Nuclear Symmetry Energy in Strongly Interacting Matter: Past, Present and Future
Abstract
:1. Introduction
- Translation invariance (symmetry) leads to the conservation of linear momentum.
- Rotation invariance in space yields the conservation of angular momentum.
- Invariance with respect to time-reversal results in the conservation of energy.
- U(1) local symmetry with respect to the phase shift in rotation by a certain angle in a complex plane gives rise to the conservation of the electric charge; in the Standard model, U(1) symmetry leads to the conservation of the weak charge, a combination of the electric charge and isospin.
- Invariance under a combined replacement of all particles in a system by their antiparticles (Charge), their mirror images (Parity) and reversal of the flow of time (Time) constituting the CPT theorem [5], which is an example of a discrete symmetry. The total symmetry holds in the Standard model [https://www.iop.org/explore-physics/big-ideas-physics/standard-model (accessed on 1 March 2024)] but not for individual components. The related conservation law is still a matter of debate, but this does not diminish the importance of CPT invariance in theoretical physics [6].
2. Symmetry Energy Phenomenology
2.1. Charge Symmetry and Conservation of Isospin
2.2. Infinite Matter, Finite Nuclei and Symmetry Energy
2.3. Density Dependence of the Symmetry Energy and the Liquid Drop Models
3. Search for the Symmetry Energy
3.1. Charge Symmetry Breaking and Mirror Nuclei
3.2. Heavy-Ion Collisions
3.3. Neutron Skin Thickness
3.4. Symmetry Energy Constraints from Combined Terrestrial and Astrophysical Data
4. Conclusions and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Noether, E. Invariante Variationsprobleme. In Gesammelte Abhandlungen-Collected Papers; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Noether, E. Invariant variation problems. Transp. Theory Stat. Phys. 1971, 1, 186–207. [Google Scholar] [CrossRef]
- Kosmann, Y.; Schwarzbach, B.E. The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century, Springer: New York, NY, USA, 2011; ISBN 9780387878683. [CrossRef]
- Brading, K.A. Which symmetry? Noether, Weyl, and conservation of electric charge. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2002, 33, 3–22. [Google Scholar] [CrossRef]
- Greaves, H.; Thomas, T. On the CPT theorem. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2014, 45, 46–65. [Google Scholar] [CrossRef]
- Swanson, N. Deciphering the algebraic CPT theorem. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2019, 68, 106–125. [Google Scholar] [CrossRef]
- Brading, K.; Castellani, E.; Teh, N. Symmetry and Symetry Braking. In The Stanford Encyclopedia of Philosophy, Fall 2023; Zalta, E.N., Nodelman, U., Eds.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2003; Available online: https://plato.stanford.edu/archives/fall2023/entries/symmetry-breaking/ (accessed on 21 April 2024).
- Higgs, P.W. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett. 1964, 13, 508–509. [Google Scholar] [CrossRef]
- Heisenberg, W. Über Den Bau der Atomkerne. I. Z. Für. Phys. 1932, 77, 1–11. [Google Scholar] [CrossRef]
- Wigner, E. On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei. Phys. Rev. 1937, 51, 106–119. [Google Scholar] [CrossRef]
