Ultrasensitive Determination of L-Cysteine with g-C3N4@CdS-Based Photoelectrochemical Platform
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Das, A.; Ash, D.; Fouda, A.Y.; Sudhahar, V.; Kim, Y.-M.; Hou, Y.; Hudson, F.Z.; Stansfield, B.K.; Caldwell, R.B.; McMenamin, M.; et al. Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nat. Cell Biol. 2022, 24, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Fu, L.; Liu, K.; Tian, C.; Wu, Z.; Jung, Y.; Ferreira, R.B.; Carroll, K.S.; Blackwell, T.K.; Yang, J. Global profiling of distinct cysteine redox forms reveals wide-ranging redox regulation in C. elegans. Nat. Commun. 2021, 12, 1415. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. A creatine kinase inhibitor targeting a redox-regulated cysteine. Nat. Chem. Biol. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Paulsen, C.E.; Carroll, K.S. Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery. Chem. Rev. 2013, 113, 4633–4679. [Google Scholar] [CrossRef] [PubMed]
- Spataru, N.; Sarada, B.V.; Popa, E.; Tryk, D.A.; Fujishima, A. Voltammetric determination of L-cysteine at conductive diamond electrodes. Anal. Chem. 2001, 73, 514–519. [Google Scholar] [CrossRef]
- El-Bindary, M.A.; El-Desouky, M.G.; El-Bindary, A.A. Metal–organic frameworks encapsulated with an anticancer compound as drug delivery system: Synthesis, characterization, antioxidant, anticancer, antibacterial, and molecular docking investigation. Appl. Organomet. Chem. 2022, 36, e6660. [Google Scholar] [CrossRef]
- Altalhi, T.A.; Ibrahim, M.M.; Mersal, G.A.M.; Mahmoud, M.H.H.; Kumeria, T.; El-Desouky, M.G.; El-Bindary, A.A.; El-Bindary, M.A. Adsorption of doxorubicin hydrochloride onto thermally treated green adsorbent: Equilibrium, kinetic and thermodynamic studies. J. Mol. Struct. 2022, 1263, 133160. [Google Scholar] [CrossRef]
- Huang, J.; Tao, F.; Li, F.; Cai, Z.; Zhang, Y.; Fan, C.; Pei, L. Controllable synthesis of BiPr composite oxide nanowires electrocatalyst for sensitive L-cysteine sensing properties. Nanotechnology 2022, 33, 345704. [Google Scholar] [CrossRef]
- Matsunaga, T.; Kondo, T.; Shitanda, I.; Hoshi, Y.; Itagaki, M.; Tojo, T.; Yuasa, M. Sensitive electrochemical detection of L-Cysteine at a screen-printed diamond electrode. Carbon 2021, 173, 395–402. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Liu, W.; Yu, Y.; Tian, Y. A Single Biosensor for Evaluating the Levels of Copper Ion and L-Cysteine in a Live Rat Brain with Alzheimer’s Disease. Angew. Chem. Int. Ed. 2015, 54, 14053–14056. [Google Scholar] [CrossRef]
- Yu, Y.; Lee, S.J.; Theerthagiri, J.; Fonseca, S.; Pinto, L.M.C.; Maia, G.; Choi, M.Y. Reconciling of experimental and theoretical insights on the electroactive behavior of C/Ni nanoparticles with AuPt alloys for hydrogen evolution efficiency and Non-enzymatic sensor. Chem. Eng. J. 2022, 435, 134790. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Lee, S.J.; Karuppasamy, K.; Park, J.; Yu, Y.; Kumari, M.L.A.; Chandrasekaran, S.; Kim, H.-S.; Choi, M.Y. Fabrication strategies and surface tuning of hierarchical gold nanostructures for electrochemical detection and removal of toxic pollutants. J. Hazard. Mater. 2021, 420, 126648. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, P.; Yang, X.; Wei, M.; Zhang, M. Turn Off-On Electrochemiluminescence Sensor Based on MnO2/Carboxylated Graphitic Carbon Nitride Nanocomposite for Ultrasensitive L-Cysteine Detection. J. Electrochem. Soc. 2019, 166, B994–B999. [Google Scholar] [CrossRef]
