Revealing Crack Propagation and Mechanical Behavior of Corroded Aluminum Alloys
Abstract
:1. Introduction
2. Method
3. Result and Discussion
3.1. Corrosion Depth
3.2. Corrosion Width
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, H.; Sohn, S.S.; Lu, W.; Li, L.; Li, X.; Soundararajan, C.K.; Raabe, D. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion. Nat. Commun. 2020, 11, 3081. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Huang, Y.; Li, L.; Wei, G.; Li, H.; Shang, Q.; Tao, X. A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries. Nat. Commun. 2023, 14, 8269. [Google Scholar] [CrossRef] [PubMed]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92. [Google Scholar] [CrossRef]
- Wu, P.; Gan, K.; Yan, D.; Fu, Z.; Li, Z. A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy. Corros. Sci. 2021, 183, 109341. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, Y.; Zheng, G.; Woller, K.B.; Stahle, P.W.; Minor, A.M.; Short, M.P. Proton irradiation-decelerated intergranular corrosion of Ni-Cr alloys in molten salt. Nat. Commun. 2020, 11, 3430. [Google Scholar] [CrossRef]
- López Freixes, M.; Zhou, X.; Zhao, H.; Godin, H.; Peguet, L.; Warner, T.; Gault, B. Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale. Nat. Commun. 2022, 13, 4290. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, J.; Gupta, R.K. Corrosion-resistant metastable Al alloys: An overview of corrosion mechanisms. J. Electrochem. Soc. 2020, 167, 081504. [Google Scholar] [CrossRef]
- Ji, Y.; Li, N.; Cheng, Z.; Fu, X.; Ao, M.; Li, M.; Dong, C. Random forest incorporating ab-initio calculations for corrosion rate prediction with small sample Al alloys data. npj Mater. Degrad. 2022, 6, 83. [Google Scholar] [CrossRef]
- Guo, X.H.; Ren, Y.J.; Shen, J.; Dai, T.; Lv, Y.L.; Niu, Y. The corrosion behavior of Co-Cr-Al alloys exposed to mixed oxygen-sulfur atmospheres at 900 °C. Corros. Sci. 2021, 188, 109530. [Google Scholar] [CrossRef]
- Tan, W.; Li, T.; Li, S.; Fang, D.; Ding, X.; Sun, J. High strength-ductility and rapid degradation rate of as-cast Mg-Cu-Al alloys for application in fracturing balls. J. Mater. Sci. Technol. 2021, 94, 22. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, Y.; Marceau, R.; Wang, L.; Zhang, Q.; Gao, X.; Hutchinson, C. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity. Science 2019, 363, 972. [Google Scholar] [CrossRef] [PubMed]
- Asadikiya, M.; Yang, S.; Zhang, Y.; Lemay, C.; Apelian, D.; Zhong, Y. A review of the design of high-entropy aluminum alloys: A pathway for novel Al alloys. J. Mater. Sci. 2021, 56, 12093. [Google Scholar] [CrossRef]
- Zhao, H.; Chakraborty, P.; Ponge, D.; Hickel, T.; Sun, B.; Wu, C.H.; Raabe, D. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature 2022, 602, 437. [Google Scholar] [CrossRef] [PubMed]
- Garner, A.; Euesden, R.; Yao, Y.; Aboura, Y.; Zhao, H.; Donoghue, J.; Prangnell, P.B. Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloys. Acta Mater. 2021, 202, 190. [Google Scholar] [CrossRef]
- Wang, Y.; Freiberg, D.; Huo, Y.; Zhu, W.; Williams, R.; Li, M.; Wang, Y. Shapes of nano Al6Mn precipitates in Mn-containing Al-alloys. Acta Mater. 2023, 249, 118819. [Google Scholar] [CrossRef]
- Bousser, E.; Rogov, A.; Shashkov, P.; Gholinia, A.; Laugel, N.; Slater, T.J.; Yerokhin, A. Phase transitions in alumina films during post-sparking anodising of Al alloys. Acta Mater. 2023, 244, 118587. [Google Scholar] [CrossRef]
- Gao, P.F.; Fei, M.Y.; Zhan, M.; Fu, M.W. Microstructure-and damage-nucleation-based crystal plasticity finite element modeling for the nucleation of multi-type voids during plastic deformation of Al alloys. Int. J. Plast. 2023, 165, 103609. [Google Scholar] [CrossRef]
- Zha, M.; Zhang, H.; Jia, H.; Gao, Y.; Jin, S.; Sha, G.; Li, Y. Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al–7Mg alloy. Int. J. Plast. 2021, 146, 103108. [Google Scholar] [CrossRef]
- Kovalov, D.; Fekete, B.; Engelhardt, G.R.; Macdonald, D.D. Prediction of corrosion fatigue crack growth rate in alloys. Part I: General corrosion fatigue model for aero-space aluminum alloys. Corros. Sci. 2018, 141, 22. [Google Scholar] [CrossRef]
