Constant Stress-Partially Accelerated Life Tests of Vtub-Shaped Lifetime Distribution under Progressive Type II Censoring
Abstract
:1. Introduction
- Highlighting the flexibility and importance of the LL distribution in lifetime applications. Further, studying some of its statistical properties.
- Utilizing two classical procedures, ML and MPS methods based on progressive Type II samples with CS-PALT, to investigate the point and interval estimators for the model parameters and the acceleration factor.
- Evaluating the efficiency of several derived estimators using varying progressive schemes through a simulation study.
- Demonstrating the relevance of the offered study by exploring two real data sets.
2. The Log–Log Distribution and Basic Assumptions
2.1. The Log–Log Distribution
2.1.1. Quantiles
2.1.2. Probability Weighted Moments
- For fixed values of β and α increases, then increases in most cases, whereas for fixed α and increasing values of β, then decreases.
- decreases as either or increases.
- Furthermore, in most cases, as increases and decreases, whereas the value of does not effect on the values of and .
- For different values of , one can note that; the distribution is right skewed for small values of . While, for large values of the distribution is left skewed .
- Given that represents the distribution’s peak and its degree of symmetry, it is evident that the LL distribution included a range of pdf shapes.
2.1.3. Incomplete Moments
2.1.4. Moments of Residual Life and Reversed Residual Life Functions
2.1.5. Entropy
2.2. Basic Assumptions
- (1)
- A unit tested under usual use conditions has a lifetime distribution that follows the LL distribution, with the cdf and pdf shown in (1) and (2), respectively.The distribution of a unit tested under accelerated conditions is derived by using the transformation where the equation essentially scales the time axis. A higher acceleration factor () implies that a shorter duration under accelerated conditions () is equivalent to a longer duration under normal conditions (). The electronics industry frequently employs accelerated aging tests to predict product lifespan under normal conditions. For instance, components like capacitors are subjected to raised temperatures to simulate years of use in a matter of weeks or months. Some other physical mechanism applications are oxidation, where increased temperature accelerates the rate of oxidation, leading to material degradation, and corrosion, where high conditions can increase corrosion processes, impacting material reliability. Additionally, fatigue, where accelerated loading or stress can induce fatigue failure more rapidly, polymer and degradation at higher temperatures speed up the breakdown of polymer chains. Example: If the rate of oxidation doubles for every 10 °C increase in temperature, then exposing a material to 60 °C instead of 30 °C would accelerate the aging process by a factor of 4 (22). Hence, one day at 60 °C would be equivalent to four days at 30 °C in terms of oxidation damage.
- (2)
- The distribution of a unit tested under accelerated conditions is derived by using the transformation where is the acceleration factor defined as the ratio of the mean life under usual conditions to that under accelerated conditions and see [10,45]. Therefore, the pdf, cdf, rf, and hrf under the accelerated conditions are, respectively, given by:
- (3)
- In this study, there are units allocated under the usual use conditions with and the accelerated conditions with , of which the lifetimes are mutually independent. Figure 4 shows the pdfs under usual and accelerated conditions.
3. Estimation the Parameters of the Log–Log Distribution
3.1. Maximum Likelihood Estimation
3.2. Maximum Product Spacing Estimation
3.3. Asymptotic Confidence Intervals
4. Numerical Illustration
4.1. Simulation Study
- Based on the values of and (, generate two independent random samples of sizes and from uniform (0,1) distribution, (
- For given values of the progressive censoring scheme we set where .
- Construct the two progressive Type II censored samples, ( from the uniform (0,1) distribution, where .
- Using defined in Step 3 and the cdfs, and given in (1) and (22), respectively, one can generate two random samples under usual and accelerated conditions from LL distribution based on progressive Type II censoring. Repeat all the previous steps N = 1000 times.
- Calculate the averages for both the ML and MPS estimates such thatwhere denotes either the ML or the MPS estimate in the itration.
- (a)
- The relative error of the point estimate, which is calculated using the relation
- (b)
- For each estimation method, the ACIs were measured and compared using the average lengths (AL). For the generated sample, we computed 100(1 − τ) % ACIs of the parameters and the acceleration factor, recorded AL by the following formula:
- (i)
- The population parameter values (), with sample sizes (), observed failure times (), which represent and of the sample size. The results are shown in Table 2.
- (ii)
- The population parameter values (), with sample sizes (), observed failure times (), with different levels of censoring sample sizes. The results are given in Table 3.
4.2. Real Data Analysis
5. Conclusions
- Information available in the Data and the Data distribution since different censoring schemes (e.g., Type I, Type II, progressive) obtain different amounts of information about the main survival distribution. The shape of the underlying survival distribution interacts with the censoring scheme. Heavy-tailed distributions might be more sensitive to censoring than light-tailed ones.