- Zhu, R.; Zhang, Y.; Fang, X.; Cui, X.; Wang, J.; Yue, C.; Fang, W.; Zhao, H.; Li, Z. In situ sulfur-doped graphitic carbon nitride nanosheets with enhanced electrogenerated chemiluminescence used for sensitive and selective sensing of l-cysteine. J. Mater. Chem. B 2019, 7, 2320–2329. [Google Scholar] [CrossRef]
- Meng, H.; Chen, M.; Mo, F.; Guo, J.; Liu, P.; Fu, Y. Construction of self-enhanced photoelectrochemical platform for l-cysteine detection via electron donor-acceptor type coumarin 545 aggregates. Chem. Commun. 2021, 57, 11557–11560. [Google Scholar] [CrossRef]
- Peng, J.; Huang, Q.; Liu, Y.; Huang, Y.; Zhang, C.; Xiang, G. Photoelectrochemical Detection of L-cysteine with a Covalently Grafted ZnTAPc-Gr-based Probe. Electroanalysis 2020, 32, 1237–1242. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Gao, Y.; Chen, F.-Z.; Fan, G.-C.; Han, D.-M.; Wang, C.; Zhao, W.-W. Fast electrochemical deposition of CuO/Cu2O heterojunction photoelectrode: Preparation and application for rapid cathodic photoelectrochemical detection of L-cysteine. Sens. Actuators B-Chem. 2019, 290, 312–317. [Google Scholar] [CrossRef]
- Cifteci, A.; Celik, S.E.; Apak, R. Gold-Nanoparticle Based Turn-on Fluorometric Sensor for Quantification of Sulfhydryl and Disulfide Forms of Biothiols: Measurement of Thiol/Disulfide Homeostasis. Anal. Lett. 2022, 55, 648–664. [Google Scholar] [CrossRef]
- Niu, L.Y.; Chen, Y.Z.; Zheng, H.R.; Wu, L.Z.; Tung, C.H.; Yang, Q.Z. Design strategies of fluorescent probes for selective detection among biothiols. Chem. Soc. Rev. 2015, 44, 6143–6160. [Google Scholar] [CrossRef]
- Ta, H.Y.; Collin, F.; Perquis, L.; Poinson, V.; Ong-Meang, V.; Couderc, F. Twenty years of amino acid determination using capillary electrophoresis: A review. Anal. Chim. Acta 2021, 1174, 338233. [Google Scholar] [CrossRef]
- Li, Z.; Liu, M.; Chen, C.; Pan, Y.; Cui, X.; Sun, J.; Zhao, F.; Cao, Y. Simultaneous determination of serum homocysteine, cysteine, and methionine in patients with schizophrenia by liquid chromatography-tandem mass spectrometry. Biomed. Chromatogr. 2022, 36, e5366. [Google Scholar] [CrossRef]
- Ma, W.; Han, D.; Gan, S.; Zhang, N.; Liu, S.; Wu, T.; Zhang, Q.; Dong, X.; Niu, L. Rapid and specific sensing of gallic acid with a photoelectrochemical platform based on polyaniline-reduced graphene oxide-TiO2. Chem. Commun. 2013, 49, 7842–7844. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Han, D.; Zhou, M.; Sun, H.; Wang, L.; Dong, X.; Niu, L. Ultrathin g-C3N4/TiO2 composites as photoelectrochemical elements for the real-time evaluation of global antioxidant capacity. Chem. Sci. 2014, 5, 3946–3951. [Google Scholar] [CrossRef]
- Ma, W.; Wang, L.; Zhang, N.; Han, D.; Dong, X.; Niu, L. Biomolecule-Free, Selective Detection of o-Diphenol and Its Derivatives with WS2/TiO2-Based Photoelectrochemical Platform. Anal. Chem. 2015, 87, 4844–4850. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Han, D.; Ni, S.; Ma, W.; Wang, W.; Niu, L. Photoelectrochemical device based on Mo-doped BiVO4 enables smart analysis of the global antioxidant capacity in food. Chem. Sci. 2015, 6, 6632–6638. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Ma, W.; Gan, S.; Han, D.; Zhang, Q.; Niu, L. Engineered Photoelectrochemical Platform for Rational Global Antioxidant Capacity Evaluation Based on Ultrasensitive Sulfonated Graphene-TiO2 Nanohybrid. Anal. Chem. 2014, 86, 10171–10178. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Xu, Y.-T.; Wang, B.; Yu, S.-Y.; Shi, X.-M.; Zhao, W.-W.; Jiang, D.; Chen, H.-Y.; Xu, J.-J. A Photoelectrochemical Nanoreactor for Single-Cell Sampling and Near Zero-Background Faradaic Detection of Intracellular microRNA. Angew. Chem. Int. Ed. 2022, 134, e202212752. [Google Scholar]
- Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Photoelectrochemical DNA Biosensors. Chem. Rev. 2014, 114, 7421–7441. [Google Scholar] [CrossRef]
- Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Photoelectrochemical bioanalysis: The state of the art. Chem. Soc. Rev. 2015, 44, 729–741. [Google Scholar] [CrossRef]
- Barroso, J.; Diez-Buitrago, B.; Saa, L.; Moller, M.; Briz, N.; Pavlov, V. Specific bioanalytical optical and photoelectrochemical assays for detection of methanol in alcoholic beverages. Biosens. Bioelectron. 2018, 101, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Shi, X.; Fan, M.; Han, L.; Wang, L.; Fan, Q. Highly sensitive photoelectrochemical cysteine sensor based on reduced graphene oxide/CdS:Mn nanocomposites. J. Electroanal. Chem. 2015, 759, 61–66. [Google Scholar] [CrossRef]
- Wang, Q.; Ruan, Y.-F.; Zhao, W.-W.; Lin, P.; Xu, J.-J.; Chen, H.-Y. Semiconducting Organic-Inorganic Nanodots Heterojunctions: Platforms for General Photoelectrochemical Bioanalysis Application. Anal. Chem. 2018, 90, 3759–3765. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.-T.; Kong, C.; Li, D.-W.; Li, Y.; Chowdhury, S.; Tian, H. Ultrasensitive Determination of Cysteine Based on the Photocurrent of Nafion-Functionalized CdS-MV Quantum Dots on an ITO Electrode. Small 2011, 7, 1624–1628. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yu, Z.; Wang, X. Crystalline Carbon Nitride Semiconductors for Photocatalytic Water Splitting. Angew. Chem. Int. Ed. 2019, 58, 6164–6175. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Antonietti, M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Wang, X. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108. [Google Scholar] [CrossRef]
- Zheng, Y.; Lin, L.; Wang, B.; Wang, X. Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis. Angew. Chem. Int. Ed. 2015, 54, 12868–12884. [Google Scholar] [CrossRef]
- Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Adv. Mater. 2015, 27, 2150–2176. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Yu, H.; Shi, R.; Zhao, Y.; Bian, T.; Zhao, Y.; Zhou, C.; Waterhouse, G.I.N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution. Adv. Mater. 2017, 29, 1605148. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zeng, X.; Si, P.; Chen, Y.; Chi, Y.; Kim, D.-H.; Chen, G. Gold Nanoparticle-Graphite-Like C3N4 Nanosheet Nanohybrids Used for Electrochemiluminescent Immunosensor. Anal. Chem. 2014, 86, 4188–4195. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tan, C.; Zhang, H.; Wang, L. Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 2015, 44, 2681–2701. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, Y.; Shen, Y.; Liu, S.; Zhang, Y. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018, 47, 2298–2321. [Google Scholar] [CrossRef]
- Chen, J.; Wu, X.-J.; Yin, L.; Li, B.; Hong, X.; Fan, Z.; Chen, B.; Xue, C.; Zhang, H. One-pot Synthesis of CdS Nanocrystals Hybridized with Single-Layer Transition-Metal Dichalcogenide Nanosheets for Efficient Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2015, 54, 1210–1214. [Google Scholar] [CrossRef]
