Local Muscle Oxygenation Differences between Lower Limbs according to Muscle Mass in Breath-Hold Divers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Variables
2.3. Procedures
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Lateralization of the Lower Limbs in Muscle Oxygenation Parameters
4.2. Correlations between WAnT Parameters and Limb Dominance
4.3. Correlations between Muscle Oxygenation Parameters and Limb Dominance
4.4. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carpes, F.P.; Mota, C.B.; Faria, I.E. On the bilateral asymmetry during running and cycling e A review considering leg preference. Phys. Ther. Sport 2010, 11, 136–142. [Google Scholar] [CrossRef]
- McCartney, G.; Hepper, P. Development of lateralized behaviour in the human fetus from 12 to 27 weeks’ gestation. Dev. Med. Child Neurol. 1999, 41, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Ashton, G.C. Handedness: An alternative hypothesis. Behav. Genet. 1982, 12, 125–147. [Google Scholar] [CrossRef] [PubMed]
- Lissek, S.; Hausmann, M.; Knossalla, F.; Peters, S.; Nicolas, V.; Güntürkün, O.; Tegenthoff, M. Sex differences in cortical and subcortical recruitment during simple and complex motor control: An fMRI study. Neuroimage 2007, 37, 912–926. [Google Scholar] [CrossRef] [PubMed]
- Serrien, D.J.; Ivry, R.B.; Swinnen, S.P. Dynamics of hemispheric specialization and integration in the context of motor control. Nat. Rev. Neurosci. 2006, 7, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Amunts, K.; Jäncke, L.; Mohlberg, H.; Steinmetz, H.; Zilles, K. Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia 2000, 38, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Boles, D.B.; Barth, J.M.; Merrill, E.C. Asymmetry and performance: Toward a neurodevelopmental theory. Brain Cogn. 2008, 66, 124–139. [Google Scholar] [CrossRef] [PubMed]
- Kalata, M.; Maly, T.; Hank, M.; Michalek, J.; Bujnovsky, D.; Kunzmann, E.; Zahalka, F. Unilateral and bilateral strength asymmetry among young elite athletes of various sports. Medicina 2020, 56, 683. [Google Scholar] [CrossRef] [PubMed]
- Fohanno, V.; Nordez, A.; Smith, R.; Colloud, F. Asymmetry in elite rowers: Effect of ergometer design and stroke rate. Sports Biomech. 2015, 14, 310–322. [Google Scholar] [CrossRef]
- Cossich, V.R.; Gavilão, U.F.; Goes, R.A.; Perini, J.A.; Laett, C.T.; Maffiuletti, N.A. Maximal vs. explosive knee extensor strength in professional soccer players: Inter-limb asymmetries and relationship with knee function. Eur. J. Sport Sci. 2023, 23, 877–884. [Google Scholar] [CrossRef]
- Guan, Y.; Bredin, S.; Jiang, Q.; Taunton, J.; Li, Y.; Wu, N.; Wu, L.; Warburton, D. The effect of fatigue on asymmetry between lower limbs in functional performances in elite child taekwondo athletes. J. Orthop. Surg. Res. 2021, 16, 33. [Google Scholar] [CrossRef]
- Maloney, S.J. The relationship between asymmetry and athletic performance: A critical review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar]
- Hettinga, F.J.; Konings, M.J.; Cooper, C.E. Differences in muscle oxygenation, perceived fatigue and recovery between long-track and short-track speed skating. Front. Physiol. 2016, 7, 619. [Google Scholar] [CrossRef] [PubMed]