- Estimation Method Sensitivity: ML estimation can be sensitive to outliers and model misspecification even if it is known for effectiveness under correct model assumptions. Different censoring schemes might lead to different levels of sensitivity. MPS estimation is more robust to outliers but might be less efficient than MLE under ideal conditions. Its performance can vary across different censoring schemes.
- Model Assumptions: The chosen model can affect the impact of censoring. Some models are more robust to censoring than others. If the censoring distribution is not correctly specified, it can bias the estimates.
- Evidently, LL distribution is a highly competitive model that can describe a large amount of lifetime data.
- As the sample sizes increase, the values of REs and ALs decrease. It can be assumed that the estimation methods have good consistency.
- For a fixed number of units, the estimates under the censored Schemes I and II are superior to the estimates of Scheme III.
- With small sample sizes, the ML estimates appear to perform better than the MPS estimates; conversely, with large sample sizes, the MPS estimates appear to perform better than the ML estimates.
- Merging all the earlier results, one can suggest using the MPS estimation method to estimate the parameters for large samples and the ML estimation method for small samples of the LL distribution based on CS-PALT under progressive Type II censoring.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- Probability weighted moments
Appendix B
- I.
- Second partial derivative of the parameters for ML estimators
- II.
- Second partial derivative of the parameters for MPS estimators
References
- Nelson, W. Accelerated Testing: Statistical Models, Test Plans and Data Analysis; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Bai, D.S.; Chung, S.W. An accelerated life test model with the inverse power law. Reliab. Eng. Syst. Saf. 1989, 24, 223–230. [Google Scholar] [CrossRef]
- AL-Hussaini, E.K.; Abdel-Hamid, A.H. Bayesian estimation of the parameters, reliability and hazard rate functions of mixtures under accelerated life tests. Commun. Stat.-Simul. Comput. 2004, 33, 963–982. [Google Scholar] [CrossRef]
- AL-Dayian, G.R.; EL-Helbawy, A.A.; Rezk, H.R. Statistical inference for a simple constant stress model based on censored sampling data from the Kumaraswamy Weibull distribution. Int. J. Stat. Probab. 2014, 3, 80–95. [Google Scholar] [CrossRef]
- Ismail, A.A. Parameter estimation under failure-censored constant-stress life testing model: A Bayesian approach. Seq. Anal. 2015, 34, 264–276. [Google Scholar] [CrossRef]
- Kumar, D.; Nassar, M.; Dey, S.; Alam, F.M.A. On estimation procedures of constant stress accelerated life test for generalized inverse Lindley distribution. Qual. Reliab. Eng. Int. 2022, 38, 211–228. [Google Scholar] [CrossRef]
- Dutta, S.; Sultana, F.; Kayal, S. Statistical inference for Gumbel Type-II distribution under simple step stress life test using Type-II censoring. Iran. J. Sci. 2023, 47, 155–173. [Google Scholar] [CrossRef]
- Dutta, S.; Sultana, F.; Kayal, S. Bayesian and non-Bayesian inference for a general family of distributions based on simple step-stress life test using TRV model under Type-II censoring. Seq. Anal. 2023, 42, 349–370. [Google Scholar] [CrossRef]
