Comprehensive Study of Electrode Effect in Metal/CuInP2S6/Metal Heterostructures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Si, M.; Liao, P.-Y.; Qiu, G.; Duan, Y.; Ye, P.D. Ferroelectric Field-Effect Transistors Based on MoS2 and CuInP2S6 Two-Dimensional van der Waals Heterostructure. ACS Nano 2018, 12, 6700–6705. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, P.; Lei, Z.; Zhu, C.; Cao, X.; Liu, F.; You, L.; Zeng, Q.; Deng, Y.; Zhu, C.; et al. Van der Waals negative capacitance transistors. Nat. Commun. 2019, 10, 3037. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Chen, H.-Y.; Yang, N.; Cao, J.; Yan, X.; Liu, F.; Sun, Q.; Ling, X.; Guo, J.; Wang, H. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 2020, 3, 466–472. [Google Scholar] [CrossRef]
- Wang, C.; Jin, K.-J.; Xu, Z.-T.; Wang, L.; Ge, C.; Lu, H.-B.; Guo, H.-Z.; He, M.; Yang, G.-Z. Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films. Appl. Phys. Lett. 2011, 98, 192901. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Li, S.; Wang, H.; Chen, L.; Liu, L.; Feng, X.; Li, Y.; Chen, J.; Gong, X.; Ang, K.W. An Electronic Synapse Based on 2D Ferroelectric CuInP2S6. Adv. Electron. Mater. 2020, 6, 2000760. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, C.; Cao, G.; Liu, H.; Bian, R.; Wang, J.; Li, C.; Chen, J.; Fu, Q.; Liu, Q.; et al. Mimicking Neuroplasticity via Ion Migration in van der Waals Layered Copper Indium Thiophosphate. Adv. Mater. 2022, 34, e2104676. [Google Scholar] [CrossRef]
- Chen, C.; Liu, H.; Lai, Q.; Mao, X.; Fu, J.; Fu, Z.; Zeng, H. Large-Scale Domain Engineering in Two-Dimensional Ferroelectric CuInP2S6 via Giant Flexoelectric Effect. Nano Lett. 2022, 22, 3275–3282. [Google Scholar] [CrossRef] [PubMed]
- Ming, W.; Huang, B.; Zheng, S.; Bai, Y.; Wang, J.; Wang, J.; Li, J. Flexoelectric engineering of van der Waals ferroelectric CuInP2S6. Sci. Adv. 2022, 8, eabq1232. [Google Scholar] [CrossRef]
- Ma, R.-R.; Xu, D.-D.; Guan, Z.; Deng, X.; Yue, F.; Huang, R.; Chen, Y.; Zhong, N.; Xiang, P.-H.; Duan, C.-G. High-speed ultraviolet photodetectors based on 2D layered CuInP2S6 nanoflakes. Appl. Phys. Lett. 2020, 117, 131102. [Google Scholar] [CrossRef]
- Choi, T.; Lee, S.; Choi, Y.J.; Kiryukhin, V.; Cheong, S.W. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science 2009, 324, 63–66. [Google Scholar] [CrossRef]
- Yoshida, C.; Yoshida, A.; Tamura, H. Nanoscale conduction modulation in Au/Pb(Zr,Ti)O3/SrRuO3 heterostructure. Appl. Phys. Lett. 1999, 75, 1449–1451. [Google Scholar] [CrossRef]
- Won, C.J.; Park, Y.A.; Lee, K.D.; Ryu, H.Y.; Hur, N. Diode and photocurrent effect in ferroelectric BaTiO3−δ. J. Appl. Phys. 2011, 109, 084108. [Google Scholar] [CrossRef]
- Belianinov, A.; He, Q.; Dziaugys, A.; Maksymovych, P.; Eliseev, E.; Borisevich, A.; Morozovska, A.; Banys, J.; Vysochanskii, Y.; Kalinin, S.V. CuInP2S6 Room Temperature Layered Ferroelectric. Nano Lett. 2015, 15, 3808–3814. [Google Scholar] [CrossRef]
- Liu, F.; You, L.; Seyler, K.L.; Li, X.; Yu, P.; Lin, J.; Wang, X.; Zhou, J.; Wang, H.; He, H.; et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 2016, 7, 12357. [Google Scholar] [CrossRef] [PubMed]
- Tsymbal, E.Y.; Kohlstedt, H. Tunneling Across a Ferroelectric. Science 2006, 313, 181–183. [Google Scholar] [CrossRef]
- Tian, B.B.; Liu, Y.; Chen, L.F.; Wang, J.L.; Sun, S.; Shen, H.; Sun, J.L.; Yuan, G.L.; Fusil, S.; Garcia, V.; et al. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors. Sci. Rep. 2015, 5, 18297. [Google Scholar] [CrossRef] [Green Version]
- Maisonneuve, V.; Reau, J.M.; Dong, M.; Cajipe, V.B.; Payen, C.; Ravez, J. Ionic conductivity in ferroic CuInP2S6 and CuCrP2S6. Ferroelectrics 1997, 196, 257–260. [Google Scholar] [CrossRef]
- Balke, N.; Neumayer, S.M.; Brehm, J.A.; Susner, M.A.; Rodriguez, B.J.; Jesse, S.; Kalinin, S.V.; Pantelides, S.T.; McGuire, M.A.; Maksymovych, P. Locally Controlled Cu-Ion Transport in Layered Ferroelectric CuInP2S6. ACS Appl. Mater. Interfaces 2018, 10, 27188–27194. [Google Scholar] [CrossRef]
- Fan, Z.; Fan, H.; Lu, Z.; Li, P.; Huang, Z.; Tian, G.; Yang, L.; Yao, J.; Chen, C.; Chen, D.; et al. Ferroelectric Diodes with Charge Injection and Trapping. Phys. Rev. Appl. 2017, 7, 014020. [Google Scholar] [CrossRef]
