Mysterious Anomalies in Earth’s Atmosphere and Strongly Interacting Dark Matter
Abstract
:1. Introduction
1.1. Observed Mysteries
- 1.
- Stratospheric temperature puzzle: Seasonal variations in the stratospheric temperature typically follow a smooth pattern, with a minimum in December and a maximum in June, as measured at isobaric levels of 3 hPa, 2 hPa, and 1 hPa (corresponding to altitudes of approximately 38.5 km, 42.5 km, and 47.5 km, respectively) in the Northern Hemisphere ( N, E). However, an unexpected and striking temperature peak consistently appears around December–January, as observed over a 33-year period (1986–2018). This anomaly, depicted in Figure 1 of [2], contradicts the well-known annual modulation pattern of the conventional DM flux, which for the Northern Hemisphere is expected to peak in June and reach its minimum in December [15].
- 2.
- Solar non-correlation puzzle: Solar UV and EUV emissions are known to dominate atmospheric dynamics and influence temperature variations. To rule out direct solar irradiation as the cause of the temperature anomalies mentioned above, measurements of the radio line (≈2.8 GHz), which is a proxy of solar activity, and solar EUV emissions were analyzed. These observations excluded solar activity as the primary source of the anomalies, as illustrated in Figure 3 of [2].
- 3.
- Planetary correlation puzzle: Detailed analyses in [2] demonstrated significant correlations between the stratospheric temperature fluctuations and planetary positions (see Figures 3–8 of [2]). Additionally, a systematic test was performed, as shown in Figure 9 of [2], revealing that daily stratospheric temperature variations of approximately could accumulate to as much as when planetary positions were accounted for, with representing the theoretical maximum. This finding strongly indicates that the temperature variations are not random but coherent effects linked to planetary alignments.
- 4.
- TEC puzzle: The total electron content (TEC) of the Earth’s atmosphere, which measures ionization levels, also displays unexpected anomalies. Daily TEC measurements from 1995 to 2012 reveal a pronounced planetary dependence, with a seasonal difference between December and June as large as . This deviation, shown in Figure 12 of [1], cannot be explained by the Earth–Sun distance or seasonal effects, as TEC values are averaged globally over the Earth’s surface for both hemispheres.
- 5.
- TEC–earthquake correlation puzzle: A strong correlation between global TEC anomalies and the inner Earth’s seismic activity of magnitude has been observed, as shown in Figure 7 of [3,16] during the period 1995–2012. This correlation is particularly puzzling because the primary source of TEC anomalies—UV and EUV photons—should, in principle, have no direct connection to seismic events originating deep within the Earth’s interior.
1.2. Normalization Factors
1.3. The AQN Hypothesis
2. The AQN DM Model
2.1. The Basics
- Matter and antimatter composition: Unlike the original quark nugget model, AQNs can consist of both matter and antimatter, formed during the QCD phase transition. This property enables rare but significant annihilation events when antimatter AQNs interact with ordinary matter, producing observable signatures.
- Axion domain walls: The AQN model incorporates axion domain walls formed during the QCD transition. These domain walls act as stabilizing structures, alleviating the need for a first-order phase transition as in the original Witten’s model. The axion domain wall effectively “squeezes” the nugget, providing additional stabilization absent in earlier models.
- Vacuum energy: In AQNs, the vacuum ground state energies inside the nugget (CS phase) differ significantly from outside the nugget (hadronic phase). This disparity enables the coexistence of these two phases only under external pressure, provided by the axion domain wall. This mechanism prevents nugget evaporation on the Hubble time scale, which was a key issue in Witten’s original model [18,19,20] which was assumed to be stable at zero external pressure.
- Energy transfer: Another pivotal difference between the AQN framework and Witten’s model lies in the energy transfer to the surrounding material. For Witten’s nuggets, the maximum energy transfer is constrained by the relatively low DM velocity is ∼, limiting the energy transfer to per baryon charge of the nugget. In the AQN model, the available energy due to matter–antimatter annihilation can be as high as per baryon charge. This stark contrast in energy transfer dramatically alters the search strategies for such DM candidates, making AQNs far more observable through their energetic interactions.
