Charge Asymmetry of New Stable Families in Baryon Asymmetrical Universe
Abstract
:1. Introduction
2. Balance between Baryon and Dark Matter Densities Due to Sphaleron Transitions
2.1. Model
2.2. Chemical Potentials
- for all left-/right-handed and up-/down-like quarks, correspondingly;
- for all charged leptons;
- , , i=e, , for left-/right-handed neutrino;
- for , note that the chemical potential of neutral vector boson is vanishing;
- and for the Higgs doublet.
- for left-/right-handed U and D correspondingly;
- for left-/right-handed E and N correspondingly.
- for any up-/down-like right fermion “i”
- for particle “i” with isospin projection −1/2 and corresponding particle “j” with isospin projection 1/2
2.3. Equations
2.4. Density Rate
2.5. Non-Equal Masses
- both ratios strongly depend on the mass difference of U and D quarks, but hardly depend on the mass of the heavy electron E;
- the ratio is suppressed if D quark is too heavy. This fact can be used to correct the result obtained in the approximation of equal masses;
- standard lepton to baryon asymmetry increases.
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khlopov, M.Y. Fundamentals of Cosmoparticle Physics; CISP-Springer: Cambridge, UK, 2012.
- Bertone, G. Particle Dark Matter: Observations, Models and Searches; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Frenk, C.S.; White, S.D.M. Dark matter and cosmic structure. Ann. Phys. 2012, 524, 507–534. [Google Scholar] [CrossRef] [Green Version]
- Gelmini, G.B. Search for dark matter. Int. J. Mod. Phys. A 2008, 23, 4273–4288. [Google Scholar] [CrossRef]
- Aprile, E.; Profumo, S. Focus on dark matter and particle physics. New J. Phys. 2009, 11, 105002. [Google Scholar] [CrossRef]
- Feng, J.L. Dark matter candidates from particle physics and methods of detection. Ann. Rev. Astron. Astrophys. 2010, 48, 495–545. [Google Scholar] [CrossRef] [Green Version]
- Starobinsky, A. A new type of isotropic cosmological models without singularity. Phys. Lett. 1980, 91B, 99–102. [Google Scholar] [CrossRef]
- Guth, A.H. The inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Linde, A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
- Linde, A.D. Chaotic inflation. Phys. Lett. B 1983, 129, 177–181. [Google Scholar] [CrossRef]
- Sakharov, A.D. Violation of CP invariance, c asymmetry, and baryon asymmetry of the universe. JETP Lett. 1967, 5, 24–27. [Google Scholar]
- Kuzmin, V.A. CP-noninvariance and baryon asymmetry of the universe. JETP Lett. 1970, 12, 228–230. [Google Scholar]
- Linde, A.D. Particle Physics and Inflationary Cosmology; Harwood: Chur, Switzerland, 1990. [Google Scholar]
- Kolb, E.W.; Turner, M.S. The Early Universe; Addison-Wesley: Boston, MA, USA, 1990. [Google Scholar]
- Gorbunov, D.S.; Rubakov, V.A. Introduction to the Theory of the Early Universe Hot Big Bang Theory; World Scientific: Singapore, 2011. [Google Scholar]
- Gorbunov, D.S.; Rubakov, V.A. Introduction to the Theory of the Early Universe. Cosmological Perturbations and Inflationary Theory; World Scientific: Singapore, 2011. [Google Scholar]
- Carrasco, J.J.M.; Kallosh, R.; Linde, A. Minimal supergravity inflation. Phys. Rev. D 2016, 93, 061301. [Google Scholar] [CrossRef] [Green Version]
- Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P. Thermodynamics of cosmological matter creation. Proc. Natl. Acad. Sci. USA 1988, 85, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P. Thermodynamics and Cosmology. Gen. Rel. Grav. 1989, 21, 767. [Google Scholar] [CrossRef]