- Born, D.-P.; Zinner, C.; Herlitz, B.; Richter, K.; Holmberg, H.-C.; Sperlich, B. Muscle Oxygenation Asymmetry in Ice Speed Skaters: Not Compensated by Compression. Int. J. Sports Physiol. Perform. 2014, 9, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Bonilla, A.; Tomas-Carus, P.; Brazo-Sayavera, J.; Malta, J.; Folgado, H.; Olcina, G. Muscle oxygenation is associated with bilateral strength asymmetry during isokinetic testing in sport teams. Sci. Sports 2023, 38, 426.e1–426.e9. [Google Scholar] [CrossRef]
- Ferrari, M.; Quaresima, V. Near Infrared Brain and Muscle Oximetry: From the Discovery to Current Applications. J. Near Infrared Spectrosc. 2012, 20, 1–14. [Google Scholar] [CrossRef]
- McCully, K.K.; Hamaoka, T. Near-infrared spectroscopy: What can it tell us about oxygen saturation in skeletal muscle? Exerc. Sport Sci. Rev. 2000, 28, 123–127. [Google Scholar]
- Barstow, T.J. Understanding near infrared spectroscopy and its application to skeletal muscle research. J. Appl. Physiol. 2019, 126, 1360–1376. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Bonilla, A.; Tomas-Carus, P.; Brazo-Sayavera, J.; Malta, J.; Folgado, H.; Olcina, G. Relationship between anaerobic work capacity and critical oxygenation in athletes. Rev. Andal. Med. Deport. 2022, 15, 107–113. [Google Scholar] [CrossRef]
- Vasquez-Bonilla, A.A.; Brazo-Sayavera, J.; Timón, R.; Olcina, G. Monitoring Muscle Oxygen Asymmetry as a Strategy to Prevent Injuries in Footballers. Res. Q. Exerc. Sport 2023, 94, 609–617. [Google Scholar] [CrossRef]
- Perrey, S.; Ferrari, M. Muscle oximetry in sports science: A systematic review. Sports Med. 2018, 48, 597–616. [Google Scholar] [CrossRef] [PubMed]
- Kjeld, T.; Stride, N.; Gudiksen, A.; Hansen, E.G.; Arendrup, H.C.; Horstmann, P.F.; Zerahn, B.; Jensen, L.T.; Nordsborg, N.; Bejder, J.; et al. Oxygen conserving mitochondrial adaptations in the skeletal muscles of breath hold divers. PLoS ONE 2018, 13, e0201401. [Google Scholar] [CrossRef]
- Patrician, A.; Dujić, Ž.; Spajić, B.; Drviš, I.; Ainslie, P.N. Breath-Hold Diving—The Physiology of Diving Deep and Returning. Front. Physiol. 2021, 12, 639377. [Google Scholar] [CrossRef] [PubMed]
- Schagatay, E. Predicting performance in competitive apnea diving, part II: Dynamic apnoea. Diving Hyperb. Med. 2010, 40, 11–22. [Google Scholar] [PubMed]
- Bar-Or, O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Bhambhani, Y.; Maikala, R.; Esmail, S. Oxygenation trends in vastus lateralis muscle during incremental and intense anaerobic cycle exercise in young men and women. Eur. J. Appl. Physiol. 2001, 84, 547–556. [Google Scholar] [CrossRef]
- Gastin, P.B. Energy System Interaction and Relative Contribution during Maximal Exercise. Sports Med. 2001, 31, 725–741. [Google Scholar] [CrossRef]
- Nioka, S.; Moser, D.; Lech, G.; Evengelisti, M.; Verde, T.; Chance, B.; Kuno, S. Muscle Deoxygenation in Aerobic and Anaerobic Exercise. In Oxygen Transport to Tissue XX; Hudetz, A.G., Bruley, D.F., Eds.; Springer: Boston, MA, USA, 1998; pp. 63–70. [Google Scholar]
- Vrdoljak, D.; Foretić, N.; Drviš, I.; Ivančev, V.; Perić, M.; Dujić, Ž. Do freedivers and spearfishermen differ in local muscle oxygen saturation and anaerobic power? J. Sports Med. Phys. Fit. 2023, 64, 21–29. [Google Scholar] [CrossRef]
- Ruesch, A.; McKnight, J.C.; Mulder, E.; Wu, J.; Balfour, S.; Shinn-Cunningham, B.G.; Schagatay, E.; Kainerstorfer, J.M. Application of Near-infrared Spectroscopy in Human Elite Freedivers while Deepdiving on a Single Breath Hold. In Proceedings of the European Conferences on Biomedical Optics 2021 (ECBO), Munich, Germany, 20–24 June 2021; p. ETu4C.6. [Google Scholar]