- Yang, C.N.; Mills, R.L. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev. 1954, 96, 191–195. [Google Scholar] [CrossRef]
- Epelbaum, E.; Hammer, H.-W.; Meißner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 2009, 81, 1773–1825. [Google Scholar] [CrossRef]
- Machleidt, R.; Entem, D.R. Nuclear forces from chiral EFT: The unfinished business. J. Phys. G Nucl. Part Phys. 2010, 37, 064041. [Google Scholar] [CrossRef]
- Machleidt, R.; Entem, D.R. Chiral effective field theory and nuclear forces. Phys. Rep. 2011, 503, 1–75. [Google Scholar] [CrossRef]
- Holt, J.W.; Kaiser, N. Equation of state of nuclear and neutron matter at third-order in perturbation theory from chiral effective field theory. Phys. Rev. C 2017, 95, 034326. [Google Scholar] [CrossRef]
- Sammarruca, F. The Symmetry Energy: Current Status of Ab Initio Predictions vs. Empirical Constraints. Symmetry 2023, 15, 450. [Google Scholar] [CrossRef]
- Gamow, G. Mass defect curve and nuclear constitution. Proc. R. Soc. London Ser. A Contain. Pap. Math. Phys. Character 1930, 126, 632–644. [Google Scholar] [CrossRef]
- Weizsacker, C.F.v. Zur Theorie der Kernmassen. Z. Für Phys. 1935, 96, 431–458. [Google Scholar] [CrossRef]
- Bethe, H.A.; Bacher, R.F. Nuclear Physics A. Stationary States of Nuclei. Rev. Mod. Phys. 1936, 8, 82–229. [Google Scholar] [CrossRef]
- Kirson, M.W. Mutual influence of terms in a semi-empirical mass formula. Nucl. Phys. A 2008, 798, 29–60. [Google Scholar] [CrossRef]
- Stone, J.R. Nuclear Physics and Astrophysics Constraints on the High Density Matter Equation of State. Universe 2021, 7, 257. [Google Scholar] [CrossRef]
- Bethe, H.A. Theory of Nuclear Matter. Annu. Rev. Nucl. Sci. 1971, 21, 93–244. [Google Scholar] [CrossRef]
- Hofstadter, R. Electron scattering and nuclear structure. Rev. Mod. Phys. 1956, 28, 214–254. [Google Scholar] [CrossRef]
- Hofstadter, R.; BumilIer, F.; Yearian, M.R. Electromagnetic structure of the proton and neutron. Rev. Mod. Phys. 1958, 30, 482–497. [Google Scholar] [CrossRef]
- Miller, G.; Nefkens, B.; Šlaus, I. Charge symmetry, quarks and mesons. Phys. Rep. 1990, 194, 1–116. [Google Scholar] [CrossRef]
- Myers, W.D.; Swiatecki, W.J. Nuclear masses and deformations. Nucl. Phys. 1966, 81, 1–60. [Google Scholar] [CrossRef]
- Myers, W.D.; Swiatecki, W.J. Average nuclear properties. Ann. Phys. 1969, 55, 395–505. [Google Scholar] [CrossRef]
- Myers, W.D.; Switecki, W.J. The nuclear droplet model for arbitrary shapes. Ann. Phys. 1974, 84, 186–210. [Google Scholar] [CrossRef]
- Moller, P.; Nix, J.R.; Myers, W.D.; Swiatecki, W.J. Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 1995, 59, 185–381. Available online: http://www.sciencedirect.com/science/article/pii/S0092640X85710029 (accessed on 1 January 2024). [CrossRef]
- Möller, P.; Myers, W.D.; Sagawa, H.; Yoshida, S. New Finite-Range Droplet Mass Model and Equation-of-State Parameters. Phys. Rev. Lett. 2012, 108, 052501. [Google Scholar] [CrossRef]
- Möller, P.; Sierk, A.J.; Ichikawa, T.; Sagawa, H. Nuclear ground-state masses and deformations: FRDM(2012). At. Data Nucl. Data Tables 2016, 109–110, 1–204. Available online: http://www.sciencedirect.com/science/article/pii/S0092640X1600005X (accessed on 10 January 2024). [CrossRef]
