Modified Golden Jackal Optimization Assisted Adaptive Fuzzy PIDF Controller for Virtual Inertia Control of Micro Grid with Renewable Energy
Abstract
:1. Introduction
- A modified GJO (mGJO) algorithm is suggested by incorporating Sine and Cosine Adopted Scaling Factor (SCaSF) in the original GJO method.
- The dominance of them GJO method over GJO, GWO, BBO, GSA, PSO, TLBO, MVO and ALO is demonstrated for test functions as well as the controller design problem.
- An AFPIDF structure is suggested to address the frequency regulation of an islander MG based on the VIC concept.
- The dominance of AFPID over FPID and PID is demonstrated under various levels of a symmetric renewable power penetration.
2. Virtual Inertia Control (VIC) in Micro Grid (MG)
2.1. Studied MG
2.2. Structure of VIC Loop
3. Proposed Controller Structure and the Problem Formulation
3.1. Structure of AFPIDF Controller
3.2. Objective Function
4. Proposed Modified GJO Algorithm
4.1. Golden Jackal Optimization (GJO) Algorithm
4.1.1. Search Space Design
4.1.2. Exploration Phase
4.1.3. Exploitation Phase
4.1.4. Moving from Exploration to Exploitation
4.2. Modified GJO (mGJO) Algorithm
5. Simulation Results and Discussion
5.1. Benchmark Functions Testing
5.2. Implementation of mGJO in Engineering Design Problem
5.2.1. Condition 1: Normal RES Integration
5.2.2. Condition 2: Reduced RES Integration
5.2.3. Condition 3: Increased RES Integration
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pogaku, N.; Prodanovic, M.; Green, T.C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron. 2007, 22, 613–625. [Google Scholar] [CrossRef]
- Debrabandere, K.; Bolsens, B.; Van den Keybus, J.; Woyte, A.; Driesen, J.; Belmans, R. A voltage and frequency droop control method for parallel inverters. IEEE Trans. Power Electron. 2007, 22, 1107–1115. [Google Scholar] [CrossRef]
- Alsiraji, H.A.; El-Shatshat, R. Comprehensive assessment of virtual synchronous machine based voltage source converter controllers. IET Gen. Trans. Distribn. 2017, 11, 1762–1769. [Google Scholar] [CrossRef]
- Liu, J.; Miura, Y.; Bevrani, H.; Ise, T. Enhanced Virtual Synchronous Generator Control for Parallel Inverters in Microgrids. IEEE Trans. Smart Grid 2017, 8, 2268–2277. [Google Scholar] [CrossRef]
- Im, W.S.; Wang, C.; Liu, W.; Liu, L.; Kim, J.M. Distributed virtual inertia based control of multiple photovoltaic systems in autonomous microgrid. IEEE/CAA J. Autom. Sin. 2017, 4, 512–519. [Google Scholar]
- Ma, Y.; Cao, W.; Yang, L.; Wang, F.; Tolbert, L.M. Virtual synchronous generator control of full converter wind turbines with short-term energy storage. IEEE Trans. Ind. Electn. 2017, 64, 8821–8831. [Google Scholar] [CrossRef]
- Torres, M.A.L.; Lopes, L.A.C.; Morán, L.A.T.; Espinoza, J.R.C. Self-tuning virtual synchronous machine: A control strategy for energy storage systems to support dynamic frequency control. IEEE Trans. Energy Conv. 2014, 29, 833–840. [Google Scholar] [CrossRef]