- Bai, D.S.; Chung, S.W.; Chun, Y.R. Optimal design of partially accelerated life tests for the lognormal distribution under Type I censoring. Reliab. Eng. Syst. Saf. 1993, 40, 85–92. [Google Scholar] [CrossRef]
- Hyun, S.; Lee, J. Constant-stress partially accelerated life testing for log-logistic distribution with censored data. J. Stat. Appl. Probab. 2015, 4, 193–201. [Google Scholar]
- EL-Sagheer, R.M. Inferences in constant-partially accelerated life tests based on progressive Type-II censoring. Bull. Malays. Math. Sci. Soc. 2018, 41, 609–626. [Google Scholar] [CrossRef]
- Ismail, A.A.; Al Tamimi, A. Optimal design of failure-censored constant-stress life test plans for the inverse Weibull distribution. Strength Mater. 2019, 51, 156–165. [Google Scholar] [CrossRef]
- AL-Dayian, G.R.; EL-Helbawy, A.A.; Refaey, R.M.; Behairy, S.M. Bayesian estimation and prediction based on constant stress-partially accelerated life testing for Topp Leone-inverted Kumaraswamy distribution. J. Adv. Math. Comput. Sci. 2021, 36, 11–32. [Google Scholar] [CrossRef]
- Almarashi, A.M. Inferences of generalized inverted exponential distribution based on partially constant-stress accelerated life testing under progressive Type-II censoring. Alex. Eng. J. 2023, 63, 223–232. [Google Scholar] [CrossRef]
- Al Mutairi, A.; Alrashidi, A.; AL-Sayed, N.T.; Behairy, S.M.; Elgarhy, M.; Nassr, S.G. Bayesian and E-Bayesian estimation based on constant-stress partially accelerated life testing for inverted Topp–Leone distribution. Open Phys. 2023, 21, 20230126. [Google Scholar] [CrossRef]
- Ahmed, S.M. Constant-stress partially accelerated life testing for Weibull inverted exponential distribution with censored data. Iraqi J. Comput. Sci. Math. 2024, 5, 94–111. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods and Applications; Springer Science and Business Media: Berlin, Germany, 2000. [Google Scholar]
- Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring: Applications to Reliability and Quality; Birkhäuser: New York, NY, USA, 2014. [Google Scholar]
- Dey, S.; Kayal, T.; Tripathi, Y.M. Statistical inference for the weighted exponential distribution under progressive Type-II censoring with binomial removal. Am. J. Math. Manag. Sci. 2018, 37, 188–208. [Google Scholar] [CrossRef]
- Karakoca, A.; Pekgör, A. Maximum likelihood estimation of the parameters of progressively Type II censored samples from Weibull distribution using genetic algorithm. Acad. Platf.-J. Eng. Sci. 2019, 7, 189–199. [Google Scholar]
- Almetwally, E.M.; Jawa, T.M.; Sayed-Ahmed, N.; Park, C.; Zakarya, M.; Dey, S. Analysis of unit-Weibull based on progressive Type-II censored with optimal scheme. Alex. Eng. J. 2023, 63, 321–338. [Google Scholar] [CrossRef]
- Brito, E.S.; Ferreira, P.H.; Tomazella, V.L.; Martins Neto, D.S.; Ehlers, R.S. Inference methods for the very flexible Weibull distribution based on progressive Type-II censoring. Commun. Stat. Simul. Comput. 2023, 1–25. [Google Scholar] [CrossRef]