- Baldo, M.; Burgio, G.F. Properties of the nuclear medium. Rep. Prog. Phys. 2012, 75, 026301. [Google Scholar] [CrossRef]
- Tsang, M.B.; Stone, J.R.; Camera, F.; Danielewicz, P.; Gandolfi, S.; Hebeler, K.; Horowitz, C.J.; Lee, J.; Lynch, W.G.; Kohley, Z.; et al. Constraints on the symmetry energy and neutron skins from experiments and theory. Phys. Rev. C 2012, 86, 015803. [Google Scholar] [CrossRef]
- Li, B.-A.; Ramos, À.; Verde, G.; Vidaña, I. Topical issue on nuclear symmetry energy. Eur. Phys. J. A 2014, 50, 9. [Google Scholar] [CrossRef]
- Horowitz, C.J.; Brown, E.F.; Kim, Y.; Lynch, W.G.; Michaels, R.; Ono, A.; Piekarewicz, J.; Tsang, M.B.; Wolter, H.H. A way forward in the study of the symmetry energy: Experiment, theory, and observation. J. Phys. Nucl. Part. Phys. 2014, 41, 093001. [Google Scholar] [CrossRef]
- Baldo, M.; Burgio, G. The nuclear symmetry energy. Prog. Part. Nucl. Phys. 2016, 91, 203–258. [Google Scholar] [CrossRef]
- Bednarek, I.; Sładkowski, J.; Syska, J. Forms of the Symmetry Energy Relevant to Neutron Stars. Symmetry 2020, 12, 898. [Google Scholar] [CrossRef]
- Li, B.-A.; Cai, B.-J.; Xie, W.-J.; Zhang, N.-B. Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817. Universe 2021, 7, 182. [Google Scholar] [CrossRef]
- Okamoto, K. Coulomb energy of He3 and possible charge asymmetry of nuclear forces. Phys. Lett. 1964, 11, 150–153. [Google Scholar] [CrossRef]
- Nolen, J.A.; Schiffer, J.P. Coulomb Energies. Annu. Rev. Nucl. Sci. 1969, 19, 471–526. [Google Scholar] [CrossRef]
- Negele, J. The 41Sc-41Ca Coulomb energy difference. Nucl. Phys. A 1971, 165, 305–326. [Google Scholar] [CrossRef]
- Wilkinson, D. The Nolen-Schiffer anomaly and the conserved vector current. Phys. Lett. B 1974, 48, 407–409. [Google Scholar] [CrossRef]
- Suzuki, T.; Sagawa, H.; Arima, A. Effects of valence nucleon orbits and charge symmetry breaking interaction on the Nolen-Schiffer anomally of mirror nuclei. Nucl. Phys. A 1992, 536, 141–158. [Google Scholar] [CrossRef]
- Shahnas, M.H. Nolen-Schiffer anomaly of mirror nuclei and charge symmetry breaking in nuclear interactions. Phys. Rev. C 1994, 50, 2346–2350. [Google Scholar] [CrossRef]
- Cardarelli, F.; Piekarewicz, J. The Okamoto-Nolen-Schiffer anomaly without p-ω mixing. Nucl. Phys. A 1997, 612, 429–448. [Google Scholar] [CrossRef]
- Menezes, D.P.; Avancini, S.S.; Vasconcellos, C.Z.; Z Razeira, M. δ meson effects in the Nolen-Schiffer anomaly. Eur. Phys. J. A 2009, 42, 97. [Google Scholar] [CrossRef]
- Li, H.H.; Yuan, Q.; Li, J.G.; Xie, M.R.; Zhang, S.; Zhang, Y.H.; Xu, X.X.; Michel, N.; Xu, F.R.; Zuo, W. Investigation of isospin-symmetry breaking in mirror energy difference and nuclear mass with ab initio calculations. Phys. Rev. C 2023, 107, 014302. [Google Scholar] [CrossRef]
- Saito, K.; Thomas, A. The Nolen-Schiffer anomaly and isospin symmetry breaking in nuclear matter. Phys. Lett. B 1994, 335, 17–23. [Google Scholar] [CrossRef]
- Sagawa, H.; Naito, T.; Roca-Maza, X.; Hatsuda, T. QCD-based charge symmetry breaking interaction and the Okamoto-Nolen-Schiffer anomaly. Phys. Rev. C 2024, 109, l011302. [Google Scholar] [CrossRef]
- Danielewicz, P.; Lacey, R.; Lynch, W.G. Determination of the Equation of State of Dense Matter. Science 2002, 298, 1592–1596. [Google Scholar] [CrossRef] [PubMed]