- Soni, N.; Doolla, S.; Chandorkar, M.C. Improvement of transient response in microgrids using virtual inertia. IEEE Trans. Power Del. 2013, 28, 1830–1838. [Google Scholar] [CrossRef]
- Andalib-Bin-Karim, C.; Liang, X.; Zhang, H. Fuzzy-secondary-controller-based virtual synchronous generator control scheme for interfacing inverters of renewable distributed generation in microgrids. IEEE Trans. Ind. Appln. 2018, 54, 1047–1061. [Google Scholar] [CrossRef]
- Fang, J.; Li, H.; Tang, Y.; Blaabjerg, F. Distributed power system virtual inertia implemented by grid-connected power converters. IEEE Trans. Power Electn. 2018, 33, 8488–8499. [Google Scholar] [CrossRef]
- D’Arco, S.; Suul, J.A.; Fosso, O.B. A virtual synchronous machine implementation for distributed control of power converters in smartgrids. Electr. Power Syst. Res. 2015, 122, 180–197. [Google Scholar] [CrossRef]
- Hirase, Y.; Abe, K.; Sugimoto, K.; Shindo, Y. A grid-connected inverter with virtual synchronous generator model of algebraic type. Elect. Eng. Jpn. 2013, 184, 10–21. [Google Scholar] [CrossRef]
- Kerdphol, T.; Watanabe, M.; Hongesombut, K.; Mitani, Y. Self-adaptive virtual inertia control-based fuzzy logic to improve frequency stability of microgrid with high renewable penetration. IEEE Access 2019, 7, 76071–76083. [Google Scholar] [CrossRef]
- Kerdphol, T.; Rahman, F.S.; Mitani, Y.; Watanabe, M.; Küfeoglu, S.K. Robust virtual inertia control of an islanded microgrid considering high penetration of renewable energy. IEEE Access 2017, 6, 625–636. [Google Scholar] [CrossRef]
- Ali, H.; Magdy, G.; Li, B.; Shabib, G.; Elbaset, A.A.; Xu, D.; Mitani, Y. A new frequency control strategy in an islanded microgrid using virtual inertia control-based coefficient diagram method. IEEE Access 2019, 7, 16979–16990. [Google Scholar] [CrossRef]
- Sockeel, N.; Gafford, J.; Papari, B.; Mazzola, M. Virtual inertia emulator-based model predictive control for grid frequency regulation considering high penetration of inverter-based energy storage system. IEEE Trans. Sustain. Energy 2020, 11, 2932–2939. [Google Scholar] [CrossRef]
- Saleh, A.; Omran, W.A.; Hasanien, H.M.; Tostado-Vrliz, M.; Alkuhayli, A.; Jurado, F. Manta ray foraging optimization for the virtual inertia control of islanded microgrids including renewable energy sources. Sustainability 2022, 14, 4189. [Google Scholar] [CrossRef]
- Fu, S.; Sun, Y.; Liu, Z.; Hou, X.; Han, H. Power oscillation suppression in multi-VSG grid with adaptive virtual inertia. Int. J. Elect. Power Energy Syst. 2022, 135, 107472. [Google Scholar] [CrossRef]
- Khazali, A.; Rezaei, N.; Saboori, H.; Guerrero, J.M. Using PV systems and parking lots to provide virtual inertia and frequency regulation provision in low inertia grids. Elect. Power Syst. Res. 2022, 207, 107859. [Google Scholar] [CrossRef]