- Cosmological density problem and baryon asymmetry: The AQN model inherently addresses the cosmological density problem by linking the DM density (represented by matter and antimatter nuggets) and the visible matter density . Both densities are proportional to the same fundamental dimensional parameter of the theory, . Consequently, the model naturally predicts without requiring fine-tuning or additional parameters. By construction, the AQN framework resolves two fundamental problems in cosmology: the nature of DM and the baryon asymmetry of the Universe. The formation of AQNs, the generation of baryon asymmetry, and the survival pattern of the nuggets through the hostile environment of the early Universe have been extensively studied in [36,37,38,39]. These works provide detailed insights into how AQNs form during the QCD phase transition, remain stable, and contribute to the observed cosmological densities.
2.2. When the AQNs Hit the Earth
3. Energy Deposition in the Earth’s Atmosphere by AQNs
- 1.
- Downward-moving AQNs: These nuggets propagate from space into the Earth’s atmosphere, reaching typical internal temperatures of as they interact with the atmospheric material.
- 2.
- Upward-moving AQNs: These nuggets traverse the Earth, exiting through the surface. Due to the higher density of the Earth’s interior, their temperatures increase significantly, reaching (as per Equation (9)).
4. Proposal (13) Confronts the Observations
4.1. Puzzle 1: Stratospheric Temperature Variations
4.2. Puzzle 2: Solar Non-Correlation
4.3. Puzzle 3: Planetary Correlation
4.4. Puzzle 4: TEC
4.5. Puzzle 5: TEC–Earthquake Correlation
4.5.1. Lessons from the Observed Correlation of Solar Flares and Sunquakes
4.5.2. On the Puzzling Correlations Between TEC and Earthquakes
5. Conclusions and Outlook
5.1. Possible Tests of the Proposal
5.2. Other (Indirect) Evidence for DM in the Form of AQNs
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertolucci, S.; Zioutas, K.; Hofmann, S.; Maroudas, M. The Sun and its Planets as detectors for invisible matter. Phys. Dark Univ. 2017, 17, 13–21. [Google Scholar] [CrossRef]
- Zioutas, K.; Argiriou, A.; Fischer, H.; Hofmann, S.; Maroudas, M.; Pappa, A.; Semertzidis, Y.K. Stratospheric temperature anomalies as imprints from the dark Universe. Phys. Dark Univ. 2020, 28, 100497. [Google Scholar] [CrossRef]
- Zioutas, K.; Anastassopoulos, V.; Argiriou, A.; Cantatore, G.; Cetin, S.; Fischer, H.; Gardikiotis, A.; Haralambous, H.; Hoffmann, D.H.; Hofmann, S.; et al. Atmospheric Temperature anomalies as manifestation of the dark Universe. arXiv 2023, arXiv:2309.10779. [Google Scholar]
- Zhitnitsky, A.R. ‘Nonbaryonic’ dark matter as baryonic colour superconductor. J. Cosmol. Astropart. Phys. 2003, 10, 10. [Google Scholar] [CrossRef]
- Zhitnitsky, A. Axion quark nuggets. Dark matter and matter–antimatter asymmetry: Theory, observations and future experiments. Mod. Phys. Lett. A 2021, 36, 2130017. [Google Scholar] [CrossRef]
- Maroudas, M. Signals for Invisible Matter from Solar—Terrestrial Observations. Ph.D. Thesis, University of Patras, Rio, Greece, 2022. [Google Scholar]
- Zioutas, K.; Maroudas, M.; Kosovichev, A. On the origin of the rhythmic sun’s radius variation. Symmetry 2022, 14, 325. [Google Scholar] [CrossRef]
- Hoffmann, D.H.H.; Jacoby, J.; Zioutas, K. Gravitational lensing by the sun of non-relativistic penetrating particles. Astropart. Phys. 2003, 20, 73–78. [Google Scholar] [CrossRef]