- Winzer, N.; Atrens, A.; Dietzel, W.; Raja, V.S.; Song, G.; Kainer, K.U. Characterisation of stress corrosion cracking (SCC) of Mg–Al alloys. Mater. Sci. Eng. A 2008, 488, 339. [Google Scholar] [CrossRef]
- Qin, J.; Li, Z.; Yi, D.; Wang, B. Diversity of intergranular corrosion and stress corrosion cracking for 5083 Al alloy with different grain sizes. Trans. Nonferrous Met. Soc. China 2022, 32, 765. [Google Scholar] [CrossRef]
- Winzer, N.; Atrens, A.; Dietzel, W.; Song, G.; Kainer, K.U. Fractography of stress corrosion cracking of Mg-Al alloys. Metall. Mater. Trans. A 2008, 39, 1157. [Google Scholar] [CrossRef]
- Cavalcante, T.R.F.; Pereira, G.S.; Koga, G.Y.; Bolfarini, C.; Bose Filho, W.W.; Avila, J.A. Fatigue crack propagation of aeronautic AA7050-T7451 and AA2050-T84 aluminum alloys in air and saline environments. Int. J. Fatigue 2022, 154, 106519. [Google Scholar] [CrossRef]
- Scully, J.C. Stress corrosion crack propagation: A constant charge criterion. Corros. Sci. 1975, 15, 207. [Google Scholar] [CrossRef]
- Song, H.; Liu, C.; Zhang, H.; Du, J.; Yang, X.; Leen, S.B. In-Situ SEM study of fatigue micro-crack initiation and propagation behavior in pre-corroded AA7075-T7651. Int. J. Fatigue 2020, 137, 105655. [Google Scholar] [CrossRef]
- Cui, Y.; Song, K.; Bao, Y.; Zhu, Y.; Liu, Q.; Qian, P. Effect of Cu and Mg co-segregation on the strength of the Al grain boundaries: A molecular dynamics simulation. Comput. Mater. Sci. 2023, 229, 112391. [Google Scholar] [CrossRef]
- Dolce, D.; Swamy, A.; Hoyt, J.; Choudhury, P. Computing the solid-liquid interfacial free energy and anisotropy of the Al-Mg system using a MEAM potential with atomistic simulations. Comput. Mater. Sci. 2023, 217, 111901. [Google Scholar] [CrossRef]
- Wu, C.D.; Fang, T.H.; Sung, P.H.; Hsu, Q.C. Critical size, recovery, and mechanical property of nanoimprinted Ni–Al alloys investigation using molecular dynamics simulation. Comput. Mater. Sci. 2012, 53, 321. [Google Scholar] [CrossRef]
- Yang, R.; Feng, Z.; Huang, T.; Wu, G.; Godfrey, A.; Huang, X. Unprecedented age-hardening and its structural requirement in a severely deformed Al-Cu-Mg alloy. Scr. Mater. 2022, 206, 114240. [Google Scholar] [CrossRef]
- Bansal, U.; Singh, M.P.; Sinha, S.K.; Sahu, D.K.; Mondol, S.; Makineni, S.K.; Chattopadhyay, K. Strength and stability through variable micro segregation behaviour of Ta and Zr solutes at intermetallic interfaces in Al-Cu alloys. Acta Mater. 2023, 259, 119254. [Google Scholar] [CrossRef]
- Lee, B.J.; Baskes, M.I. Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 2000, 62, 8564. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Jia, M.; Wu, Z.; Wang, H.; Rena, C.Y.; Zhang, X. Analytical method for predicting mode I crack propagation process of concrete under low-cycle fatigue loading. Eng. Fract. Mech. 2023, 286, 109320. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Ma, G. Experimental investigation on Mode I crack growth and damage mechanism of sandstone subjected to cyclic loading. Eng. Fract. Mech. 2022, 267, 108429. [Google Scholar] [CrossRef]
- Zhao, G.L.; Qi, H.Y.; Li, S.L.; Liu, Y.; Yang, X.G.; Shi, D.Q.; Sun, Y.T. Low-temperature hot corrosion fatigue damage mechanism, life model, and corrosion resistance design method of hot section components. Adv. Mech. 2022, 52, 809. [Google Scholar]
- Li, J.; Fang, Q.H.; Liu, B.; Liu, Y.; Liu, Y.W.; Wen, P.H. Mechanism of crack healing at room temperature revealed by atomistic simulations. Acta Mater. 2015, 95, 291. [Google Scholar] [CrossRef]
- Fang, Q.; Li, J.; Luo, H.; Du, J.; Liu, B. Atomic scale investigation of nanocrack evolution in single-crystal and bicrystal metals under compression and shear deformation. J. Alloys Compd. 2017, 710, 281. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; He, Q.; Fang, Q.; Liu, B.; Jiang, C.; Liaw, P.K. Unveiling the atomic-scale origins of high damage tolerance of single-crystal high entropy alloys. Phys. Rev. Mater. 2020, 4, 103612. [Google Scholar] [CrossRef]