- Dey, S.; Elshahhat, A.; Nassar, M. Analysis of progressive Type-II censored gamma distribution. Comput. Stat. 2023, 38, 481–508. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Q.; Wu, C. Online monitoring of the Weibull distributed process based on progressive Type II censoring scheme. J. Comput. Appl. Math. 2024, 443, 115744. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.H. Constant-partially accelerated life tests for Burr Type-XII distribution with progressive Type-II censoring. Comput. Stat. Data Anal. 2009, 53, 2511–2523. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; EL-Sagheer, R.M.; Nagaty, H. Inference for constant-stress partially accelerated life test model with progressive Type-II censoring scheme. J. Stat. Appl. Probab. 2017, 6, 373–383. [Google Scholar] [CrossRef]
- Dey, S.; Wang, L.; Nassar, M. Inference on Nadarajah–Haghighi distribution with constant stress partially accelerated life tests under progressive Type-II censoring. J. Appl. Stat. 2022, 49, 2891–2912. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wang, L.; Tripathi, Y.M.; Liu, J. Inference for partially accelerated life test from a bathtub-shaped lifetime distribution with progressive censoring. Axioms 2023, 12, 417. [Google Scholar] [CrossRef]
- Gao, X.; Gui, W. Statistical inference of Burr–Hatke exponential distribution with partially accelerated life test under progressively Type II censoring. Mathematics 2023, 11, 2939. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Gui, W. Inferences on the generalized inverted exponential distribution in constant stress partially accelerated life tests using generally progressively Type-II censored samples. Appl. Sci. 2024, 14, 6050. [Google Scholar] [CrossRef]
- Pham, H. A Vtub-shaped hazard rate function with applications to system safety. Int. J. Reliab. Appl. 2002, 3, 1–16. [Google Scholar]
- Pham, H. System Software Reliability; Springer Science and Business Media: Berlin, Germany, 2006. [Google Scholar]
- Srivastava, A.K.; Kumar, V. Analysis of Pham (log–log) reliability model using Bayesian approach. Comput. Sci. Eng. 2011, 1, 79–100. [Google Scholar]
- Pham, H. A new software reliability model with Vtub-shaped fault-detection rate and the uncertainty of operating environments. Optimization 2014, 63, 1481–1490. [Google Scholar] [CrossRef]
- Golev, A.; Spasov, G.; Stieger, M. A note on the new Pham’s software reliability model. Neural Parallel Sci. Comput. 2019, 27, 151–164. [Google Scholar]
- Korkmaz, M.Ç.; Korkmaz, Z.S. The unit log–log distribution: A new unit distribution with alternative quantile regression modeling and educational measurements applications. J. Appl. Stat. 2023, 50, 889–908. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, R.; Nassar, M.; Elshahhat, A. A new extended Pham distribution for modeling cancer data. J. Radiat. Res. Appl. Sci. 2024, 17, 100961. [Google Scholar]
- Milgram, M.S. The generalized integro-exponential function. Math. Comput. 1985, 44, 443–458. [Google Scholar] [CrossRef]
- Astorga, J.M.; Reyes, J.; Santoro, K.I.; Venegas, O.; Gómez, H.W. A reliability model based on the incomplete generalized integro-exponential function. Mathematics 2020, 8, 1537. [Google Scholar] [CrossRef]
- Kenney, J.F.; Keeping, E.S. Mathematics of Statistics, 3rd ed.; Part 1; Van Nostrand: New York, NY, USA, 1962. [Google Scholar]
- Moors, J.J.A. A quantile alternative for kurtosis. J. R. Stat. Soc. Ser. D Stat. 1988, 37, 25–32. [Google Scholar] [CrossRef]