- Tsang, M.B.; Liu, T.X.; Shi, L.; Danielewicz, P.; Gelbke, C.K.; Liu, X.D.; Lynch, W.G.; Tan, W.P.; Verde, G.; Wagner, A.; et al. Isospin Diffusion and the Nuclear Symmetry Energy in Heavy Ion Reactions. Phys. Rev. Lett. 2004, 92, 062701. [Google Scholar] [CrossRef] [PubMed]
- Famiano, M.A.; Liu, T.; Lynch, W.G.; Mocko, M.; Rogers, A.M.; Tsang, M.B.; Wallace, M.S.; Charity, R.J.; Komarov, S.; Sarantites, D.G.; et al. Neutron and Proton Transverse Emission Ratio Measurements and the Density Dependence of the Asymmetry Term of the Nuclear Equation of State. Phys. Rev. Lett. 2006, 97, 052701. [Google Scholar] [CrossRef]
- Liu, T.X.; Lynch, W.G.; Tsang, M.B.; Liu, X.D.; Shomin, R.; Tan, W.P.; Verde, G.; Wagner, A.; Xi, H.F.; Xu, H.S.; et al. Isospin diffusion observables in heavy-ion reactions. Phys. Rev. C 2007, 76, 034603. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, B.-A.; Chen, L.-W.; Yong, G.-C.; Zhang, M. Circumstantial Evidence for a Soft Nuclear Symmetry Energy at Suprasaturation Densities. Phys. Rev. Lett. 2009, 102, 062502. [Google Scholar] [CrossRef]
- Feng, Z.-Q.; Jin, G.-M. Probing high-density behavior of symmetry energy from pion emission in heavy-ion collisions. Phys. Lett. B 2010, 683, 140–144. [Google Scholar] [CrossRef]
- Xie, W.-J.; Su, J.; Zhu, L.; Zhang, F.-S. Symmetry energy and pion production in the Boltzmann–Langevin approach. Phys. Lett. B 2013, 718, 1510–1514. [Google Scholar] [CrossRef]
- Jhang, G.; Estee, J.; Barney, J.; Cerizza, G.; Kaneko, M.; Lee, J.; Lynch, W.; Isobe, T.; Kurata-Nishimura, M.; Murakami, T.; et al. Symmetry energy investigation with pion production from Sn+Sn systems. Phys. Lett. B 2021, 813, 136016. [Google Scholar] [CrossRef]
- Cozma, M.D.; Tsang, M.B. In-medium Δ(1232) potential, pion production in heavy-ion collisions and the symmetry energy. Eur. Phys. J. A 2021, 57, 11. [Google Scholar] [CrossRef]
- Lynch, W.; Tsang, M. Decoding the density dependence of the nuclear symmetry energy. Phys. Lett. B 2022, 830, 137098. [Google Scholar] [CrossRef]
- Bertsch, G.F.; Das Gupta, S. A guide to microscopic models for intermediate energy heavy ion collisions. Phys. Rep. 1988, 160, 189–233. [Google Scholar] [CrossRef]
- Danielewicz, P. Determination of the mean-field momentum-dependence using elliptic flow. Nucl. Phys. A 2000, 673, 375–410. [Google Scholar] [CrossRef]
- Aichelin, J. Heavy systems at intermediate energies in the Boltzmann-Uehling-Uhlenbeck approach. Phys. Rev. C 1986, 33, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Wolter, H.H. The nuclear symmetry energy in heavy ion collisions. Phys. Part. Nucl. 2015, 46, 781–785. [Google Scholar] [CrossRef]
- Xu, J.; Chen, L.-W.; Tsang, M.B.; Wolter, H.; Zhang, Y.-X.; Aichelin, J.; Colonna, M.; Cozma, D.; Danielewicz, P.; Feng, Z.-Q.; et al. Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions. Phys. Rev. C 2016, 93, 044609. [Google Scholar] [CrossRef]
- Wolter, H.; Colonna, M.; Cozma, D.; Danielewicz, P.; Ko, C.M.; Kumar, R.; Ono, A.; Tsang, M.B.; Xu, J.; Zhang, Y.-X.; et al. Transport model comparison studies of intermediate-energy heavy-ion collisions. Prog. Part. Nucl. Phys. 2022, 125, 103962. [Google Scholar] [CrossRef]