- Wang, H.; Chen, D.; An, X.; Zhang, Y.; Sun, S.; Tian, Y.; Liao, X. Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy. Sci. Adv. 2021, 7, eabe3105. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, C.; Wu, R.; Sun, L.; Lu, C.; Xiao, Y.; Wu, G. Synergistic strengthening of Al–SiC composites by nano-spaced SiC-nanowires and the induced high-density stacking faults. Compos. Part B Eng. 2023, 250, 110458. [Google Scholar] [CrossRef]
- Ahmad, S.I.; Zekri, A.; Youssef, K.M. The role of twinning and stacking fault-induced plasticity on the mechanical properties of aluminum-lithium-graphene nanocomposites. Nanocomposites 2024, 10, 91–107. [Google Scholar] [CrossRef]
- Peng, P.; Wang, W.; Jin, Y.; Liu, Q.; Zhang, T.; Qiao, K.; Wang, K. Experimental investigation on fatigue crack initiation and propagation mechanism of friction stir lap welded dissimilar joints of magnesium and aluminum alloys. Mater. Charact. 2021, 177, 111176. [Google Scholar] [CrossRef]
- Li, Q.; Shang, Z.; Sun, X.; Fan, C.; Su, R.; Richter, N.A.; Zhang, X. High-strength and tunable plasticity in sputtered Al–Cr alloys with multistage phase transformations. Int. J. Plast. 2021, 137, 102915. [Google Scholar] [CrossRef]
- Li, J.; Fang, Q.; Liu, Y. Crack interaction with a second phase nanoscale circular inclusion in an elastic matrix. Int. J. Eng. Sci. 2013, 72, 89. [Google Scholar] [CrossRef]
- Gong, B.; Zhang, Z.; Duan, Q.; Wang, H.; Wang, X.; Liu, H.; Zhang, Z. Comparison on the Fatigue Crack Propagation of High-Strength Aluminum Alloys. Adv. Eng. Mater. 2023, 25, 2301083. [Google Scholar] [CrossRef]
- Lu, D.; Lin, B.; Liu, T.; Deng, S.; Guo, Y.; Li, J.; Liu, D. Effect of grain structure on fatigue crack propagation behavior of Al-Cu-Li alloys. J. Mater. Sci. Technol. 2023, 148, 75. [Google Scholar] [CrossRef]
- Bogdanoff, T.; Lattanzi, L.; Merlin, M.; Ghassemali, E.; Seifeddine, S. The influence of copper addition on crack initiation and propagation in an Al–Si–Mg alloy during cyclic testing. Materialia 2020, 12, 100787. [Google Scholar] [CrossRef]
- Wang, P.; Ye, L.; Liu, X.; Dong, Y.; Zhao, L. Effects of grain structures on fatigue crack propagation behavior of an Al-Cu-Li alloy. Int. J. Fatigue 2023, 177, 107927. [Google Scholar] [CrossRef]
- Ma, M.; Wang, B.; Liu, H.; Yi, D.; Shen, F.; Zhai, T. Investigation of fatigue crack propagation behavior of 5083 aluminum alloy under various stress ratios: Role of grain boundary and Schmid factor. Mater. Sci. Eng. A 2020, 773, 138871. [Google Scholar] [CrossRef]
- Snopiński, P. Electron Microscopy Study of Structural Defects Formed in Additively Manufactured AlSi10Mg Alloy Processed by Equal Channel Angular Pressing. Symmetry 2023, 15, 860. [Google Scholar] [CrossRef]
- Snopiński, P. Effects of KoBo-Processing and Subsequent Annealing Treatment on Grain Boundary Network and Texture Development in Laser Powder Bed Fusion (LPBF) AlSi10Mg Alloy. Symmetry 2024, 16, 122. [Google Scholar] [CrossRef]
Material | Aluminum Alloy |
---|---|
Composition | Al-3%Cu (at.%) |
Dimension | 60.2 nm × 88.6 nm × 4.0 nm |
Atomic count | 1,316,220 |
Time step | 1 fs |
Temperature | 300 K |
Crack length | 10 nm |
Corrosion depth | 1 nm, 2 nm, and 3 nm |
Corrosion width | 0.8 nm, 1.2 nm, 2 nm, and 4 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, A.; Fang, Q.; Yang, W.; Fan, W.; Li, J. Revealing Crack Propagation and Mechanical Behavior of Corroded Aluminum Alloys. Symmetry 2024, 16, 422. https://doi.org/10.3390/sym16040422
Zhang Y, Wang A, Fang Q, Yang W, Fan W, Li J. Revealing Crack Propagation and Mechanical Behavior of Corroded Aluminum Alloys. Symmetry. 2024; 16(4):422. https://doi.org/10.3390/sym16040422
Chicago/Turabian StyleZhang, Yong, Andong Wang, Qihong Fang, Wenfei Yang, Weijie Fan, and Jia Li. 2024. "Revealing Crack Propagation and Mechanical Behavior of Corroded Aluminum Alloys" Symmetry 16, no. 4: 422. https://doi.org/10.3390/sym16040422
APA StyleZhang, Y., Wang, A., Fang, Q., Yang, W., Fan, W., & Li, J. (2024). Revealing Crack Propagation and Mechanical Behavior of Corroded Aluminum Alloys. Symmetry, 16(4), 422. https://doi.org/10.3390/sym16040422