- Greenwood, J.A.; Landwehr, J.M.; Matalas, N.C.; Wallis, J.R. Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form. Water Resour. Res. 1979, 15, 1049–1054. [Google Scholar] [CrossRef]
- Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Contributions to the Theory of Statistics 1961; University of California Press: Berkeley, CA, USA, 1961; Volume 4, pp. 547–562. [Google Scholar]
- Ng, H.K.T.; Luo, L.; Hu, Y.; Duan, F. Parameter estimation of three-parameter Weibull distribution based on progressively Type-II censored samples. J. Stat. Comput. Simul. 2012, 82, 1661–1678. [Google Scholar] [CrossRef]
- Nassr, S.G.; Elharoun, N.M. Inference for exponentiated Weibull distribution under constant stress partially accelerated life tests with multiple censored. Commun. Stat. Appl. Methods 2019, 26, 131–148. [Google Scholar] [CrossRef]
- Cheng, R.C.H.; Amin, N.A.K. Estimating parameters in continuous univariate distributions with a shifted origin. J. R. Stat. Soc. Ser. B 1983, 45, 394–403. [Google Scholar] [CrossRef]
- Ahmed, M.A. Relative efficiency of the maximum product spacing estimates of the power Topp-Leone distribution parameters under progressive Type-II censoring scheme. Front. Sci. Res. Technol. 2023, 6, 1–19. [Google Scholar] [CrossRef]
- Dey, S.; Al-Mosawi, R. Classical and Bayesian inference of unit Gompertz distribution based on progressively Type II censored data. Am. J. Math. Manag. Sci. 2024, 43, 61–89. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Sandhu, R.A. A simple simulation algorithm for generating progressive Type-II censored samples. Am. Stat. 1995, 49, 229–230. [Google Scholar] [CrossRef]
- McCool, J.I. Confidence limits for Weibull regression with censored data. IEEE Trans. Reliab. 1980, 29, 145–150. [Google Scholar] [CrossRef]
- Aarset, M.V. How to identify a bathtub hazard rate. IEEE Trans. Reliab. 1987, 36, 106–108. [Google Scholar] [CrossRef]
- Fathi, A.; Farghal, A.W.A.; Soliman, A.A. Inference on Weibull inverted exponential distribution under progressive first-failure censoring with constant-stress partially accelerated life test. Stat. Pap. 2024, 1–33. [Google Scholar] [CrossRef]
- Xu, A.; Fang, G.; Zhuang, L.; Gu, C. A multivariate student-t process model for dependent tail-weighted degradation data. J. Inst. Ind. Syst. Eng. 2024, 3, 1–38. [Google Scholar] [CrossRef]
- Xu, A.; Wang, B.; Zhu, D.; Pang, J.; Lian, X. Bayesian reliability assessment of permanent magnet brake under small sample size. IEEE Trans. Reliab. 2024, 1–11. [Google Scholar] [CrossRef]
- Zhuang, L.; Xu, A.; Wang, Y.; Tang, Y. Remaining useful life prediction for two-phase degradation model based on reparametrized inverse Gaussian process. Eur. J. Oper. Res. 2024, 319, 877–890. [Google Scholar] [CrossRef]
1.5 | 0.7 | 1.997 | 3.507 | 1.299 | 4.628 | 0.938 |
1.5 | 1.214 | 0.384 | 0.215 | 2.367 | 0.510 | |
3.5 | 1.043 | 0.071 | −0.553 | 2.907 | 0.255 | |
5.5 | 1.019 | 0.031 | −0.853 | 3.655 | 0.172 | |
2.5 | 0.7 | 0.623 | 0.341 | 1.299 | 4.628 | 0.938 |
1.5 | 0.705 | 0.129 | 0.215 | 2.367 | 0.510 | |
3.5 | 0.827 | 0.044 | −0.553 | 2.907 | 0.255 | |
5.5 | 0.878 | 0.023 | −0.853 | 3.655 | 0.172 | |
4 | 0.7 | 0.345 | 0.105 | 1.299 | 4.628 | 0.938 |
1.5 | 0.535 | 0.074 | 0.215 | 2.367 | 0.510 | |