- Stone, J.R.; Danielewicz, P.; Iwata, Y. Proton and neutron density distributions at supranormal density in low- and medium-energy heavy-ion collisions. Phys. Rev. C 2017, 96, 014612. [Google Scholar] [CrossRef]
- Stone, J.; Danielewicz, P.; Iwata, Y. Coulomb effects in low- and medium-energy heavy-ion collisions. Phys. Lett. B 2022, 826, 136915. [Google Scholar] [CrossRef]
- Stone, J.R.; Danielewicz, P.; Iwata, Y. Proton and neutron density distributions at supranormal density in low- and medium-energy heavy-ion collisions. II. Central Pb + Pb collisions. Phys. Rev. C 2024, 109, 044603. [Google Scholar] [CrossRef]
- Klüepfel, P.; Reinhard, P.-G.; Bürvenich, T.J.; Maruhn, J.A. Variations on a theme by Skyrme: A systematic study of adjustments of model parameters. Phys. Rev. C 2009, 79, 034310. [Google Scholar] [CrossRef]
- Gourgoulhon, E.; Haensel, P.; Gondek, D. Maximum mass instability of neutron stars and weak interaction processes in dense matter. Astron Astrophys J. 1995, 294, 747–756. [Google Scholar]
- Horowitz, C.J.; Piekarewicz, J. Neutron Star Structure and the Neutron Radius of 208Pb. Phys. Rev. Lett. 2001, 86, 5647–5650. [Google Scholar] [CrossRef]
- Thiel, M.; Sfienti, C.; Piekarewicz, J.; Horowitz, C.J.; Vanderhaeghen, M. Neutron skins of atomic nuclei: Per aspera ad astra. J. Phys. G Nucl. Part. Phys. 2019, 46, 093003. [Google Scholar] [CrossRef]
- Reed, B.T.; Fattoyev, F.; Horowitz, C.; Piekarewicz, J. Implications of PREX-2 on the Equation of State of Neutron-Rich Matter. Phys. Rev. Lett. 2021, 126, 172503. [Google Scholar] [CrossRef]
- Donnelly, T.; Dubach, J.; Sick, I. Isospin dependences in parity-violating electron scattering. Nucl. Phys. A 1989, 503, 589–631. [Google Scholar] [CrossRef]
- Adhikari, D.; Albataineh, H.; Androic, D.; Aniol, K.; Armstrong, D.; Averett, T.; Ayerbe Gayoso, C.; Barcus, S.; Bellini, V.; Beminiwattha, R.; et al. Precision Determination of the Neutral Weak Form Factor of 48Ca. Phys. Rev. Lett. 2022, 129, 042501. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, D.; Albataineh, H.; Androic, D.; Aniol, K.; Armstrong, D.; Averett, T.; Ayerbe Gayoso, C.; Barcus, S.; Bellini, V.; Beminiwattha, R.; et al. Accurate Determination of the Neutron Skin Thickness of 208Pb through Parity-Violation in Electron Scattering. Phys. Rev. Lett. 2021, 126, 172502. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, P.-G.; Roca-Maza, X.; Nazarewicz, W. Combined Theoretical Analysis of the Parity-Violating Asymmetry for 48Ca and 208Pb. Phys. Rev. Lett. 2022, 129, 232501. [Google Scholar] [CrossRef]
- Miyatsu, T.; Cheoun, M.-K.; Kim, K.; Saito, K. Can the PREX-2 and CREX results be understood by relativistic mean-field models with the astrophysical constraints? Phys. Lett. B 2023, 843, 138013. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, L.-W. Bayesian inference of the symmetry energy and the neutron skin in 48Ca and 208Pb from CREX and PREX-2. Phys. Rev. C 2023, 108, 024317. [Google Scholar] [CrossRef]
- Lattimer, J.M. Constraints on Nuclear Symmetry Energy Parameters. Particles 2023, 6, 30–56. [Google Scholar] [CrossRef]
- Roca-Maza, X.; Brenna, M.; Colò, G.; Centelles, M.; Viñas, X.; Agrawal, B.K.; Paar, N.; Vretenar, D.; Piekarewicz, J. Electric dipole polarizability and its application for neutron skin. Phys. Rev. C 2013, 88, 024316. [Google Scholar] [CrossRef]