- Abubakr, H.; Mohamed, T.H.; Hussein, M.M.; Guerrero, J.M.; Agundis-Tinajero, G. Adaptive frequency regulation strategy in multi-area microgrids including renewable energy and electric vehicles supported by virtual inertia. Int. J. Elect. Power Energy Syst. 2021, 129, 106814. [Google Scholar] [CrossRef]
- Ratnam, K.S.; Palanisamy, K.; Yang, G. Future low-inertia power systems: Requirements, issues, and solutions—A review. Renew. Sustain. Energy Rev. 2020, 124, 109773. [Google Scholar] [CrossRef]
- Makolo, P.; Oladeii, I.; Zamora, R.; Lie, T.T. Short-range inertia prediction for power networks with penetration of RES, TENCON 2021. In Proceedings of the 2021 IEEE Region 10 Conference (TENCON), Auckland, New Zealand, 7–10 December 2021. [Google Scholar]
- Carlini, E.M.; Del Pizzo, F.; Giannuzzi, G.M.; Lauria, D.; Mottola, F.; Pisani, C. Online analysis and prediction of the inertia in power systems with renewable power generation based on a minimum variance harmonic finite impulse response filter. Int. J. Elect. Power Energy Syst. 2021, 131, 107042. [Google Scholar] [CrossRef]
- Magdy, G.; Shabib, G.; Elbaset, A.A.; Mitani, Y. A novel coordination scheme of virtual inertia control and digital protection for microgrid dynamic security considering high renewable energy penetration. IET Renew. Power Gener. 2019, 13, 462–474. [Google Scholar] [CrossRef]
- Mandal, R.; Chatterjee, K. Virtual inertia emulation and RoCoF control of a microgrid with high renewable power penetration. Electr. Power Syst. Res. 2021, 194, 107093. [Google Scholar] [CrossRef]
- Othman, A.M.; El-Fergany, A.A. Adaptive virtual-inertia control and chicken swarm optimizer for frequency stability in power grids penetrated by renewable energy sources. Neural Comput. Appl. 2021, 33, 2905–2918. [Google Scholar] [CrossRef]
- Khadangaa, R.K.; Das, D.; Kumar, A.; Panda, S. An improved parasitism predation algorithm for frequency regulation of a virtual inertia control based AC microgrid. Energy Sources Part A Rec. Utilz. Env. Effects 2022, 44, 1660–1677. [Google Scholar] [CrossRef]
- Chopra, N.; Ansari, M.M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Syst. Appln. 2022, 198, 116924. [Google Scholar] [CrossRef]
- Mishra, S.; Nayak, P.C.; Prusty, R.C.; Panda, S. Modified multiverse optimizer technique-based two degree of freedom fuzzy PID controller for frequency control of microgrid systems with hydrogen aqua electrolyzer fuel cell unit. Neural Comput. Appln. 2022. [Google Scholar] [CrossRef]
- Mishra, S.; Nayak, P.C.; Prusty, R.C.; Panda, S. Novel load frequency control scheme for hybrid power systems employing interline power flow controller and redox flow battery. Energy Sources Part A Rec. Utilz. Env. Effects 2022. [Google Scholar] [CrossRef]