- Chen, P.; Liu, F.; Ding, H.; Chen, S.; Chen, L.; Li, Y.-J.; Au, C.-T.; Yin, S.-F. Porous double-shell CdS@C3N4 octahedron derived by in situ supramolecular self-assembly for enhanced photocatalytic activity. Appl. Catal. B-Environ. 2019, 252, 33–40. [Google Scholar] [CrossRef]
- Dai, X.; Xie, M.; Meng, S.; Fu, X.; Chen, S. Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Appl. Catal. B-Environ. 2014, 158, 382–390. [Google Scholar] [CrossRef]
- Jo, W.-K.; Selvam, N.C.S. Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H-2 production and pollutant degradation. Chem. Eng. J. 2017, 317, 913–924. [Google Scholar] [CrossRef]
- Selvarajan, S.; Alluri, N.R.; Chandrasekhar, A.; Kim, S.-J. Direct detection of cysteine using functionalized BaTiO3 nanoparticles film based self-powered biosensor. Biosens. Bioelectron. 2017, 91, 203–210. [Google Scholar] [CrossRef]
- Khamcharoen, W.; Henry, C.S.; Siangproh, W. A novel L-cysteine sensor using in-situ electropolymerization of L-cysteine: Potential to simple and selective detection. Talanta 2022, 237, 122983. [Google Scholar] [CrossRef]
- Atacan, K. CuFe2O4/reduced graphene oxide nanocomposite decorated with gold nanoparticles as a new electrochemical sensor material for L-cysteine detection. J. Alloys Compd. 2019, 791, 391–401. [Google Scholar] [CrossRef]
- Bonacin, J.A.; Dos Santos, P.L.; Katic, V.; Foster, C.W.; Banks, C.E. Use of Screen-printed Electrodes Modified by Prussian Blue and Analogues in Sensing of Cysteine. Electroanalysis 2018, 30, 170–179. [Google Scholar] [CrossRef]
- Koczorowski, T.; Rebis, T.; Szczolko, W.; Antecka, P.; Teubert, A.; Milczarek, G.; Goslinski, T. Reduced graphene oxide/iron(II) porphyrazine hybrids on glassy carbon electrode for amperometric detection of NADH and L-cysteine. J. Electroanal. Chem. 2019, 848, 113322. [Google Scholar] [CrossRef]
- Castro e Silva, C.d.C.; Breitkreitz, M.C.; Santhiago, M.; Correa, C.C.; Kubota, L.T. Construction of a new functional platform by grafting poly(4-vinylpyridine) in multi-walled carbon nanotubes for complexing copper ions aiming the amperometric detection of L-cysteine. Electrochim. Acta 2012, 71, 150–158. [Google Scholar] [CrossRef]
- Chen, Y.; Zhong, W.; Chen, F.; Wang, P.; Fan, J.; Yu, H. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance. J. Mater. Sci. Technol. 2022, 121, 19–27. [Google Scholar] [CrossRef]
Sample | Photoelectrochemical Sensor (μM) | Chemiluminescence (μM) |
---|---|---|
Urine 1 | 5.6 ± 0.5 | 6.0 ± 0.3 |
Urine 2 | 12.7 ± 1.9 | 11.5 ± 0.6 |
Urine 3 | 7.3 ± 0.8 | 6.9 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Qi, S.; Wang, H.; Zhang, G.; Zhu, K.; Ma, W. Ultrasensitive Determination of L-Cysteine with g-C3N4@CdS-Based Photoelectrochemical Platform. Symmetry 2023, 15, 896. https://doi.org/10.3390/sym15040896
Zhang H, Qi S, Wang H, Zhang G, Zhu K, Ma W. Ultrasensitive Determination of L-Cysteine with g-C3N4@CdS-Based Photoelectrochemical Platform. Symmetry. 2023; 15(4):896. https://doi.org/10.3390/sym15040896
Chicago/Turabian StyleZhang, Hefeng, Shengliang Qi, Haidong Wang, Guanghui Zhang, Kaixin Zhu, and Weiguang Ma. 2023. "Ultrasensitive Determination of L-Cysteine with g-C3N4@CdS-Based Photoelectrochemical Platform" Symmetry 15, no. 4: 896. https://doi.org/10.3390/sym15040896
APA StyleZhang, H., Qi, S., Wang, H., Zhang, G., Zhu, K., & Ma, W. (2023). Ultrasensitive Determination of L-Cysteine with g-C3N4@CdS-Based Photoelectrochemical Platform. Symmetry, 15(4), 896. https://doi.org/10.3390/sym15040896