- Birkhan, J.; Miorelli, M.; Bacca, S.; Bassauer, S.; Bertulani, C.; Hagen, G.; Matsubara, H.; von Neumann-Cosel, P.; Papenbrock, T.; Pietralla, N.; et al. Electric Dipole Polarizability of 48Ca and Implications for the Neutron Skin. Phys. Rev. Lett. 2017, 118, 252501. [Google Scholar] [CrossRef] [PubMed]
- Jänecke, J. On isobaric analogue states. Nucl. Phys. 1965, 73, 97–112. [Google Scholar] [CrossRef]
- Danielewicz, P.; Lee, J. Symmetry energy II: Isobaric analog states. Nucl. Phys. A 2014, 922, 1–70. [Google Scholar] [CrossRef]
- Roca-Maza, X.; Colò, G.; Sagawa, H. Nuclear Symmetry Energy and the Breaking of the Isospin Symmetry: How Do They Reconcile with Each Other? Phys. Rev. Lett. 2018, 120, 202501. [Google Scholar] [CrossRef] [PubMed]
- Savran, D.; Aumann, T.; Zilges, A. Experimental studies of the Pygmy Dipole Resonance. Prog. Part. Nucl. Phys. 2013, 70, 210–245. [Google Scholar] [CrossRef]
- Tsoneva, N.; Spieker, M.; Lenske, H.; Zilges, A. Fine structure of the pygmy quadrupole resonance in 112,114Sn. Nuclear Physics A 2019, 990, 183–198. [Google Scholar] [CrossRef]
- Zenihiro, J.; Sakaguchi, H.; Murakami, T.; Yosoi, M.; Yasuda, Y.; Terashima, S.; Iwao, Y.; Takeda, H.; Itoh, M.; Yoshida, H.P.; et al. Neutron density distributions of 204,206,208Pb deduced via proton elastic scattering at Ep=295 MeV. Phys. Rev. C 2010, 82, 044611. [Google Scholar] [CrossRef]
- Vidaña, I. Low-Density Neutron Matter and the Unitary Limit. Front. Phys. 2021, 9. [Google Scholar] [CrossRef]
- Neill, D.; Newton, W.G.; Tsang, D. Resonant shattering flares as multimessenger probes of the nuclear symmetry energy. Mon. Not. R. Astron. Soc. 2021, 504, 1129–1143. [Google Scholar] [CrossRef]
- Neill, D.; Preston, R.; Newton, W.G.; Tsang, D. Constraining the Nuclear Symmetry Energy with Multimessenger Resonant Shattering Flares. Phys. Rev. Lett. 2023, 130, 112701. [Google Scholar] [CrossRef]
- Most, E.R.; Raithel, C.A. Impact of the nuclear symmetry energy on the post-merger phase of a binary neutron star coalescence. Phys. Rev. D 2021, 104, 124012. [Google Scholar] [CrossRef]
- Providência, C.; Fortin, M.; Pais, H.; Rabhi, A. Hyperonic Stars and the Nuclear Symmetry Energy. Front. Astron. Space Sci. 2019, 6, 13. [Google Scholar] [CrossRef]
- Dutra, M.; Lourenço, O.; Avancini, S.S.; Carlson, B.V.; Delfino, A.; Menezes, D.P.; Providência, C.; Typel, S.; Stone, J.R. Relativistic mean–field hadronic models under nuclear matter constraints. Phys. Rev. C 2014, 90, 055203. [Google Scholar] [CrossRef]
- Boukari, O.; Rabhi, A. Nuclear Symmetry Energy Effects on Neutron Star Properties within Bogoliubov-Quark–Meson-Coupling Model. Symmetry 2023, 15, 1742. [Google Scholar] [CrossRef]
- Collins, J.C.; Perry, M.J. Superdense Matter: Neutrons or Asymptotically Free Quarks? Phys. Rev. Lett. 1975, 34, 1353–1356. [Google Scholar] [CrossRef]
- Baym, G. Confinement of quarks in nuclear matter. Phys. A Stat. Mech. Its Appl. 1979, 96, 131–135. [Google Scholar] [CrossRef]
- Olive, K.A. The stability of quark matter. Phys. Lett. B 1982, 116, 137–140. [Google Scholar] [CrossRef]
- Witten, E. Cosmic separation of phases. Phys. Rev. D 1984, 30, 272–285. [Google Scholar] [CrossRef]