3.5 | 0.734 | 0.035 | −0.553 | 2.907 | 0.255 | |
5.5 | 0.815 | 0.020 | −0.853 | 3.655 | 0.172 | |
6 | 0.7 | 0.239 | 0.050 | 1.299 | 4.628 | 0.938 |
1.5 | 0.451 | 0.053 | 0.215 | 2.367 | 0.510 | |
3.5 | 0.683 | 0.030 | −0.553 | 2.907 | 0.255 | |
5.5 | 0.777 | 0.018 | −0.853 | 3.655 | 0.172 |
Scheme | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Methods | Average | RE | Average | Average | ||||||||
30 | 18 | I | ML | 1.7545 | 0.2056 | 0.3087 | 3.5061 | 0.1012 | 0.0891 | 9.9372 | 0.0141 | 0.0689 |
MPS | 1.7617 | 0.2020 | 0.2899 | 3.4895 | 0.1053 | 0.0530 | 9.9279 | 0.0132 | 0.0793 | |||
II | ML | 1.4089 | 0.3672 | 0.6443 | 3.6766 | 0.0583 | 0.1641 | 10.0555 | 0.0266 | 0.2038 | ||
MPS | 1.4090 | 0.3670 | 0.6329 | 3.6740 | 0.0594 | 0.2023 | 10.0547 | 0.0266 | 0.2140 | |||
III | ML | 1.5803 | 0.2902 | 0.6027 | 3.3423 | 0.1436 | 0.1952 | 9.6165 | 0.0189 | 0.1022 | ||
MPS | 1.5855 | 0.2881 | 0.6073 | 3.3311 | 0.1463 | 0.1799 | 9.6097 | 0.0196 | 0.1059 | |||
24 | I | ML | 1.8042 | 0.1827 | 0.2754 | 3.6260 | 0.0704 | 0.0722 | 9.9206 | 0.0124 | 0.0616 | |
MPS | 1.8085 | 0.1810 | 0.2834 | 3.6099 | 0.0745 | 0.0578 | 9.9119 | 0.0116 | 0.0738 | |||
II | ML | 1.5949 | 0.2768 | 0.2672 | 3.7214 | 0.0468 | 0.1511 | 9.9958 | 0.0201 | 0.0794 | ||
MPS | 1.5979 | 0.2751 | 0.2448 | 3.7104 | 0.0497 | 0.1608 | 9.9913 | 0.0196 | 0.0748 | |||
III | ML | 1.6519 | 0.2515 | 0.2946 | 3.4856 | 0.1065 | 0.1073 | 9.8957 | 0.0099 | 0.0685 | ||
MPS | 1.6565 | 0.2497 | 0.3153 | 3.4750 | 0.1091 | 0.0893 | 9.8896 | 0.0094 | 0.0796 | |||
60 | 36 | I | ML | 2.1018 | 0.0452 | 0.0618 | 3.8593 | 0.0105 | 0.0161 | 9.8686 | 0.0070 | 0.0196 |
MPS | 2.1092 | 0.0419 | 0.0615 | 3.8248 | 0.0194 | 0.0311 | 9.8391 | 0.0041 | 0.0337 | |||
II | ML | 1.8583 | 0.1557 | 0.0929 | 3.7191 | 0.0468 | 0.1001 | 9.9155 | 0.0118 | 0.0149 | ||
MPS | 1.8607 | 0.1546 | 0.0960 | 3.7090 | 0.0494 | 0.1022 | 9.9110 | 0.0113 | 0.0205 | |||
III | ML | 2.0780 | 0.0563 | 0.0859 | 3.8600 | 0.0111 | 0.0639 | 9.8725 | 0.0074 | 0.0225 | ||
MPS | 2.0843 | 0.0536 | 0.0879 | 3.8305 | 0.0181 | 0.0486 | 9.8472 | 0.0049 | 0.0393 | |||
48 | I | ML | 2.1426 | 0.0263 | 0.0335 | 3.8673 | 0.0084 | 0.0094 | 9.8502 | 0.0051 | 0.0151 | |
MPS | 2.1488 | 0.0236 | 0.0361 | 3.8321 | 0.0174 | 0.0080 | 9.8286 | 0.0030 | 0.0290 | |||
II | ML | 2.0801 | 0.0547 | 0.0450 | 3.8420 | 0.0157 | 0.0779 | 9.8750 | 0.0077 | 0.0119 | ||
MPS | 2.0862 | 0.0520 | 0.0463 | 3.8125 | 0.0230 | 0.0786 | 9.8517 | 0.0053 | 0.0186 | |||
III | ML | 2.1012 | 0.0453 | 0.0487 | 3.8691 | 0.0079 | 0.0117 | 9.8657 | 0.0067 | 0.0190 | ||
MPS | 2.1085 | 0.0420 | 0.0511 | 3.8327 | 0.0173 | 0.0081 | 9.8345 | 0.0036 | 0.0351 | |||
100 | 60 | I | ML | 2.1783 | 0.0100 | 0.0165 | 3.8672 | 0.0084 | 0.0048 | 9.8266 | 0.0027 | 0.0072 |
MPS | 2.1838 | 0.0077 | 0.0180 | 3.8363 | 0.0163 | 0.0064 | 9.8076 | 0.0009 | 0.0145 | |||
II | ML | 2.1515 | 0.0223 | 0.0290 | 3.8455 | 0.0145 | 0.0634 | 9.8428 | 0.0044 | 0.0089 | ||
MPS | 2.1541 | 0.0211 | 0.0314 | 3.8319 | 0.0181 | 0.0768 | 9.8346 | 0.0036 | 0.0180 | |||
III | ML | 2.1497 | 0.0231 | 0.0306 | 3.8720 | 0.0072 | 0.0076 | 9.8511 | 0.0052 | 0.0141 | ||
MPS | 2.1556 | 0.0205 | 0.0326 | 3.8384 | 0.0158 | 0.0080 | 9.8309 | 0.0032 | 0.0239 | |||
80 | I | ML | 2.2054 | 0.0027 | 0.0103 | 3.8699 | 0.0077 | 0.0036 | 9.8171 | 0.0017 | 0.0042 | |
