A Study on Fractional Diffusion—Wave Equation with a Reaction
Abstract
:1. Introduction
- , where c is any constant.
- , where .
- The Laplace transform of Caputo fractional derivative for is
2. Method of Solution
3. Numerical Results
4. Conclusions
- The main purpose of our study is to construct the Laplace transform series method for solving fractional diffusion equation with respect to the Caputo derivatives.
- We solve two examples to show the efficiency of the proposed method.
- We notice that the proposed method gave the exact solutions in the first and second example after a few steps, which gives us numerical evidence that the proposed method is efficient.
- Based on this study, we think that the suggested approach is promising and suitable for other physical problems such as fractional kinetics and anomalous transport.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; Series on Complexity, Nonlinearity and Chaos; World Scientific: Singapore, 2012; Volume 3. [Google Scholar]
- Matlob, M.A.; Jamali, Y. The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: A primer. Crit. Rev. Biomed. Eng. 2019, 47, 249–276. [Google Scholar] [CrossRef] [PubMed]
- Bagley, R.L.; Torvik, P.J. Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 1985, 23, 918–925. [Google Scholar] [CrossRef]
- Bagley, R.L.; Torvik, P.J. On the fractional calculus model of viscoelastic behavior. J. Rheol. 1986, 30, 133–155. [Google Scholar] [CrossRef]
- Meral, F.C.; Royston, T.J.; Magin, R. Fractional calculus in viscoelasticity: An experimental study. Comm. Nonlin. Sci. Numer. Simul. 2010, 15, 939–945. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Tarasov, V.E. On history of mathematical economics: Application of fractional calculus. Mathematics 2019, 7, 509. [Google Scholar] [CrossRef] [Green Version]
- Angstmann, C.N.; Henry, B.I.; McGann, A.V. A fractional order recovery SIR model from a stochastic process. Bull. Math. Biol. 2016, 78, 468–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Henry, B.I.; Langlands, T.A.M.; Wearne, S.L. Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 2008, 100, 128103. [Google Scholar] [CrossRef] [Green Version]
- Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Chen, D.; Zhao, T.; Chen, Y. Fractional calculus in image processing: A review. Fract. Calc. Appl. Anal. 2016, 19, 1222–1249. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.A.; Dassios, I.; El-Zahar, E.R.; Chung, J.D. An Efficient Technique of Fractional-Order Physical Models Involving ρ-Laplace Transform. Mathematics 2022, 10, 816. [Google Scholar] [CrossRef]
- Syam, M. Adomian decomposition method for approximating the solution of the Korteweg-deVries equation. Appl. Math. Comput. 2005, 162, 1465–1473. [Google Scholar] [CrossRef]
- Saratha, S.R.; Bagyalakshmi, M.; Krishnan, G.S.S. Fractional generalised homotopy analysis method for solving nonlinear fractional differential equations. Comput. Appl. Math. 2020, 39, 112. [Google Scholar] [CrossRef]
- Bodkhe, D.S.; Panchal, S.K. On Sumudu Transform of fractional derivatives and its Applications to Fractional Differential Equations. Asian J. Math. Comput. Res. 2016, 11, 69–77. [Google Scholar]
- Mohamed, E.A.E. Elzaki Transformation for Linear Fractional Differential Equations. J. Comput. Theor. Nanosci. 2015, 12, 2303–2305. [Google Scholar] [CrossRef]
- Kazem, S. Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform. Int. J. Nonlinear Sci. 2013, 16, 3–11. [Google Scholar]
- Emimal, A.; Lydia, K. Mahgoub Transform Method for solving linear fractional Differential equations. Int. J. Math. Trends Technol. 2018, 58, 253–257. [Google Scholar]
- Shahand, K.; Khan, R.A. The Applications of Natural Transform to the Analytical Solutions of Some Fractional Order Ordinary Differential Equations. Sindh Univ. Res. J. 2015, 47, 683–686. [Google Scholar]
- Rida, S.Z.; Abedl-Rady, A.S.; Arafa, A.A.M.; Abedl-Rahim, H.R. Adomian Decomposition Sumudu Transform Method for Solving Fractional Nonlinear Equations. Math. Sci. Lett. 2016, 5, 39–48. [Google Scholar] [CrossRef]
- Rivero, M.; Rodriguez-Germa, L.; Trujillo, J.J. Linear fractional differential equations with variable coefficients. Appl. Math. Lett. 2008, 21, 892–897. [Google Scholar] [CrossRef] [Green Version]
- Elzaki, T.M.; Chamekh, M. Solving Nonlinear Fractional Differential equations using a New Decomposition Method. Univers. J. Appl. Math. Comput. 2018, 6, 27–35. [Google Scholar]