- Weber, F. Quark matter in neutron stars. J. Phys. G Nucl. Part Phys. 1999, 25, R195–R229. [Google Scholar] [CrossRef]
- Weber, F. Strange quark matter and compact stars. Prog. Part. Nucl. Phys. 2005, 54, 193–288. [Google Scholar] [CrossRef]
- Alford, M.; Braby, M.; Paris, M.; Reddy, S. Hybrid Stars that Masquerade as Neutron Stars. Astrophys. J. 2005, 629, 969–978. [Google Scholar] [CrossRef]
- Alford, M.G. Quark matter in neutron stars. Nucl. Phys. A 2009, 830, 385c–392c. [Google Scholar] [CrossRef]
- Chu, P.-C.; Chen, L.-W. Quark matter symmetry energy and quark stars. Astrophys. J. 2013, 780, 135. [Google Scholar] [CrossRef]
- Chen, L.-W. The symmetry energy in nucleon and quark matter. arXiv 2017, arXiv:1708.04433. [Google Scholar] [CrossRef]
- Lastowiecki, R.; Blaschke, D.; Fischer, T.; Klähn, T. Quark matter in high-mass neutron stars? Phys. Part. Nucl. 2015, 46, 843–845. [Google Scholar] [CrossRef]
- Roark, J.; Dexheimer, V. Deconfinement phase transition in proto-neutron-star matter. Phys. Rev. C 2018, 98, 055805. [Google Scholar] [CrossRef]
- Weber, F.; Farrell, D.; Spinella, W.M.; Malfatti, G.; Orsaria, M.G.; Contrera, G.A.; Maloney, I. Phases of hadron-quark matter in (proto) neutron stars. Universe 2019, 5, 169. [Google Scholar] [CrossRef]
- Roark, J.; Du, X.; Constantinou, C.; Dexheimer, V.; Steiner, A.W.; Stone, J.R. Hyperons and quarks in proto-neutron stars. MNRAS 2019, 486, 5441–5447. [Google Scholar] [CrossRef]
- Baym, G.; Furusawa, S.; Hatsuda, T.; Kojo, T.; Togashi, H. New neutron star equation of state with quark-hadron crossover. Astrophys. J. 2019, 885, 42. [Google Scholar] [CrossRef]
- Spinella, W.M.; Weber, F.; Contrera, G.A.; Orsaria, M.G. Discoveries at the Frontiers of Science; Springer International Publishing: Cham, Switzerland, 2020; pp. 95–106. [Google Scholar] [CrossRef]
- Annala, E.; Gorda, T.; Kurkela, A.; Nättilä, J.; Vuorinen, A. Evidence for quark-matter cores in massive neutron stars. Nat. Phys. 2020, 16, 907. [Google Scholar] [CrossRef]
- Backes, B.C.T.; Marquezb, K.D.; Menezes, D.P. Effects of strong magnetic fields on the hadron-quark deconfinement transition. Eur. Phys. J. A 2021, 57, 229. [Google Scholar] [CrossRef]
- Blaschke, D.; Cierniak, M. Studying the onset of deconfinement with multi-messenger astronomy of neutron stars. Astron. Nachrichten 2021, 342, 227–233. [Google Scholar] [CrossRef]
- Kapusta, J.I.; Welle, T. Neutron stars with a crossover equation of state. Phys. Rev. C 2021, 104, l012801. [Google Scholar] [CrossRef]
- Liu, H.; Xu, J.; Chu, P.-C. Symmetry energy effects on the properties of hybrid stars. Phys. Rev. D 2022, 105, 043015. [Google Scholar] [CrossRef]
- Contrera, G.A.; Blaschke, D.; Carlomagno, J.P.; Grunfeld, A.G.; Liebing, S. Quark-nuclear hybrid equation of state for neutron stars under modern observational constraints. Phys. Rev. C 2022, 105, 045808. [Google Scholar] [CrossRef]
- Kumar, A.; Thapa, V.B.; Sinha, M. Hybrid stars are compatible with recent astrophysical observations. Phys. Rev. D 2023, 107, 063024. [Google Scholar] [CrossRef]
- Issifu, A.; da Silva, F.M.; Menezes, D.P. Hybrid stars built with density-dependent models. Mon. Not. R. Astron. Soc. 2023, 525, 5512–5519. [Google Scholar] [CrossRef]
