Research on the Optimal Trajectory Planning Method for the Dual-Attitude Adjustment Mechanism Based on an Improved Multi-Objective Salp Swarm Algorithm
Abstract
:1. Introduction
2. System Structure and Kinematic Modeling
2.1. System Structure
2.2. Kinematic Model
2.3. Motion Trajectory Planning
2.3.1. Optimization of Terminal Trajectory Based on B-Spline Curve
2.3.2. Multi-Objective Optimization Model for Trajectory Planning
2.3.3. Multi-Objective Trajectory Optimization Based on Improved Salp Swarm Algorithm
- Population initialization:
- 2.
- Constraint and iterative condition determination:
- 3.
- Leader phase:
- 4.
- Follower phase:
3. Simulation Experiment and Analysis
3.1. Algorithm Comparison
3.2. Simulation Analysis
3.3. Experimental Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, H.; Ge, D.; Luo, L.; Yin, Y.; Ding, H. Survey of Automated Flexible Docking Assembly Technology for Large-scale Components. J. Mech. Eng. 2023, 59, 277–296. [Google Scholar]
- Zhang, B.; Fang, Q.; Ke, Y. Optimal time trajectory planning method for a kind of posture aligning system of large rigid bodies. Chin. J. Mech. Eng. 2008, 44, 248–252. [Google Scholar] [CrossRef]
- Cheng, X.; Li, J.; Zheng, C.; Zhang, J.; Zhao, M. An improved PSO-GWO algorithm with chaos and adaptive inertial weight for robot path planning. Front. Neurorobotics 2021, 15, 770361. [Google Scholar] [CrossRef]
- Wei, B.; Shu, S.; Zhang, Y.; Yang, R.; Xing, B. Kinematics analysis and trajectory planning simulation of manipulator based on AUBO-I5. In Proceedings of the 2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA), Changsha, China, 6–8 November 2020; pp. 72–75. [Google Scholar]
- Yudha, H.M.; Dewi, T.; Risma, P.; Oktarina, Y. Arm robot manipulator design and control for trajectory tracking; a review. In Proceedings of the 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Malang, Indonesia, 16–18 October 2018; pp. 304–309. [Google Scholar]
- Ma, C.Y.; Zhang, Y.; Cheng, S. Time optimal trajectory planning based on redundant manipulator. In Proceedings of the 2021 6th International Conference on Control, Robotics and Cybernetics, Shanghai, China, 9–11 October 2021; pp. 125–129. [Google Scholar]
- Sabarigirish, S.; Mija, S.J. Obstacle avoiding trajectory planning for 5degre of freedom robot. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016; pp. 1–5. [Google Scholar]
- Dai, R.; Yang, X.; Sun, Y.; Chen, X.; Tan, S. Robot joint trajectory optimization based on improved quantum genetic algorithm. Mach. Tools Hydraul. 2022, 50, 6–10. [Google Scholar]
- Pu, Y.; Shu, P.; Jiang, Q.; Chen, W. Time-energy optimal trajectory planning for industrial robots. Comput. Eng. Appl. 2019, 55, 86–90. [Google Scholar]
- Zhang, H. Simulation study on time-optimal trajectory planning of industrial robots. Softw. Guide 2020, 19, 53–56. [Google Scholar]
- Yu, H.; Meng, Q.; Zhang, J.; Feng, X. Time-optimal trajectory planning of robot based on improved adaptive genetic algorithm. In Proceedings of the 2018 Chinese Control And Decision Conference, Shenyang, China, 9–11 June 2018; pp. 6397–6402. [Google Scholar]
- Lamini, C.; Benhlima, S.; Elbekri, A. Genetic algorithm based approach for autonomous mobile robot path planning. Procedia Comput. Sci. 2018, 127, 180–189. [Google Scholar] [CrossRef]
- Wang, Z.S.; Li, Y.B.; Shuai, K.; Zhu, W.T.; Chen, B.; Chen, K. A Multi-objective trajectory Planning method based on the improved elitist non-dominated sorting genetic algorithm. Chin. J. Mech. Eng. 2022, 35, 1–15. [Google Scholar] [CrossRef]