- Kerdphol, T.; Rahman, F.S.; Watanabe, M.; Mitani, Y. Robust virtual inertia control of a low inertia microgrid considering frequency measurement effects. IEEE Access 2019, 7, 57550–57560. [Google Scholar] [CrossRef]
- Civelek, Z.; Cam, E.; Luy, M.; Mamur, H. Proportional-integral-derivative parameter optimization of blade pitch controller in wind turbines by a new intelligent genetic algorithm. IET Renew. Pow. Gen. 2016, 10, 1220–1228. [Google Scholar] [CrossRef]
- Ho, W.K.; Hang, C.C.; Cao, L.S. Tuning of PID controllers based on gain and phase margin specifications. Automatica 1995, 31, 497–502. [Google Scholar] [CrossRef]
- Fei, J.; Liu, L. Real-time nonlinear model predictive control of active power filter using self-feedback recurrent fuzzy neural network estimator. IEEE Trans. Ind. Electn. 2022, 69, 8366–8376. [Google Scholar] [CrossRef]
- Said, M.; Houssein, E.H.; Deb, S.; Alhussan, A.A.; Ghoniem, R.M. A novel gradient based optimizer for solving unit commitment problem. IEEE Access 2022, 10, 18081–18092. [Google Scholar] [CrossRef]
- Rezk, H.; Ferahtia, S.; Djeroui, A.; Chouder, A.; Houari, A.; Machmoum, M.; Abdelkareem, M. Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer. Energy 2022, 239, 122096. [Google Scholar] [CrossRef]
Function Name | Expression | Range | D |
---|---|---|---|
Sphere | [−100, 100] | 30 | |
Schwefel-1 | [−10, 10] | 30 | |
Schwefel-2 | [−100, 100] | 30 | |
Schwefel-3 | [−100, 100] | 30 | |
Quartic | [−1.,28, 1.28] | 30 | |
Generalized Rastrigin | [−5.12, 5.12] | 30 | |
Ackley | [−32, 32] | 30 | |
Generalized Griewank | [−600, 600] | 30 | |
Kowalik | [−5, 5] | 4 | |
Six-Hump Camel-Back | [−5, 5] | 2 |
Function | Indices | mGJO | GJO | GWO | GSA | PSO | TLBO | ALO |
---|---|---|---|---|---|---|---|---|
(Min = 0) | Best | 5.49 × 10−103 | 2.83 × 10−46 | 1.22 × 10−23 | 1.57 × 10−9 | 1.63 × 10−10 | 2.59 × 10−43 | 1.23 × 10−6 |
Worst | 1.98 × 10−99 | 6.4 × 10−40 | 2.97 × 10−20 | 1.53 × 10−6 | 2.09 × 10−7 | 5.1 × 10−41 | 2.72 × 10−5 | |
Ave. | 2.91 × 10−98 | 6.3 × 10−41 | 3.37 × 10−21 | 7.21 × 10−9 | 3.42 × 10−8 | 1.03 × 10−41 | 9.09 × 10−6 | |
SD | 5.46 × 10−99 | 1.51 × 10−40 | 6.45 × 10−21 | 3.78 × 10−9 | 5.35 × 10−8 | 1.47 × 10−41 | 7.74 × 10−6 | |
(Min = 0) | Best | 5.89 × 10−55 | 2.28 × 10−25 | 3.75 × 10−14 | 1.66 × 10−4 | 1.5 × 10−5 | 1.38 × 10−22 | 7.28 × 10−4 |
Worst | 7.74 × 10−53 | 2.17 × 10−22 | 2.99 × 10−13 | 4.45 × 10−4 | 7.56 × 10−4 | 7.83 × 10−21 | 33.87 | |
Ave. | 5.01 × 10−52 | 2.23 × 10−23 | 6.12 × 10−13 | 2.42 × 10−4 | 1.18 × 10−4 | 1.53 × 10−21 | 5.08 | |
SD | 1.03 × 10−52 | 4.3 × 10−23 | 7.08 × 10−13 | 5.91 × 10−5 | 1.14 × 10−4 | 1.45 × 10−21 | 7.81 | |
(Min = 0) | Best | 1.48 × 10−87 | 3.69 × 10−26 | 8.64 × 10−11 | 1.85 × 10−2 | 2.66 × 10−3 | 2.13 × 10−19 | 0.701 |
Worst | 1.42 × 10−81 | 1.6 × 10−19 | 3.38 × 10−7 | 37.29 | 1.41 × 10−1 | 1.94 × 10−16 | 1551.35 | |
Ave. | 2.16 × 10−80 | 1.51 × 10−20 | 2.4 × 10−8 | 7.11 | 2.43 × 10−2 | 2.99 × 10−17 | 294.37 | |