- Miao, Z.; Li, A.; Zhu, Z.; Han, S. Constraining Hadron-quark Phase Transition Parameters within the Quark-mean-field Model Using Multimessenger Observations of Neutron Stars. Astrophys. J. 2020, 904, 103. [Google Scholar] [CrossRef]
- Aryal, K.; Constantinou, C.; Farias, R.L.S.; Dexheimer, V. The Effect of Charge, Isospin, and Strangeness in the QCD Phase Diagram Critical End Point. Universe 2021, 7, 454. [Google Scholar] [CrossRef]
- Dexheimer, V.A.; Schramm, S. Novel approach to modeling hybrid stars. Phys. Rev. C 2010, 81, 045201. [Google Scholar] [CrossRef]
- Most, E.R.; Papenfort, L.J.; Dexheimer, V.; Hanauske, M.; Schramm, S.; Stöcker, H.; Rezzolla, L. Signatures of Quark-Hadron Phase Transitions in General-Relativistic Neutron-Star Mergers. Phys. Rev. Lett. 2019, 122, 061101. [Google Scholar] [CrossRef]
- Pandav, A.; Mallick, D.; Mohanty, B. Search for the QCD critical point in high energy nuclear collisions. Prog. Part. Nucl. Phys. 2022, 125, 103960. [Google Scholar] [CrossRef]
- Guichon, P.A.M. A possible quark mechanism for the saturation of nuclear matter. Phys. Lett. B 1988, 200, 235. [Google Scholar] [CrossRef]
- Guichon, P.A.M.; Saito, K.; Rodionov, E.N.; Thomas, A.W. The role of nucleon structure in finite nuclei. Nucl. Phys. A 1996, 601, 349. [Google Scholar] [CrossRef]
- Guichon, P.A.M.; Thomas, A.W. Quark structure and nuclear effective forces. Phys. Rev. Lett. 2004, 93, 132502. [Google Scholar] [CrossRef]
- Guichon, P.A.M.; Stone, J.R.; Thomas, A.W. Quark–Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond. Prog. Part. Nucl. Phys. 2018, 100, 262–297. [Google Scholar] [CrossRef]
- Stone, J.R.; Dexheimer, V.; Guichon, P.A.M.; Thomas, A.W.; Typel, S. Equation of state of hot dense hyperonic matter in the Quark-Meson-Coupling (QMC-A) model. Mon. Not. R. Astron. Soc. 2021, 502, 3476–3490. [Google Scholar] [CrossRef]
- Stone, J.R.; Guichon, P.A.M.; Thomas, A.W. Nuclear Symmetry Energy and Hyperonic Stars in the QMC Model. Front. Astron. Space Sci. 2022, 9, 903007. [Google Scholar] [CrossRef]
- Martinez, K.L.; Thomas, A.W.; Stone, J.R.; Guichon, P.A.M. Parameter optimization for the latest quark-meson coupling energy-density functional. Phys. Rev. C 2019, 100, 024333. [Google Scholar] [CrossRef]
- Martinez, K.L.; Thomas, A.W.; Guichon, P.A.M.; Stone, J.R. Tensor and pairing interactions within the quark-meson coupling energy-density functional. Phys. Rev. C 2020, 102, 034304. [Google Scholar] [CrossRef]
- Adam, C.; Martín-Caro, A.G.; Huidobro, M.; Vázquez, R.; Wereszczynski, A. Quantum skyrmion crystals and the symmetry energy of dense matter. Phys. Rev. D 2022, 106, 114031. [Google Scholar] [CrossRef]
- Skyrme, T. A unified field theory of mesons and baryons. Nucl. Phys. 1962, 31, 556–569. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stone, J.R. Nuclear Symmetry Energy in Strongly Interacting Matter: Past, Present and Future. Symmetry 2024, 16, 1038. https://doi.org/10.3390/sym16081038
Stone JR. Nuclear Symmetry Energy in Strongly Interacting Matter: Past, Present and Future. Symmetry. 2024; 16(8):1038. https://doi.org/10.3390/sym16081038
Chicago/Turabian StyleStone, Jirina R. 2024. "Nuclear Symmetry Energy in Strongly Interacting Matter: Past, Present and Future" Symmetry 16, no. 8: 1038. https://doi.org/10.3390/sym16081038