- Maisonneuve, V.; Evain, M.; Payen, C.; Cajipe, V.B.; Molinié, P. Room-temperature crystal structure of the layered phase CuIInIIIP2S6. J. Alloys Compd. 1995, 218, 157–164. [Google Scholar] [CrossRef]
- Niu, L.; Liu, F.; Zeng, Q.; Zhu, X.; Wang, Y.; Yu, P.; Shi, J.; Lin, J.; Zhou, J.; Fu, Q.; et al. Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes. Nano Energy 2019, 58, 596–603. [Google Scholar] [CrossRef]
- Maisonneuve, V.; Cajipe, V.; Simon, A.; Von Der Muhll, R.; Ravez, J. Ferrielectric ordering in lamellar CuInP2S6. Phys. Rev. B 1997, 56, 10860. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Li, C.; Wang, H.; Han, Z.; Ma, H.; Yuan, G.; Lin, L.; Yan, Z.; Jiang, X.; et al. Thickness dependence of domain size in 2D ferroelectric CuInP2S6 nanoflakes. AIP Adv. 2019, 9, 115211. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Xie, T.; Blumenschein, N.A.; Song, Z.; Hanbicki, A.T.; Susner, M.A.; Conner, B.S.; Low, T.; Wang, J.P.; Friedman, A.L.; et al. Gate-tunable giant tunneling electroresistance in van der Waals ferroelectric tunneling junctions. Mater. Sci. Eng. B 2022, 283, 115829. [Google Scholar] [CrossRef]
- Vysochanskii, Y.; Stephanovich, V.A.; Molnar, A.; Cajipe, V.; Bourdon, X. Raman spectroscopy study of the ferrielectric-paraelectric transition in layered CuInP2S6. Phys. Rev. B 1998, 58, 9119–9124. [Google Scholar] [CrossRef]
- Rao, R.; Selhorst, R.; Conner, B.; Susner, M. Ferrielectric-paraelectric phase transitions in layered CuInP2S6 and CuInP2S6–In4/3P2S6 heterostructures: A Raman spectroscopy and X-ray diffraction study. Phys. Rev. Mater. 2022, 6, 045001. [Google Scholar] [CrossRef]
- Deng, J.; Liu, Y.; Li, M.; Xu, S.; Lun, Y.; Lv, P.; Xia, T.; Gao, P.; Wang, X.; Hong, J. Thickness-Dependent In-Plane Polarization and Structural Phase Transition in van der Waals Ferroelectric CuInP2S6. Small 2020, 16, 1904529. [Google Scholar] [CrossRef] [Green Version]
- Brehm, J.A.; Neumayer, S.M.; Tao, L.; O’Hara, A.; Chyasnavichus, M.; Susner, M.A.; McGuire, M.A.; Kalinin, S.V.; Jesse, S.; Ganesh, P.; et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 2020, 19, 43–48. [Google Scholar] [CrossRef]
- Susner, M.A.; Belianinov, A.; Borisevich, A.; He, Q.; Chyasnavichyus, M.; Demir, H.; Sholl, D.S.; Ganesh, P.; Abernathy, D.L.; McGuire, M.A.; et al. High-Tc Layered Ferrielectric Crystals by Coherent Spinodal Decomposition. ACS Nano 2015, 9, 12365–12373. [Google Scholar] [CrossRef]
- Zhou, S.; You, L.; Chaturvedi, A.; Morris, S.A.; Herrin, J.S.; Zhang, N.; Abdelsamie, A.; Hu, Y.Z.; Chen, J.Q.; Zhou, Y.; et al. Anomalous polarization switching and permanent retention in a ferroelectric ionic conductor. Mater. Horiz. 2020, 7, 263–274. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, X.; Wang, X.; Zhang, X.; Niu, R.; Deng, J.; Xu, S.; Lun, Y.; Liu, Y.; Xia, T.; et al. Manipulation of current rectification in van der Waals ferroionic CuInP2S6. Nat. Commun. 2022, 13, 574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Luo, Z.-D.; Yao, Y.; Schoenherr, P.; Sha, C.; Pan, Y.; Sharma, P.; Alexe, M.; Seidel, J. Anisotropic Ion Migration and Electronic Conduction in van der Waals Ferroelectric CuInP2S6. Nano Lett. 2021, 21, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Ong, H.G.; You, L.; Chen, W.; Ding, H.; Funakubo, H.; Chen, L.; Wang, J. Charge trapping-detrapping induced resistive switching in Ba0.7Sr0.3TiO3. AIP Adv. 2012, 2, 032166. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; An, C.; Wu, Y.; Zhang, Z.; Li, T.; Min, T.; Yang, J.; Chen, X.; Tian, M. Comprehensive Study of Electrode Effect in Metal/CuInP2S6/Metal Heterostructures. Symmetry 2023, 15, 966. https://doi.org/10.3390/sym15050966
Dong Y, An C, Wu Y, Zhang Z, Li T, Min T, Yang J, Chen X, Tian M. Comprehensive Study of Electrode Effect in Metal/CuInP2S6/Metal Heterostructures. Symmetry. 2023; 15(5):966. https://doi.org/10.3390/sym15050966
Chicago/Turabian StyleDong, Yong, Chao An, Yongyi Wu, Zhen Zhang, Tao Li, Tai Min, Jinbo Yang, Xuegang Chen, and Mingliang Tian. 2023. "Comprehensive Study of Electrode Effect in Metal/CuInP2S6/Metal Heterostructures" Symmetry 15, no. 5: 966. https://doi.org/10.3390/sym15050966