MPS | 2.2102 | 0.0048 | 0.0113 | 3.8431 | 0.0146 | 0.0049 | 9.8002 | 0.0002 | 0.0097 | |||
II | ML | 2.2337 | 0.0153 | 0.0086 | 3.8541 | 0.0123 | 0.0552 | 9.8208 | 0.0021 | 0.0047 | ||
MPS | 2.2374 | 0.0170 | 0.0094 | 3.8332 | 0.0174 | 0.0523 | 9.8087 | 0.0009 | 0.0068 | |||
III | ML | 2.1539 | 0.0211 | 0.0194 | 3.8757 | 0.0062 | 0.0054 | 9.8457 | 0.0046 | 0.0087 | ||
MPS | 2.1595 | 0.0186 | 0.0209 | 3.8440 | 0.0143 | 0.0054 | 9.8264 | 0.0027 | 0.0156 |
n1 n2 | m1 m2 | Scheme | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Methods | Average | RE | Average | Average | ||||||||
40 | 22 | I | ML | 2.2929 | 0.0841 | 0.1465 | 5.0770 | 0.0045 | 0.0116 | 6.8724 | 0.0108 | 0.0437 |
30 | 16 | MPS | 2.1987 | 0.1232 | 0.2498 | 5.0582 | 0.0082 | 0.0122 | 6.8842 | 0.0130 | 0.1065 | |
II | ML | 2.1750 | 0.1311 | 0.1686 | 5.0684 | 0.0063 | 0.0195 | 6.9034 | 0.0153 | 0.0470 | ||
MPS | 2.1773 | 0.1302 | 0.1692 | 5.0643 | 0.0070 | 0.0171 | 6.8966 | 0.0143 | 0.0521 | |||
III | ML | 2.0467 | 0.1903 | 0.5657 | 5.0611 | 0.0081 | 0.0556 | 6.9539 | 0.0236 | 0.1754 | ||
MPS | 2.0512 | 0.1887 | 0.5698 | 5.0527 | 0.0095 | 0.0434 | 6.9383 | 0.0217 | 0.2048 | |||
30 | 30 | I | ML | 2.3549 | 0.0584 | 0.0599 | 5.0846 | 0.0030 | 0.0049 | 6.8490 | 0.0072 | 0.0182 |
40 | 22 | MPS | 2.3604 | 0.0562 | 0.0642 | 5.0748 | 0.0049 | 0.0080 | 6.8275 | 0.0043 | 0.0403 | |
II | ML | 2.2562 | 0.0981 | 0.1058 | 5.0769 | 0.0046 | 0.0116 | 6.8799 | 0.0118 | 0.0305 | ||
MPS | 2.2593 | 0.0969 | 0.1069 | 5.0711 | 0.0057 | 0.0084 | 6.8695 | 0.0103 | 0.0373 | |||
III | ML | 2.1992 | 0.1237 | 0.2833 | 5.0743 | 0.0052 | 0.0230 | 6.9067 | 0.0160 | 0.0894 | ||
MPS | 2.2043 | 0.1223 | 0.3075 | 5.0615 | 0.0076 | 0.0146 | 6.8807 | 0.0128 | 0.1281 | |||
60 | 33 | I | ML | 2.3791 | 0.0486 | 0.0482 | 5.0857 | 0.0028 | 0.0047 | 6.8431 | 0.0064 | 0.0144 |
80 | 44 | MPS | 2.3848 | 0.0464 | 0.0521 | 5.0759 | 0.0047 | 0.0076 | 6.8208 | 0.0033 | 0.0344 | |
II | ML | 2.3003 | 0.0802 | 0.0687 | 5.0782 | 0.0043 | 0.0085 | 6.8644 | 0.0095 | 0.0181 | ||
MPS | 2.3023 | 0.0794 | 0.0692 | 5.0746 | 0.0050 | 0.0071 | 6.8582 | 0.0086 | 0.0211 | |||
III | ML | 2.3479 | 0.0625 | 0.1410 | 5.0837 | 0.0032 | 0.0152 | 6.8520 | 0.0078 | 0.0349 | ||
MPS | 2.3521 | 0.0610 | 0.1473 | 5.0759 | 0.0047 | 0.0113 | 6.8360 | 0.0057 | 0.0602 | |||
45 | I | ML | 2.4214 | 0.0316 | 0.0300 | 5.0879 | 0.0024 | 0.0043 | 6.8302 | 0.0045 | 0.0081 | |
60 | MPS | 2.4267 | 0.0295 | 0.0334 | 5.0793 | 0.0041 | 0.0070 | 6.8095 | 0.0017 | 0.0251 | ||
II | ML | 2.3099 | 0.0763 | 0.0619 | 5.0807 | 0.0038 | 0.0070 | 6.8643 | 0.0095 | 0.0175 | ||
MPS | 2.3435 | 0.0628 | 0.0522 | 5.0782 | 0.0043 | 0.0043 | 6.8449 | 0.0066 | 0.0182 | |||
III | ML | 2.3785 | 0.0488 | 0.0442 | 5.0856 | 0.0028 | 0.0048 | 6.8433 | 0.0064 | 0.0129 | ||
MPS | 2.3842 | 0.0465 | 0.0477 | 5.0759 | 0.0047 | 0.0078 | 6.8212 | 0.0033 | 0.0325 | |||
100 | 55 | I | ML | 2.4453 | 0.0220 | 0.0249 | 5.0892 | 0.0021 | 0.0040 | 6.8255 | 0.0037 | 0.0065 |
120 | 66 | MPS | 2.4504 | 0.0200 | 0.0281 | 5.0806 | 0.0038 | 0.0063 | 6.8049 | 0.0011 | 0.0221 | |
II | ML | 2.3689 | 0.0526 | 0.0376 | 5.0825 | 0.0034 | 0.0051 | 6.8466 | 0.0068 | 0.0093 | ||
MPS | 2.4479 | 0.0209 | 0.0182 | 5.0865 | 0.0026 | 0.0026 | 6.8170 | 0.0025 | 0.0049 | |||