- Kryemadhi, A.; Maroudas, M.; Mastronikolis, A.; Zioutas, K. Gravitational focusing effects on streaming dark matter as a new detection concept. Phys. Rev. D 2023, 108, 123043. [Google Scholar] [CrossRef]
- Cantatore, G.; Çetin, S.A.; Fischer, H.; Funk, W.; Karuza, M.; Kryemadhi, A.; Maroudas, M.; Özbozduman, K.; Semertzidis, Y.K.; Zioutas, K. Dark Matter Detection in the Stratosphere. Symmetry 2023, 15, 1167. [Google Scholar] [CrossRef]
- Zioutas, K.; Anastassopoulos, V.; Argiriou, A.; Cantatore, G.; Cetin, S.A.; Gardikiotis, A.; Hoffmann, D.H.; Hofmann, S.; Karuza, M.; Kryemadhi, A.; et al. The Dark Universe is not invisible. Phys. Sci. Forum 2021, 2, 10. [Google Scholar] [CrossRef]
- Lazanu, I.; Parvu, M. Exploring the detection of AQNs in large liquid detectors. J. Cosmol. Astropart. Phys. 2024, 5, 14. [Google Scholar] [CrossRef]
- Zioutas, K.; Zhitnitsky, A.; Zamantzas, C.; Semertzidis, Y.K.; Ruimie, O.M.; Ozbozduman, K.; Maroudas, M.; Kryemadhi, A.; Karuza, M.; Horns, D.; et al. Search for anti-quark nuggets via their interaction with the LHC beam. arXiv 2024, arXiv:2403.05608. [Google Scholar]
- Adair, C.M.; Altenmüller, K.; Anastassopoulos, V.; Cuendis, S.A.; Baier, J.; Barth, K.; Belov, A.; Bozicevic, D.; Bräuninger, H.; Cantatore, G.; et al. The daily modulations and broadband strategy in axion searches. An application with CAST-CAPP detector. arXiv 2024, arXiv:2405.10972. [Google Scholar]
- Freese, K.; Lisanti, M.; Savage, C. Colloquium: Annual modulation of dark matter. Rev. Mod. Phys. 2013, 85, 1561–1581. [Google Scholar] [CrossRef]
- Zioutas, K.; Anastassopoulos, V.; Argiriou, A.; Cantatore, G.; Cetin, S.; Gardikiotis, A.; Guo, J.; Haralambous, H.; Hoffmann, D.; Hofmann, S.; et al. Fingerprints of the dark universe in geoscience. In Recent Research on Geotechnical Engineering, Remote Sensing, Geophysics and Earthquake Seismology; Çiner, A., Ergüler, Z.A., Bezzeghoud, M., Ustuner, M., Eshagh, M., El-Askary, H., Biswas, A., Gasperini, L., Hinzen, K.-G., Karakus, M., et al., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 415–419. ISBN 978-3-031-43218-7. [Google Scholar]
- Tulin, S.; Yu, H.B. Dark Matter Self-interactions and Small Scale Structure. Phys. Rept. 2018, 730, 1–57. [Google Scholar] [CrossRef]
- Witten, E. Cosmic separation of phases. Phys. Rev. D 1984, 30, 272–285. [Google Scholar] [CrossRef]
- Farhi, E.; Jaffe, R.L. Strange matter. Phys. Rev. D 1984, 30, 2379–2390. [Google Scholar] [CrossRef]
- De Rujula, A.; Glashow, S.L. Nuclearites—A novel form of cosmic radiation. Nature 1984, 312, 734–737. [Google Scholar] [CrossRef]
- Abbasi, R.U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; et al. The bursts of high energy events observed by the telescope array surface detector. Phys. Lett. A 2017, 381, 2565–2572. [Google Scholar] [CrossRef]
- Okuda, T. Telescope array observatory for the high energy radiation induced by lightning. J. Phys. Conf. Ser. 2019, 1181, 012067. [Google Scholar] [CrossRef]
- Zhitnitsky, A. The Mysterious Bursts observed by Telescope Array and Axion Quark Nuggets. J. Phys. G 2021, 48, 065201. [Google Scholar] [CrossRef]
- Colalillo, R.; Abreu, P.; Aglietta, M.; Albury, J.M.; Allekotte, I.; Almela, A.; Alvarez-Muniz, J.; Anastasi, G.A.; Anchordoqui, L.; Andrada, B.; et al. Downward Terrestrial Gamma-ray Flashes at the Pierre Auger Observatory? Pos Proc. Sci. 2021, 395, 1–12. [Google Scholar] [CrossRef]
- Colalillo, R. The observation of lightning-related events with the Surface Detector of the Pierre Auger Observatory. EPJ Web Conf. 2019, 197, 03003. [Google Scholar] [CrossRef]
