Short Time Series Forecasting: Recommended Methods and Techniques
Abstract
:1. Introduction
2. State of the Art of Crime Forecasting
3. Models and Methods
3.1. Data Extraction
3.2. Data Preparation
3.3. Forecasting Methods
- [Jaganathan] combines numerous statistical and machine learning methods [22]: naive/snaive; ExponenTial Smoothing (ETS); dampened ETS; bagged ETS; exponential smoothing, complex exponential smoothing, general exponential smoothing; multi-aggregation prediction algorithm (MAPA); temporal hierarchical forecasting; autoregressive integrated moving average (ARIMA); ThetaH; hybrid Theta; forecast pro; seasonal and trend decomposition using loess forecast; trigonometric Box–Cox transform, ARMA errors, trend and seasonal components (TBATS); double seasonal Holt-Winters; and multilayer perceptron and extreme learning machines.
- [FFORMA] uses the following forecasting methods [23]: naive, random walk with drift, seasonal naive, theta method, automated ARIMA algorithm, ETS, TBATS, STLM-AR seasonal and trend decomposition, and neural network time series forecasts (NNETAR).
- [Hybrid] ensembles [24]: auto ARIMA, ETS, Theta, NNETAR, seasonal and trend decomposition using loess, TBATS, snaive.
- [LightGBM] [21] applies decision trees.
3.4. Proposed Forecasting Techniques
4. Experimental Result
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnoso Martínez, A.; Vozmediano Sanz, L.; Martínez de Taboada Kutz, C. Inseguridad subjetiva y representaciones sociales de la delincuencia. Univ. Psychol. 2018, 17, 1–14. [Google Scholar] [CrossRef]
- Livier, M.; Martínez, G. Confianza, victimización y desorden en la percepción de inseguridad en una población mexicana Trust, victimization and disorder in a Mexican population’s perception of insecurity Resumen. Psicumex 2019, 9, 1–17. [Google Scholar]
- Envipe, S.P. Encuesta Nacional De Victimización Y Percepción Sobre Seguridad Pública (Envipe) 2020. Inst. Nac. Estadística Geogr. 2020, 10, 1–58. [Google Scholar]
- Santos, T.; Jiménez, M.A. El miedo de las víctimas: Diseccionando la Criminología del Control. Utopía Prax. Latinoam. 2019, 24, 133–153. [Google Scholar]
- Armesto, A. Quality of government, crime victimization and particularistic political participation in Latin America. Perfiles Latinoam. 2019, 27, 1–27. [Google Scholar] [CrossRef]
- Millán-Valenzuela, H.; Pérez-Archundia, E. Education, poverty and crime: Links of violence in Mexico? Convergencia 2019, 80, 1–26. [Google Scholar] [CrossRef]
- Pavel, M.; Román, D.; Cecilia, M.; Minchel, J.; Lara, O.P. Reflexiones alternas en torno al tratamiento de las violencias y la delincuencia desde América Latina: La prevención del delito como estrategia. Med. Soc. 2019, 12, 110–117. [Google Scholar]
- Guilmartin, C.E.K. No hay “delitos comunes” Un Planteamiento Alternativo Para Asegurar Puntos Calientes Globales y áreas Urbanas Densamente Pobladas. 2019. Available online: https://www.armyupress.army.mil/Journals/Edicion-Hispanoamericana/Archivos/Segundo-Trimestre-2019/No-hay-delitos-comunes/ (accessed on 28 May 2022).