III | ML | 2.4398 | 0.0244 | 0.0420 | 5.0893 | 0.0020 | 0.0028 | 6.8273 | 0.0040 | 0.0124 | ||
MPS | 2.4444 | 0.0227 | 0.0462 | 5.0812 | 0.0037 | 0.0073 | 6.8088 | 0.0018 | 0.0318 | |||
75 | I | ML | 2.4537 | 0.0187 | 0.0219 | 5.0904 | 0.0019 | 0.0036 | 6.8254 | 0.0037 | 0.0056 | |
90 | MPS | 2.4594 | 0.0164 | 0.0238 | 5.0809 | 0.0037 | 0.0005 | 6.8026 | 0.0007 | 0.0159 | ||
II | ML | 2.4095 | 0.0363 | 0.0203 | 5.0880 | 0.0023 | 0.0026 | 6.8381 | 0.0056 | 0.0053 | ||
MPS | 2.4705 | 0.0118 | 0.0102 | 5.0896 | 0.0020 | 0.0010 | 6.8124 | 0.0018 | 0.0036 | |||
III | ML | 2.4510 | 0.0197 | 0.0192 | 5.0904 | 0.0018 | 0.0027 | 6.8262 | 0.0038 | 0.0053 | ||
MPS | 2.4563 | 0.0176 | 0.0216 | 5.0814 | 0.0037 | 0.0052 | 6.8050 | 0.0010 | 0.0176 |
DATA | KS | p-Values | |
---|---|---|---|
Usual condition | |||
DATA I | 0.27, 0.4, 0.69, 0.79, 2.75, 3.91, 9.88, 13.95, 15.93, 27.8, 53.24, 82.85, 89.29, 100.58, 215.1 | ||
Accelerated condition | |||
0.09, 0.39, 0.47, 0.73, 0.74, 1.13, 1.40, 2.38 | |||
DATA II | Usual condition | ||
0.80, 1.00, 1.37, 2.25, 2.95, 3.70, 6.07, 6.65, 7.05, 7.37 | |||
Accelerated condition | |||
0.073, 0.098, 0.117, 0.135, 0.175, 0.262, 0.27, 0.35, 0.386, 0.456 |
Results under Usual Conditions | ||||
Model | ||||
Results under accelerated conditions | ||||
Model | ||||
Results under Usual Conditions | ||||
Model | ||||
Results under accelerated conditions | ||||
Model | ||||
DATA | n1 n2 | m1 m2 | Scheme | ||||||
---|---|---|---|---|---|---|---|---|---|
DATA I | 15 | 2 | I | 2.8709 | 3.0911 | 3.3834 | 1.0711 | 3.9384 | 1.5410 |
1 | II | 0.3399 | 0.3430 | 6.7597 | 6.7712 | 4.5478 | 4.5437 | ||
III | 1.6081 | 1.8001 | 2.5419 | 1.3995 | 2.0821 | 2.0305 | |||
8 | 6 | I | 2.1106 | 2.3006 | 3.9514 | 1.2004 | 2.8364 | 2.2330 | |
4 | II | 3.8681 | 4.2005 | 1.5783 | 1.2005 | 2.2120 | 1.5093 | ||
III | 3.5735 | 3.8002 | 2.5477 | 1.4002 | 1.9142 | 2.3991 | |||
DATA II | 10 | 1 | I | 1.1516 | 0.6697 | 7.4517 | 3.2287 | 5.3283 | 3.4303 |
1 | II | 0.5095 | 0.5119 | 3.1381 | 3.2027 | 4.7263 | 4.2159 | ||
III | 0.7573 | 0.6800 | 3.2446 | 3.2236 | 3.4268 | 3.4301 | |||
10 | 4 | I | 1.0827 | 0.4466 | 6.7757 | 3.2405 | 4.7005 | 4.2655 | |
4 | II | 1.4038 | 1.4017 | 3.3063 | 3.3209 | 3.3263 | 3.3263 | ||
III | 0.7959 | 0.7922 | 3.0952 | 3.1113 | 3.5145 | 3.5135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayomi, A.; Ahmed, A.A.; AL-Sayed, N.T.; Behairy, S.M.; Abd AL-Fattah, A.M.; AL-Dayian, G.R.; EL-Helbawy, A.A. Constant Stress-Partially Accelerated Life Tests of Vtub-Shaped Lifetime Distribution under Progressive Type II Censoring. Symmetry 2024, 16, 1251. https://doi.org/10.3390/sym16091251
Fayomi A, Ahmed AA, AL-Sayed NT, Behairy SM, Abd AL-Fattah AM, AL-Dayian GR, EL-Helbawy AA. Constant Stress-Partially Accelerated Life Tests of Vtub-Shaped Lifetime Distribution under Progressive Type II Censoring. Symmetry. 2024; 16(9):1251. https://doi.org/10.3390/sym16091251
Chicago/Turabian StyleFayomi, Aisha, Asmaa A. Ahmed, Neama T. AL-Sayed, Sara M. Behairy, Asmaa M. Abd AL-Fattah, Gannat R. AL-Dayian, and Abeer A. EL-Helbawy. 2024. "Constant Stress-Partially Accelerated Life Tests of Vtub-Shaped Lifetime Distribution under Progressive Type II Censoring" Symmetry 16, no. 9: 1251. https://doi.org/10.3390/sym16091251