SD | 4.50 × 10−81 | 3.53 × 10−20 | 6.89 × 10−8 | 10.01 | 2.89 × 10−2 | 4.9 × 10−17 | 353.97 | |
(Min = 0) | Best | 5.83 × 10−48 | 4.93 × 10−18 | 5.52 × 10−8 | 2.93 × 10−5 | 7.06 × 10−4 | 1.77 × 10−18 | 9.39 × 10−3 |
Worst | 3.37 × 10−46 | 4.66 × 10−15 | 8.25 × 10−6 | 8.95 × 10−5 | 3.74 × 10−2 | 3.51 × 10−17 | 14.68 | |
Ave. | 1.55 × 10−45 | 1.28 × 10−15 | 1.08 × 10−6 | 6.25 × 10−5 | 1.01 × 10−2 | 7.68 × 10−18 | 3.26 | |
SD | 4.46 × 10−46 | 1.27 × 10−15 | 1.64 × 10−6 | 1.56 × 10−5 | 8.42 × 10−3 | 7.04 × 10−18 | 3.62 | |
(Min = 0) | Best | 1.61 × 10−5 | 6.73 × 10−05 | 2.35 × 10−4 | 2.85 × 10−3 | 4.79 × 10−3 | 3.41 × 10−3 | 1.59 × 10−2 |
Worst | 2.38 × 10−4 | 2.85 × 10−3 | 4.69 × 10−3 | 3.67 × 10−2 | 3.55 × 10−2 | 3.162 × 10−3 | 1.75 × 10−1 | |
Ave. | 6.84 × 10−4 | 7.77 × 10−4 | 1.37 × 10−3 | 1.58 × 10−2 | 1.81 × 10−2 | 1.71 × 10−3 | 6.65 × 10−2 | |
SD | 1.87 × 10−4 | 0.000657 | 1.06 × 10−3 | 7.91 × 10−3 | 7.87 × 10−3 | 7.19 × 10−4 | 3.68 × 10−2 | |
(Min = 0) | Best | 0 | 0 | 0 | 0.994961 | 2.992063 | 0.013259 | 7.95967 |
Worst | 0 | 18.13774 | 9.140608 | 14.92438 | 16.24605 | 14.22896 | 49.74783 | |
Ave. | 0 | 0.604591 | 2.653841 | 7.429027 | 8.659233 | 5.500317 | 23.74631 | |
SD | 0 | 3.311483 | 2.834879 | 3.404116 | 3.173189 | 3.437944 | 11.01983 | |
(Min = 0) | Best | 8.88 × 10−16 | 4.44 × 10−15 | 2.08 × 10−12 | 8.09 × 10−5 | 1.07 × 10−5 | 4.44 × 10−15 | 5.57 × 10−4 |
Worst | 4.44 × 10−15 | 7.99 × 10−15 | 1 × 10−10 | 1.88 × 10−4 | 4.44 × 10−4 | 7.54 × 10−15 | 5.191245 | |
Ave. | 4.32 × 10−15 | 4.8 × 10−15 | 2 × 10−11 | 1.22 × 10−4 | 1.51 × 10−4 | 4.9 × 10−15 | 1.389097 | |
SD | 6.48 × 10−16 | 1.08 × 10−15 | 2.13 × 10−11 | 2.7 × 10−5 | 1.15 × 10−4 | 1.9 × 10−15 | 1.345589 | |
(Min = 0) | Best | 0 | 0 | 0 | 2.16691 | 6.1535 × 10−2 | 0 | 5.5238 × 10−2 |
Worst | 0 | 0.173643 | 0.101945 | 11.33721 | 3.007362 | 9.6573 × 10−2 | 0.324966 | |
Ave. | 0 | 1.321 × 10−2 | 2.985 × 10−2 | 5.603493 | 0.939436 | 1.6522 × 10−2 | 0.179803 | |
SD | 0 | 3.9472 × 10−2 | 0.026988 | 2.647036 | 0.760557 | 2.3714 × 10−2 | 7.5028 × 10−2 | |
(Min = 3 × 10−4) | Best | 3.08 × 10−4 | 3.13 × 10−4 | 3.38 × 10−4 | 9.23 × 10−4 | 3.43 × 10−4 | 3.07 × 10−4 | 6.27 × 10−4 |
Worst | 7.35 × 10−4 | 2.04 × 10−2 | 2.10 × 10−2 | 1.40 × 10−2 | 1.35 × 10−3 | 2.04 × 10−2 | 2.11 × 10−2 | |
Ave. | 4.24 × 10−4 | 1.40 × 10−3 | 2.65 × 10−3 | 3.42 × 10−3 | 8.74 × 10−4 | 1.76 × 10−3 | 2.66 × 10−3 | |
SD | 1.01 × 10−4 | 1.47 × 10−4 | 6.08 × 10−3 | 3.24 × 10−3 | 1.91 × 10−4 | 5.06 × 10−3 | 3.67 × 10−3 | |
(Min = −1.0316) | Best | −1.0316 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 |
Worst | −1.0254 | −1.03162 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | |
Ave. | −1.0313 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | −1.03163 | |
SD | 7.1 × 10−4 | 1.63 × 10−6 | 1.28 × 10−7 | 1.56 × 10−10 | 5.38 × 10−16 | 5.61 × 10−16 | 3.17 × 10−13 |