- Lan, J.Y.; Xie, Y.G.; Liu, G.J.; Cao, M.X. A multi-objective trajectory planning method for collaborative robot. Electronics 2020, 9, 9050859. [Google Scholar] [CrossRef]
- Zhang, N.; Shang, W. Dynamic trajectory planning of a 3-DOF under-constrained cable-driven parallel robot. Mech. Mach. Theory 2016, 98, 21–35. [Google Scholar] [CrossRef]
- Denavit, J.; Hartenberg, R. A kinematic notation for lower-pair mechanisms based on matrices. ASME J. Appl. Mech. 1955, 77, 215–221. [Google Scholar] [CrossRef]
- Haron, H.; Rehman, A.; Adi, D.; Lim, S.; Saba, T. Parameterization method on B-Spline curve. Math. Probl. Eng. 2012, 1, 541–556. [Google Scholar] [CrossRef]
- Tian, D.; Zhao, T. A novel sigmoid-function-based adaptive weighted particle swarm optimizer. IEEE Trans. Cybern. 2019, 51, 1085–1093. [Google Scholar]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Yang, X.; Gandomi, A. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.; Mirjalili, S.; Saremi, S.Z.; Faris, H.; Saremi, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Campeau, W.; Simons, A.M.; Stevens, B. The evolutionary maintenance of Lévy flight foraging. PLoS Comput. Biol. 2022, 18, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Liu, Y. Fast Evolutionary Programming. In Evolutionary Programming, Proceedings of the 5th Annual Conference on Evolutionary Programming, San Diego, CA, USA, 29 February–3 March 1996; MIT Press: Cambridge, MA, USA, 1996; pp. 441–451. [Google Scholar]
- He, Q.; Lin, J.; Xu, H. Hybrid Cauchy mutation and uniform distribution of grasshopper optimization algorithm. Control Decis. 2021, 36, 1558–1568. [Google Scholar]
d | Movement Range | ||||
---|---|---|---|---|---|
1 | −90 | 0 | 0 | (225 mm) | (−100~100 mm) |
2 | 90 | g1 (60 mm) | −90 | 0 | (−50~50 mm) |
3 | −90 | 0 | 90 | g2 (330 mm) | (−50~50 mm) |
4 | −90 | 0 | (±15°) | g3 (150 mm) | 0 |
Algorithm | Data Point | Ttotal (s) | (mm/s3) | |
---|---|---|---|---|
LC-SSA | A | 378.012 | 0.756 | 1.243 |
B | 350.892 | 1.300 | 1.201 | |
C | 27.126 | 86.600 | 3.551 | |
SSA | D | 441.772 | 0.678 | 1.262 |
E | 404.583 | 1.226 | 1.221 | |
F | 39.201 | 85.708 | 4.142 |
Optimal Solution | Ttotal (s) | (mm/s3) | |
---|---|---|---|
SSA | 47.231 s | 5.276 mm/s3 | 1.272 |
LC-SSA | 30.479 s | 8.574 mm/s3 | 1.200 |
Range | Posture Mechanism 1 | Posture Mechanism 2 | ||||||
---|---|---|---|---|---|---|---|---|
Joint No. | Joint 1 | Joint 2 | Joint 3 | Joint 4 | Joint 5 | Joint 6 | Joint 7 | Joint 8 |
Parameter | 100 mm | 50 mm | 50 mm | 10° | 00 mm | 50 mm | 50 mm | 10° |
Experiments No. | Initial Position | Posture Position | Average Time |
---|---|---|---|
1 | 32.14 s | 31.426 s | |
2 | 31.36 s | ||
3 | 30.96 s | ||
4 | 32.42 s | ||
5 | 30.25 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, L.; Shen, C.; Ma, W.; Liu, S.; Han, Y.; Wang, Z. Research on the Optimal Trajectory Planning Method for the Dual-Attitude Adjustment Mechanism Based on an Improved Multi-Objective Salp Swarm Algorithm. Symmetry 2024, 16, 1028. https://doi.org/10.3390/sym16081028
Liu X, Wang L, Shen C, Ma W, Liu S, Han Y, Wang Z. Research on the Optimal Trajectory Planning Method for the Dual-Attitude Adjustment Mechanism Based on an Improved Multi-Objective Salp Swarm Algorithm. Symmetry. 2024; 16(8):1028. https://doi.org/10.3390/sym16081028
Chicago/Turabian StyleLiu, Xu, Lei Wang, Chengwu Shen, Wenjia Ma, Shaojin Liu, Yan Han, and Zhiqian Wang. 2024. "Research on the Optimal Trajectory Planning Method for the Dual-Attitude Adjustment Mechanism Based on an Improved Multi-Objective Salp Swarm Algorithm" Symmetry 16, no. 8: 1028. https://doi.org/10.3390/sym16081028