- Ordóñez, H.; Cobos, C.; Bucheli, V. Machine learning model for predicting theft trends in Colombia | Modelo de machine learning para la predicción de las tendencias de hurto en Colombia. RISTI -Rev. Iber. Sist. Tecnol. Inf. 2020, 2020, 494–506. [Google Scholar]
- Cichosz, P. Urban crime risk prediction using point of interest data. ISPRS Int. J. Geo-Inf. 2020, 9, 459. [Google Scholar] [CrossRef]
- Chun, S.A.; Pathak, R.; Paturu, V.A.; Atluri, V.; Yuan, S.; Adam, N.R. Crime Prediction Model using Deep Neural Networks. In Proceedings of the 20th Annual International Conference on Digital Government, Dubai, United Arab Emirates, 18–20 June 2019; pp. 512–514. [Google Scholar] [CrossRef]
- Wang, K.; Li, W. Application of Electrical Automation Technology in Power System. J. Power Energy Eng. 2019, 7, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Lu, T. A Hybrid Model of Crime Prediction. J. Phys. Conf. Ser. 2019, 1168, 032031. [Google Scholar] [CrossRef]
- Jha, S.; Yang, E.; Almagrabi, A.O.; Bashir, A.K.; Joshi, G.P. Comparative analysis of time series model and machine testing systems for crime forecasting. Neural Comput. Appl. 2021, 33, 10621–10636. [Google Scholar] [CrossRef]
- Yadav, R.; Kumari, S.; Savita. Autoregressive Model for Multivariate Crime Prediction; Springer: Singapore, 2020; pp. 301–307. [Google Scholar]
- Shi, L.; Lu, Y.; Pickett, J.T. The public salience of crime, 1960–2014: Age–period–cohort and time–series analyses. Criminology 2020, 58, 568–593. [Google Scholar] [CrossRef]
- Melgarejo, M.; Rodriguez, C.; Mayorga, D.; Obregón, N. Time Series from Clustering: An Approach to Forecast Crime Patterns. In Recent Trends in Artificial Neural Networks: From Training to Prediction; IntechOpen: London, UK, 2020; pp. 1–20. [Google Scholar] [CrossRef] [Green Version]
- Izonin, I.; Tkachenko, R.; Shakhovska, N.; Lotoshynska, N. The additive input-doubling method based on the svr with nonlinear kernels: Small data approach. Symmetry 2021, 13, 612. [Google Scholar] [CrossRef]
- Tkachenko, R.; Mishchuk, O.; Izonin, I.; Kryvinska, N.; Stoliarchuk, R. A non-iterative neural-like framework for missing data imputation. Procedia Comput. Sci. 2019, 155, 319–326. [Google Scholar] [CrossRef]
- Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 2020, 36, 54–74. [Google Scholar] [CrossRef]
- Spiliotis, E.; Assimakopoulos, V.; Makridakis, S.; Assimakopoulos, V. The M5 Accuracy competition: Results, findings and conclusions. Int. J. Forecast. 2022, in press. [Google Scholar] [CrossRef]
- Jaganathan, S.; Prakash, P.K. A combination-based forecasting method for the M4-competition. Int. J. Forecast. 2020, 36, 98–104. [Google Scholar] [CrossRef]
- Montero-Manso, P.; Athanasopoulos, G.; Hyndman, R.J.; Talagala, T.S. FFORMA: Feature-based forecast model averaging. Int. J. Forecast. 2020, 36, 86–92. [Google Scholar] [CrossRef]
- Atıcı, R.; Pala, Z. Prediction of the Ionospheric foF2 Parameter Using R Language Forecasthybrid Model Library Convenient Time Series Functions. Wirel. Pers. Commun. 2022, 122, 3293–3312. [Google Scholar] [CrossRef]
- Hyndman, R.J. Seasonal Decomposition of Short Time Series. 2018. Available online: https://robjhyndman.com/hyndsight/tslm-decomposition/ (accessed on 2 June 2022).
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. 12.7 Very long and very short time series. In Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018; Chapter 12. [Google Scholar]
- Moffat, I.U.; Akpan, E.A. White Noise Analysis: A Measure of Time Series Model Adequacy. Appl. Math. 2019, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
F. Method | F. Configuration | Average sMAPE |
---|---|---|
ARIMA | Re | 37.5052 |
Jaganathan | Re | 37.6426 |
SMA | Re | 38.535 |
Hybrid | CAS | 39.4308 |
Hybrid | ReMS | 39.7137 |
SMA | CReMSPlusFS | 39.7689 |
SMA | ReMS | 40.0366 |