- Calvao, M.O.; Lima, J.A.S.; Waga, I. On the thermodynamics of the matter creation in cosmology. Phys. Lett. A 1992, 162, 223. [Google Scholar] [CrossRef]
- Harko, T.; Asadi, K.; Moshafi, H.; Sheikhahmadi, H. Observational constraints on the interacting dark energy—Dark matter (IDM) cosmological models. Phys. Dark. Univ. 2022, 38, 101131. [Google Scholar] [CrossRef]
- Harko, T.; Sheikhahmadi, H. Irreversible thermodynamical descripton of warm inflationary cosmological models. Phys. Dark. Univ. 2020, 28, 100521. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M. What comes after the Standard model? Prog. Part. Nucl. Phys. 2021, 116, 103824. [Google Scholar] [CrossRef]
- Belotsky, K.; Khlopov, M.; Shibaev, K. Stable quarks of the 4th family? arXiv 2008, arXiv:0806.1067. [Google Scholar]
- Maltoni, M.; Novikov, V.A.; Okun, L.B.; Rozanov, A.N.; Vysotsky, M.I. Extra quark-lepton generations and precision measurements. Phys. Lett. B 2000, 476, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Kuzmin, V.; Shaposhnikov, M.; Rubakov, V.A. On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B 1985, 155, 36. [Google Scholar] [CrossRef]
- Harvey, J.A.; Turner, M.S. Cosmological baryon and lepton number in the presence of electroweak fermion-number violation. Phys. Rev. D 1990, 42, 3344–3349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudnason, S.B.; Kouvaris, C.; Sannino, F. Dark matter from new technicolor theories. Phys. Rev. D 2006, 74, 095008. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, A.; Khlopov, M. Charge asymmetry of new stable quarks in baryon asymmetrical Universe. Bled Work. Phys. 2021, 22, 95–104. [Google Scholar]
- Planck Collab. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophysics 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Domcke, V.; Kamada, K.; Mukaida, K.; Schmitz, K.; Yamada, M. A new constraint on primordial lepton flavour asymmetries. arXiv 2022, arXiv:2208.03237. [Google Scholar]
- The ATLAS Collaboration. Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2fb-1 of proton–proton collision data at s=13TeV. Phys. Lett. B 2016, 760, 647. [Google Scholar] [CrossRef] [Green Version]
- Canepa, A. Searches for supersymmetry at the Large Hadron Collider. Rev. in Phys. 2019, 4, 100033. [Google Scholar] [CrossRef]
- Lee, L.; Ohm, C.; Soffer, A.; Tien-Tien, Y. Collider Searches for Long-Lived Particles Beyond the Standard Model. Prog. Part. Nucl. Phys. 2019, 106, 210–255. [Google Scholar] [CrossRef] [Green Version]
- Kuksa, V.; Beylin, V. Heavy Quark Symmetry and Fine Structure of the Spectrum of Hadronic Dark Matter. Symmetry 2020, 12, 1906. [Google Scholar] [CrossRef]
Particle | Mass | Charge q | Charge y | New Lepton Number | New Baryon Number |
---|---|---|---|---|---|
U | ∼1 TeV | 0 | |||
D | ∼1 TeV | 0 | |||
E | ∼1 TeV | 1 | 1 | 0 | |
N | ∼50 GeV | 0 | 1 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beylin, V.A.; Khlopov, M.Y.; Sopin, D.O. Charge Asymmetry of New Stable Families in Baryon Asymmetrical Universe. Symmetry 2023, 15, 657. https://doi.org/10.3390/sym15030657
Beylin VA, Khlopov MY, Sopin DO. Charge Asymmetry of New Stable Families in Baryon Asymmetrical Universe. Symmetry. 2023; 15(3):657. https://doi.org/10.3390/sym15030657
Chicago/Turabian StyleBeylin, Vitaly A., Maxim Yu. Khlopov, and Danila O. Sopin. 2023. "Charge Asymmetry of New Stable Families in Baryon Asymmetrical Universe" Symmetry 15, no. 3: 657. https://doi.org/10.3390/sym15030657