Technique/ Controller | K1 | K2 | KP | KI | KD | J Value |
---|---|---|---|---|---|---|
ALO/PID | _ | _ | 1.1477 | 0.8386 | 0.2995 | 11.1421 |
GSA/PID | _ | _ | 1.8912 | 1.0214 | 0.2453 | 11.0467 |
PSO/PID | _ | _ | 1.5998 | 1.0559 | 0.3187 | 10.9684 |
GWO/PID | _ | _ | 1.6556 | 1.0852 | 0.2243 | 10.2568 |
TLBO/PID | _ | _ | 1.5945 | 1.1648 | 0.2187 | 9.8906 |
GJO/PID | _ | _ | 0.9331 | 1.1375 | 0.3364 | 9.8138 |
mGJO/PID | _ | _ | 0.4855 | 1.1366 | 0.2016 | 8.3729 |
mGJO/FPID | 0.2811 | 0.0393 | 1.9883 | 1.6173 | 0.1187 | 4.6162 |
mGJO/AFPIDF | 0.3386 | 0.0764 | 1.4223 | 1.4092 | 0.0931 | 2.6341 |
Technique/ Controller | Integral Errors | MOS in ΔF | MUs in ΔF (-ve) | |||
---|---|---|---|---|---|---|
ISE | ITAE | ITSE | IAE | |||
ALO/PID | 1.0217 | 270.6073 | 49.0962 | 5.4408 | 0.4259 | 0.4819 |
GSA/PID | 0.9974 | 263.9853 | 46.8408 | 5.3467 | 0.4561 | 0.5126 |
PSO/PID | 0.9665 | 256.7279 | 45.8277 | 5.1555 | 0.4328 | 0.4949 |
GWO/PID | 0.9435 | 240.8556 | 44.3725 | 4.9532 | 0.4678 | 0.5026 |
TLBO/PID | 0.9104 | 227.2530 | 42.7798 | 4.7245 | 0.4684 | 0.4986 |
GJO/PID | 0.8849 | 224.3486 | 41.9169 | 4.4787 | 0.4187 | 0.4775 |
Technique/ Controller | Integral Errors | MOS in ΔF | MUs in ΔF (-ve) | J Value | |||
---|---|---|---|---|---|---|---|
ISE | ITAE | ITSE | IAE | ||||
Case-1 | |||||||
mGJO/PID | 0.7952 | 198.4558 | 38.0886 | 4.2059 | 0.4106 | 0.4707 | 8.3729 |
mGJO/FPID | 0.4417 | 130.6643 | 20.6084 | 2.7231 | 0.3504 | 0.3881 | 4.6162 |
mGJO/AFPIDF | 0.2220 | 84.3966 | 10.0556 | 1.8131 | 0.2838 | 0.2949 | 2.6341 |
Case-2 | |||||||
mGJO/PID | 0.7035 | 158.6698 | 31.3289 | 3.4652 | 0.4060 | 0.4355 | 7.6252 |
mGJO/FPID | 0.4251 | 115.8667 | 18.6158 | 2.5230 | 0.3426 | 0.3617 | 4.7673 |
mGJO/AFPIDF | 0.2212 | 76.7245 | 9.4528 | 1.6975 | 0.2813 | 0.2860 | 3.3048 |
Case-3 | |||||||
mGJO/PID | 0.8792 | 220.4062 | 43.2489 | 4.6307 | 0.4129 | 0.4888 | 9.1711 |
mGJO/FPID | 0.4653 | 139.6949 | 21.8918 | 2.9313 | 0.3540 | 0.4083 | 4.8058 |
mGJO/AFPIDF | 0.2377 | 91.3450 | 10.8443 | 1.9856 | 0.2869 | 0.3014 | 2.6139 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nanda Kumar, S.; Mohanty, N.K. Modified Golden Jackal Optimization Assisted Adaptive Fuzzy PIDF Controller for Virtual Inertia Control of Micro Grid with Renewable Energy. Symmetry 2022, 14, 1946. https://doi.org/10.3390/sym14091946
Nanda Kumar S, Mohanty NK. Modified Golden Jackal Optimization Assisted Adaptive Fuzzy PIDF Controller for Virtual Inertia Control of Micro Grid with Renewable Energy. Symmetry. 2022; 14(9):1946. https://doi.org/10.3390/sym14091946
Chicago/Turabian StyleNanda Kumar, S., and Nalin Kant Mohanty. 2022. "Modified Golden Jackal Optimization Assisted Adaptive Fuzzy PIDF Controller for Virtual Inertia Control of Micro Grid with Renewable Energy" Symmetry 14, no. 9: 1946. https://doi.org/10.3390/sym14091946