Hybrid | Re | 40.2257 |
SMA | CAS | 40.2651 |
Hybrid | CReMSPlusFS | 40.6069 |
Hybrid | CAHS | 40.8827 |
Jaganathan | CReMSPlusFS | 41.1746 |
ARIMA | CAHS | 41.793 |
SMA | CAHS | 41.7961 |
FFORMA | ReMS | 42.8928 |
FFORMA | CReMSPlusFS | 42.934 |
FFORMA | CAS | 43.0287 |
Jaganathan | CAS | 43.0652 |
Jaganathan | ReMS | 43.3135 |
FFORMA | Re | 43.8414 |
FFORMA | CAHS | 44.1245 |
Jaganathan | CAHS | 45.7345 |
ARIMA | CReMSPlusFS | 45.9772 |
ARIMA | CAS | 46.1315 |
ARIMA | ReMS | 46.6199 |
HW | Re | 47.3814 |
HW | CAS | 52.8533 |
HW | ReMS | 52.9905 |
HW | CAHS | 55.4958 |
LigthGBM | ReMS | 57.7173 |
LigthGBM | CAS | 58.2243 |
LigthGBM | CAHS | 59.0801 |
LigthGBM | Re | 64.1037 |
ANN | ReMS | 68.258 |
ANN | CAS | 68.289 |
ANN | CAHS | 69.6555 |
HW | CReMSPlusFS | 69.7481 |
LigthGBM | CReMSPlusFS | 72.307 |
ANN | Re | 72.5841 |
ANN | CReMSPlusFS | 74.0957 |
F. Method | F. Technique | Mean Rank | Average sMAPE | Position Change |
---|---|---|---|---|
SMA | CAHS | 14.31 | 41.8 | ↑× 13 |
SMA | ReMS | 14.49 | 40.04 | ↑× 5 |
ARIMA | Re | 14.54 | 37.51 | ↓× 2 |
SMA | CAS | 14.63 | 40.27 | ↑× 5 |
Hybrid | CAS | 14.71 | 39.43 | ↓× 1 |
Jaganathan | Re | 14.77 | 37.64 | ↓× 4 |
SMA | Re | 15.23 | 38.54 | ↓× 4 |
Hybrid | ReMS | 15.66 | 39.71 | ↓× 3 |
SMA | CReMSPlusFS | 15.91 | 39.77 | ↓× 3 |
Hybrid | CAHS | 16.00 | 40.88 | ↑× 1 |
Hybrid | Re | 17.00 | 40.23 | ↓× 3 |
Jaganathan | CReMSPlusFS | 17.14 | 41.17 | - × - |
Hybrid | CReMSPlusFS | 17.46 | 40.61 | ↓× 3 |
FFORMA | ReMS | 17.60 | 42.89 | ↑× 1 |
FFORMA | CAS | 17.97 | 43.03 | ↑× 2 |
FFORMA | CAHS | 18.21 | 44.12 | ↑× 5 |
FFORMA | CReMSPlusFS | 18.24 | 42.93 | ↓× 1 |
ARIMA | CReMSPlusFS | 18.49 | 45.98 | ↑× 5 |
FFORMA | Re | 18.51 | 43.84 | ↑× 1 |
ARIMA | CAHS | 19.00 | 41.79 | ↓× 7 |
Jaganathan | CAS | 19.00 | 43.07 | ↓× 3 |
HW | ReMS | 19.07 | 52.99 | ↑× 6 |
Jaganathan | CAHS | 19.16 | 45.73 | ↓× 1 |
Jaganathan | ReMS | 19.41 | 43.31 | ↓× 5 |
HW | CAS | 19.46 | 52.85 | ↑× 2 |
ARIMA | CAS | 19.66 | 46.13 | ↓× 2 |
HW | Re | 20.34 | 47.38 | ↓× 1 |
HW | CAHS | 20.53 | 55.5 | ↑× 1 |
ARIMA | ReMS | 20.54 | 46.62 | ↓× 4 |
HW | CReMSPlusFS | 25.51 | 69.75 | ↑× 7 |
ANN | ReMS | 27.16 | 68.26 | ↑× 3 |
LigthGBM | ReMS | 27.67 | 57.72 | ↓× 2 |
LigthGBM | CAHS | 27.73 | 59.08 | ↓× 1 |
ANN | CAS | 27.83 | 68.29 | ↑× 1 |
LigthGBM | CAS | 27.89 | 58.22 | ↓× 4 |
ANN | Re | 28.20 | 72.58 | ↑× 3 |
ANN | CAHS | 28.24 | 69.66 | ↓× 1 |
LigthGBM | Re | 29.46 | 64.1 | ↓× 5 |
ANN | CReMSPlusFS | 30.74 | 74.1 | ↑× 1 |
LigthGBM | CReMSPlusFS | 32.51 | 72.31 | ↓× 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Nájera, M.A.; Treviño-Berrones, M.G.; Ponce-Flores, M.P.; Terán-Villanueva, J.D.; Castán-Rocha, J.A.; Ibarra-Martínez, S.; Santiago, A.; Laria-Menchaca, J. Short Time Series Forecasting: Recommended Methods and Techniques. Symmetry 2022, 14, 1231. https://doi.org/10.3390/sym14061231
Cruz-Nájera MA, Treviño-Berrones MG, Ponce-Flores MP, Terán-Villanueva JD, Castán-Rocha JA, Ibarra-Martínez S, Santiago A, Laria-Menchaca J. Short Time Series Forecasting: Recommended Methods and Techniques. Symmetry. 2022; 14(6):1231. https://doi.org/10.3390/sym14061231
Chicago/Turabian StyleCruz-Nájera, Mariel Abigail, Mayra Guadalupe Treviño-Berrones, Mirna Patricia Ponce-Flores, Jesús David Terán-Villanueva, José Antonio Castán-Rocha, Salvador Ibarra-Martínez, Alejandro Santiago, and Julio Laria-Menchaca. 2022. "Short Time Series Forecasting: Recommended Methods and Techniques" Symmetry 14, no. 6: 1231. https://doi.org/10.3390/sym14061231
APA StyleCruz-Nájera, M. A., Treviño-Berrones, M. G., Ponce-Flores, M. P., Terán-Villanueva, J. D., Castán-Rocha, J. A., Ibarra-Martínez, S., Santiago, A., & Laria-Menchaca, J. (2022). Short Time Series Forecasting: Recommended Methods and Techniques. Symmetry, 14(6), 1231. https://doi.org/10.3390/sym14061231