M.; Kirch, K.; Lauss, B.; Ries, D.; Schmidt-Wellenburg, P.; Zsigmond, G. Ultracold neutron storage and transport at the PSI UCN source. arXiv 2021, arXiv:2110.12988. [Google Scholar]
- Golub, R.; Richardson, D.J.; Lamoreaux, S.K. Ultra-Cold Neutrons; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Biondi, R. Monte Carlo simulation for ultracold neutron experiments searching for neutron–mirror neutron oscillation. Int. J. Mod. Phys. A 2018, 33, 1850143. [Google Scholar] [CrossRef] [Green Version]
Performance Parameters | Fall 2020 |
---|---|
Average UCN counts during monitoring | |
Average UCN counts after storage | |
Storage time | 120 s |
Simulated UCN mean free flight time <> | 0.16 s |
Storage curve parameters | s |
s | |
UCN pulse duration | 8 s |
UCN pulse period | 300 s |
Average proton beam current | 2.0 mA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayres, N.J.; Berezhiani, Z.; Biondi, R.; Bison, G.; Bodek, K.; Bondar, V.; Chiu, P.-J.; Daum, M.; Dinani, R.T.; Doorenbos, C.B.; et al. Improved Search for Neutron to Mirror-Neutron Oscillations in the Presence of Mirror Magnetic Fields with a Dedicated Apparatus at the PSI UCN Source. Symmetry 2022, 14, 503. https://doi.org/10.3390/sym14030503
Ayres NJ, Berezhiani Z, Biondi R, Bison G, Bodek K, Bondar V, Chiu P-J, Daum M, Dinani RT, Doorenbos CB, et al. Improved Search for Neutron to Mirror-Neutron Oscillations in the Presence of Mirror Magnetic Fields with a Dedicated Apparatus at the PSI UCN Source. Symmetry. 2022; 14(3):503. https://doi.org/10.3390/sym14030503
Chicago/Turabian StyleAyres, Nicholas J., Zurab Berezhiani, Riccardo Biondi, Georg Bison, Kazimierz Bodek, Vira Bondar, Pin-Jung Chiu, Manfred Daum, Reza Tavakoli Dinani, Cornelis B. Doorenbos, and et al. 2022. "Improved Search for Neutron to Mirror-Neutron Oscillations in the Presence of Mirror Magnetic Fields with a Dedicated Apparatus at the PSI UCN Source" Symmetry 14, no. 3: 503. https://doi.org/10.3390/sym14030503