- Zurigat, M. Solving nonlinear fractional differential equation using a multi-step Laplace Adomian Decomposition Method. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2012, 39, 200–210. [Google Scholar]
- Jaradat, I.; Al-Dolat, M.; Al-Zoubi, K.; Alquran, M. Theory and applications of a more general form for fractional power series. Chaos Solitons Fractals 2018, 108, 107–110. [Google Scholar] [CrossRef]
- Attili, B.; Syam, M. Efficient shooting method for solving two point boundary value problems. Chaos Solitons Fractals 2008, 35, 895–903. [Google Scholar] [CrossRef]
- Rawashdeh, M.S.; Al-Jammal, H. Numerical solutions for systems of nonlinear fractional ordinary differential equations using the Fractional Natural Decomposition method. Mediterr. J. Math. 2016, 13, 4661–4677. [Google Scholar] [CrossRef]
- Alaroud, M. Application of Laplace power series, ace residual power series method for approximate solutions of fractional IVPs. Alex. Eng. J. 2022, 61, 1585–1595. [Google Scholar] [CrossRef]
- Eriqat, T.; El-Ajou, A.; Oqielat, M.; Al-Zhour, Z.; Momani, S. A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations. Chaos Solitons Fractals 2020, 138, 109957. [Google Scholar] [CrossRef]
- Gülsu, M.; Gürbüz, B.; Öztürk, Y.; Sezer, M. Laguerre polynomial approach for solving linear delay difference equations. Appl. Math. Comput. 2011, 217, 6765–6776. [Google Scholar] [CrossRef]
- Gürbüz, B.; Sezer, M. Laguerre polynomial solutions of a class of initial and boundary value problems arising in science and engineering fields. Acta Phys. Pol. 2000, 130, 194–197. [Google Scholar] [CrossRef]
- Gurbuz, B.; Sezerm, M. Laguerre polynomial approach for solving nonlinear Klein-Gordon equations. Malays. J. Math. Sci. 2017, 11, 191–203. [Google Scholar]
- Syam, M. The modified Broyden-variational method for solving nonlinear elliptic differential equations. Chaos Solitons Fractals 2007, 32, 392–404. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, R.; Luo, Y.; Chen, Y.; Wang, X.; Chen, Y. A Look-up table based fractional order composite controller synthesis method for the PMSM speed servo system. Fractal Fract. 2022, 6, 47. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Al-Hutami, H.; Ahmad, B. Langevin-type q-variant system of nonlinear fractional integro-difference equations with nonlocal boundary conditions. Fractal Fract. 2022, 6, 45. [Google Scholar] [CrossRef]
- Reyaz, R.; Mohamad, A.; Lim, Y.; Saqib, M.; Shafie, S. Analytical solution for impact of Caputo-Fabrizio fractional derivative on MHD casson fluid with thermal radiation and chemical reaction effects. Fractal Fract. 2022, 6, 38. [Google Scholar] [CrossRef]
- Sene, N. Analytical solutions of a class of fluids models with the Caputo fractional derivative. Fractal Fract. 2022, 6, 35. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Simply and multiply scaled diffusion limits for continuous time random walks. J. Phys. Conf. Ser. 2005, 7, 1. [Google Scholar] [CrossRef]
- Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134–144. [Google Scholar] [CrossRef]
- Arqub, O.A.; El-Ajou, A.; Bataineh, A.; Hashim, I. A representation of the exact solution of generalized Lane Emden equations using a new analytical method. Abstr. Appl. Anal. 2013, 2013, 378593. [Google Scholar] [CrossRef]
- Alquran, M.; Jaradat, H.; Syam, M.I. Analytical solution of the time-fractional Phi-4 equation by using modified residual power series method. Nonlinear Dyn. 2017, 90, 2525. [Google Scholar] [CrossRef]
- Kiran, P.; Badhane, G.; Pradhan, V.H. Application of Laplace transform homotopy perturbation method to gas dynamic equation: A modified approach. Int. J. Res. Eng. Technol. 2016, 5, 409–411. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuomar, M.M.A.; Syam, M.I.; Azmi, A. A Study on Fractional Diffusion—Wave Equation with a Reaction. Symmetry 2022, 14, 1537. https://doi.org/10.3390/sym14081537
Abuomar MMA, Syam MI, Azmi A. A Study on Fractional Diffusion—Wave Equation with a Reaction. Symmetry. 2022; 14(8):1537. https://doi.org/10.3390/sym14081537
Chicago/Turabian StyleAbuomar, Mohammed M. A., Muhammed I. Syam, and Amirah Azmi. 2022. "A Study on Fractional Diffusion—Wave Equation with a Reaction" Symmetry 14, no. 8: 1537. https://doi.org/10.3390/sym14081537
APA StyleAbuomar, M. M. A., Syam, M. I., & Azmi, A. (2022). A Study on Fractional Diffusion—Wave Equation with a Reaction. Symmetry, 14(8), 1537. https://doi.org/10.3390/sym14081537