- Colalillo, R.; Albuquerque, I.F.; Catalani, F.; Souza, V.D.; Kemmerich, N.; Lang, R.G.; Prado, R.R.; Carvalho, W.; Santos, E.M.; Peixoto, C.J. Peculiar lightning-related events observed by the surface detector of the Pierre Auger Observatory. In Proceedings of the 35th International Cosmic Ray Conference—ICRC 2017, Bexco, Busan, Republic of Korea, 10–20 July 2017; Volume 314. [Google Scholar] [CrossRef]
- Zhitnitsky, A. The Pierre Auger exotic events and axion quark nuggets. J. Phys. G 2022, 49, 105201. [Google Scholar] [CrossRef]
- Gorham, P.W.; Nam, J.; Romero-Wolf, A.; Hoover, S.; Allison, P.; Banerjee, O.; Beatty, J.J.; Belov, K.; Besson, D.Z.; Binns, W.R.; et al. Characteristics of Four Upward-pointing Cosmic-ray-like Events Observed with ANITA. Phys. Rev. Lett. 2016, 117, 071101. [Google Scholar] [CrossRef]
- Gorham, P.W.; Rotter, B.; Allison, P.; Banerjee, O.; Batten, L.; Beatty, J.J.; Bechtol, K.; Belov, K.; Besson, D.Z.; Binns, W.R.; et al. Observation of an Unusual Upward-going Cosmic-ray-like Event in the Third Flight of ANITA. Phys. Rev. Lett. 2018, 121, 161102. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhitnitsky, A. ANITA anomalous events and axion quark nuggets. Phys. Rev. D 2022, 106, 063022. [Google Scholar] [CrossRef]
- Beznosko, D.; Beisembaev, R.; Baigarin, K.; Beisembaeva, E.; Dalkarov, O.; Ryabov, V.; Sadykov, T.; Shaulov, S.; Stepanov, A.; Vildanova, M.; et al. Extensive Air Showers with unusual structure. EPJ Web Conf. 2017, 145, 14001. [Google Scholar] [CrossRef]
- Beisembaev, R.; Beznosko, D.; Beisembaeva, E.; Dalkarov, O.; Mossunov, V.; Ryabov, V.; Shaulov, S.; Vildanova, M.; Zhukov, V.; Baigarin, K.; et al. Spatial and Temporal Characteristics of EAS with Delayed Particles. In Proceedings of the 36th International Cosmic Ray Conference—ICRC2019, Madison, WI, USA, 24 July–1 August 2019; Volume 195. [Google Scholar] [CrossRef]
- Zhitnitsky, A. Multi-Modal Clustering Events Observed by Horizon-10T and Axion Quark Nuggets. Universe 2021, 7, 384. [Google Scholar] [CrossRef]
- Budker, D.; Flambaum, V.V.; Zhitnitsky, A. Infrasonic, acoustic and seismic waves produced by the Axion Quark Nuggets. Symmetry 2022, 14, 459. [Google Scholar] [CrossRef]
- Lawson, K.; Liang, X.; Mead, A.; Siddiqui, M.S.; Van Waerbeke, L.; Zhitnitsky, A. Gravitationally trapped axions on the Earth. Phys. Rev. D 2019, 100, 043531. [Google Scholar] [CrossRef]
- Liang, X.; Zhitnitsky, A. Axion field and the quark nugget’s formation at the QCD phase transition. Phys. Rev. D 2016, 94, 083502. [Google Scholar] [CrossRef]
- Ge, S.; Liang, X.; Zhitnitsky, A. Cosmological C P -odd axion field as the coherent Berry’s phase of the Universe. Phys. Rev. D 2017, 96, 063514. [Google Scholar] [CrossRef]
- Ge, S.; Liang, X.; Zhitnitsky, A. Cosmological axion and a quark nugget dark matter model. Phys. Rev. D 2018, 97, 043008. [Google Scholar] [CrossRef]
- Ge, S.; Lawson, K.; Zhitnitsky, A. Axion quark nugget dark matter model: Size distribution and survival pattern. Phys. Rev. D 2019, 99, 116017. [Google Scholar] [CrossRef]
- Zhitnitsky, A. Cold dark matter as compact composite objects. Phys. Rev. D 2006, 74, 043515. [Google Scholar] [CrossRef]
- Flambaum, V.V.; Zhitnitsky, A.R. Primordial Lithium Puzzle and the Axion Quark Nugget Dark Matter Model. Phys. Rev. D 2019, 99, 023517. [Google Scholar] [CrossRef]
- Sidhu, J.S.; Scherrer, R.J.; Starkman, G. Antimatter as Macroscopic Dark Matter. Phys. Lett. B 2020, 807, 135574. [Google Scholar] [CrossRef]
- Santillán, O.P.; Morano, A. Neutrino emission and initial evolution of axionic quark nuggets. Phys. Rev. D 2021, 104, 083530. [Google Scholar] [CrossRef]