- McKnight, J.C.; Mulder, E.; Ruesch, A.; Kainerstorfer, J.M.; Wu, J.; Hakimi, N.; Balfour, S.; Bronkhorst, M.; Horschig, J.M.; Pernett, F.; et al. When the human brain goes diving: Using near-infrared spectroscopy to measure cerebral and systemic cardiovascular responses to deep, breath-hold diving in elite freedivers. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200349. [Google Scholar] [CrossRef]
- Dujic, Z.; Uglesic, L.; Breskovic, T.; Valic, Z.; Heusser, K.; Marinovic, J.; Ljubkovic, M.; Palada, I. Involuntary breathing movements improve cerebral oxygenation during apnea struggle phase in elite divers. J. Appl. Physiol. 2009, 107, 1840–1846. [Google Scholar] [CrossRef]
- Palada, I.; Obad, A.; Bakovic, D.; Valic, Z.; Ivancev, V.; Dujic, Z. Cerebral and peripheral hemodynamics and oxygenation during maximal dry breath-holds. Respir. Physiol. Neurobiol. 2007, 157, 374–381. [Google Scholar] [CrossRef]
- Valic, Z.; Palada, I.; Bakovic, D.; Valic, M.; Mardesic-Brakus, S.; Dujic, Z. Muscle oxygen supply during cold face immersion in breath-hold divers and controls. Aviat. Space Environ. Med. 2006, 77, 1224–1229. [Google Scholar]
- Feldmann, A.; Schmitz, R.; Erlacher, D. Near-infrared spectroscopy-derived muscle oxygen saturation on a 0% to 100% scale: Reliability and validity of the Moxy Monitor. J. Biomed. Opt. 2019, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, A.M.; Erlacher, D.; Pfister, S.; Lehmann, R. Muscle oxygen dynamics in elite climbers during finger-hang tests at varying intensities. Sci. Rep. 2020, 10, 3040. [Google Scholar] [CrossRef] [PubMed]
- Rębiś, K.; Sadowska, D.; Starczewski, M.; Klusiewicz, A. Usefulness of Portable Device to Establish Differences in Muscle Oxygenation Between the Wingate Test and Graded Exercise Test: Effect of Gender on Anaerobic and Aerobic Capacity in Speed Skaters. Front. Physiol. 2022, 13, 809864. [Google Scholar] [CrossRef] [PubMed]
- Luck, J.C.; Miller, A.J.; Aziz, F.; Radtka, J.F., III; Proctor, D.N.; Leuenberger, U.A.; Sinoway, L.I.; Muller, M.D. Blood pressure and calf muscle oxygen extraction during plantar flexion exercise in peripheral artery disease. J. Appl. Physiol. 2017, 123, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Tu, F.; Han, Y.; Zhang, E.; Zhang, Y.; Zhang, T. Age-related change in muscle strength, muscle mass, and fat mass between the dominant and non-dominant upper limbs. Front. Public Health 2023, 11, 1284959. [Google Scholar] [CrossRef] [PubMed]
- Hesford, C.M.; Laing, S.J.; Cardinale, M.; Cooper, C.E. Asymmetry of quadriceps muscle oxygenation during elite short-track speed skating. Med. Sci. Sports Exerc. 2012, 44, 501–508. [Google Scholar] [CrossRef]
- Schagatay, E. Predicting performance in competitive apnea diving. Part III: Depth. Diving Hyperb. Med. 2011, 41, 216–228. [Google Scholar]
- Perez-Gomez, J.; Rodriguez, G.V.; Ara, I.; Olmedillas, H.; Chavarren, J.; González-Henriquez, J.J.; Dorado, C.; Calbet, J.A.L. Role of muscle mass on sprint performance: Gender differences? Eur. J. Appl. Physiol. 2008, 102, 685–694. [Google Scholar] [CrossRef]
- Calbet, J.A.L.; Holmberg, H.-C.; Rosdahl, H.; Hall, G.v.; Jensen-Urstad, M.; Saltin, B. Why do arms extract less oxygen than legs during exercise? Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2005, 289, R1448–R1458. [Google Scholar] [CrossRef] [PubMed]
- Grassi, B.; Quaresima, V. Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: A review from an exercise physiology perspective. J. Biomed. Opt. 2016, 21, 091313. [Google Scholar] [CrossRef] [PubMed]
All Groups (N = 21) | ||||||
Variables | Dominant Lower Limb | Non-Dominant Lower Limb | t | p | ||
Mean | SD | Mean | SD | |||
Mean SmO2% | 63.7 | 8.9 | 65.7 | 11.3 | −1.94 | 0.07 |
Desat slope (%/s) | −2.5 | 1.2 | −2.1 | 1.3 | −1.98 | 0.06 |
Min SmO2% | 26.8 | 16.2 | 29.4 | 16.5 | −2.09 | 0.05 * |
½ time recovery (s) | 27.4 | 17.2 | 26.9 | 15.1 | 0.14 | 0.89 |
Max SmO2% | 78.2 | 4.6 | 81.2 | 5.9 | −2.75 | 0.01 * |
muscle mass (%) | 83.6 | 6.6 | 83.0 | 6.7 | 6.02 | 0.00 * |
Freedivers (N = 13) | ||||||
Variables | Dominant Lower Limb | Non-Dominant Lower Limb | t | p | ||
Mean | SD | Mean | SD | |||
Mean SmO2% | 62.7 | 8.4 | 65.9 | 12.4 | −1.95 | 0.07 |
Desat slope (%/s) | −2.6 | 1.3 | −2.2 | 1.4 | −1.67 | 0.12 |
Min SmO2% | 27.0 | 17.1 | 31.0 | 17.8 | −2.31 | 0.04 * |
½ time recovery (s) | 23.1 | 12.0 | 22.5 | 14.3 | 0.42 | 0.68 |
Max SmO2% | 77.5 | 5.2 | 80.4 | 6.9 | −2.20 | 0.05 * |
muscle mass (%) | 82.4 | 7.9 | 81.7 | 8.2 | 5.18 | 0.00 * |
Spearfisherman (N = 8) | ||||||
Variables | Dominant Lower Limb | Non-Dominant Lower Limb | t | p | ||
Mean | SD | Mean | SD | |||
Mean SmO2% | 65.3 | 10.2 | 65.6 | 9.9 | −0.40 | 0.70 |
Desat slope (%/s) | −2.4 | 1.2 | −2.1 | 1.3 | −1.01 | 0.34 |
Min SmO2% | 26.5 | 15.7 | 26.8 | 14.9 | −0.20 | 0.85 |
½ time recovery (s) | 34.4 | 22.4 | 34.1 | 14.3 | 0.03 | 0.98 |
Max SmO2% | 79.4 | 3.6 | 82.5 | 4.0 | −1.56 | 0.16 |
muscle mass (%) | 85.7 | 2.4 | 85.2 | 2.4 | 3.04 | 0.02 * |
Variable | All Groups (N = 21) | Freedivers (N = 13) | Spearfisherman (N = 8) |
Dominant Lower Limb Muscle Mass (%) | |||
Peak power (W/kg) | 0.11 | 0.36 | −0.74 * |
Average power (W/kg) | 0.14 | 0.38 | −0.70 |
Minimum power (W/kg) | 0.67 * | 0.75 * | 0.60 |
Power drop (W) | 0.35 | 0.69 * | 0.16 |
Mean SmO2% | 0.11 | −0.02 | 0.64 |
Desat slope (%/s) | −0.48 * | −0.66 * | 0.07 |
Min SmO2% | −0.61 * | −0.72 * | −0.41 |
½ time recovery (s) | 0.29 | 0.37 | 0.06 |
Max SmO2% | 0.08 | 0.01 | 0.27 |
Variable | All Groups (N = 21) | Freedivers (N = 13) | Spearfisherman (N = 8) |
Non-Dominant Lower Limb Muscle Mass (%) | |||
Peak power (W/kg) | 0.14 | 0.37 | −0.64 |
Average power (W/kg) | 0.17 | 0.40 | −0.62 |
Minimum power (W/kg) | 0.67 * | 0.76 * | 0.55 |
Power drop (W) | 0.35 | 0.68 * | 0.25 |
Mean SmO2% | 0.08 | 0.02 | 0.62 |
Desat slope (%/s) | −0.31 | −0.37 | −0.30 |
Min SmO2% | −0.54 * | −0.60 * | −0.28 |
½ time recovery (s) | 0.49 * | 0.54 | 0.18 |
Max SmO2% | 0.02 | −0.08 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uljević, O.; Vrdoljak, D.; Drviš, I.; Foretić, N.; Dujić, Ž. Local Muscle Oxygenation Differences between Lower Limbs according to Muscle Mass in Breath-Hold Divers. Symmetry 2024, 16, 377. https://doi.org/10.3390/sym16030377
Uljević O, Vrdoljak D, Drviš I, Foretić N, Dujić Ž. Local Muscle Oxygenation Differences between Lower Limbs according to Muscle Mass in Breath-Hold Divers. Symmetry. 2024; 16(3):377. https://doi.org/10.3390/sym16030377
Chicago/Turabian StyleUljević, Ognjen, Dario Vrdoljak, Ivan Drviš, Nikola Foretić, and Željko Dujić. 2024. "Local Muscle Oxygenation Differences between Lower Limbs according to Muscle Mass in Breath-Hold Divers" Symmetry 16, no. 3: 377. https://doi.org/10.3390/sym16030377