- Lawson, K.; Zhitnitsky, A.R. The 21 cm absorption line and the axion quark nugget dark matter model. Phys. Dark Univ. 2019, 24, 100295. [Google Scholar] [CrossRef]
- Jacobs, D.M.; Starkman, G.D.; Lynn, B.W. Macro Dark Matter. Mon. Not. Royal Astron. Soc. 2015, 450, 3418–3430. [Google Scholar] [CrossRef]
- Alford, M.G.; Schmitt, A.; Rajagopal, K.; Schäfer, T. Color superconductivity in dense quark matter. Rev. Mod. Phys. 2008, 80, 1455–1515. [Google Scholar] [CrossRef]
- Ge, S.; Siddiqui, M.S.; Van Waerbeke, L.; Zhitnitsky, A. Impulsive radio events in quiet solar corona and axion quark nugget dark matter. Phys. Rev. D 2020, 102, 123021. [Google Scholar] [CrossRef]
- Forbes, M.M.; Zhitnitsky, A.R. WMAP haze: Directly observing dark matter? Phys. Rev. D 2008, 78, 083505. [Google Scholar] [CrossRef]
- Judge, P.G.; Kleint, L.; Donea, A.; Dalda, A.S.; Fletcher, L. On the origin of a sunquake during the 2014 march 29 x1 flare. Astrophys. J. 2014, 796, 85. [Google Scholar] [CrossRef]
- Matthews, S.A.; Harra, L.K.; Zharkov, S.; Green, L.M. Spectroscopic Signatures Related to a Sunquake. Astrophys. J. 2015, 812, 35. [Google Scholar] [CrossRef]
- Zhitnitsky, A. Solar Flares and the Axion Quark Nugget Dark Matter Model. Phys. Dark Univ. 2018, 22, 1–15. [Google Scholar] [CrossRef]
- Budker, D.; Flambaum, V.V.; Liang, X.; Zhitnitsky, A. Axion Quark Nuggets and how a Global Network can discover them. Phys. Rev. D 2020, 101, 043012. [Google Scholar] [CrossRef]
- Liang, X.; Peshkov, E.; Van Waerbeke, L.; Zhitnitsky, A. Proposed network to detect axion quark nugget dark matter. Phys. Rev. D 2021, 103, 096001. [Google Scholar] [CrossRef]
- Zhang, Z.; Horns, D.; Ghosh, O. Search for dark matter with an LC circuit. Phys. Rev. D 2022, 106, 023003. [Google Scholar] [CrossRef]
- Kahn, Y.; Safdi, B.R.; Thaler, J. Broadband and Resonant Approaches to Axion Dark Matter Detection. Phys. Rev. Lett. 2016, 117, 141801. [Google Scholar] [CrossRef] [PubMed]
- Sikivie, P.; Sullivan, N.; Tanner, D.B. Proposal for Axion Dark Matter Detection Using an LC Circuit. Phys. Rev. Lett. 2014, 112, 131301. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, S.; Irwin, K.; Graham, P.W.; Mardon, J. Fundamental Limits of Electromagnetic Axion and Hidden-Photon Dark Matter Searches: Part I—The Quantum Limit. 2018. [Google Scholar]
- Gardikiotis, A. Advances in Searching for Galactic Axions with a Dielectric Haloscope (MADMAX). Ann. Phys. 2024, 536, 2300046. [Google Scholar] [CrossRef]
- Bajjali, F.; Dornbusch, S.; Ekmedžić, M.; Horns, D.; Kasemann, C.; Lobanov, A.; Mkrtchyan, A.; Tluczykont, M.; Tuccari, G.; Ulrichs, J.; et al. First results from BRASS-p broadband searches for hidden photon dark matter. J. Cosmol. Astropart. Phys. 2023, 8, 77. [Google Scholar] [CrossRef]
- Marsh, D.J.E. Axion cosmology. Phys. Rep. 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Graham, P.W.; Irastorza, I.G.; Lamoreaux, S.K.; Lindner, A.; van Bibber, K.A. Experimental Searches for the Axion and Axion-Like Particles. Annu. Rev. Nucl. Part. Sci. 2015, 65, 485–514. [Google Scholar] [CrossRef]
- Battesti, R.; Beard, J.; Böser, S.; Bruyant, N.; Budker, D.; Crooker, S.A.; Daw, E.J.; Flambaum, V.V.; Inada, T.; Irastorza, I.G.; et al. High magnetic fields for fundamental physics. Phys. Rept. 2018, 765–766, 1–39. [Google Scholar] [CrossRef]
- Irastorza, I.G.; Redondo, J. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 2018, 102, 89–159. [Google Scholar] [CrossRef]
- Sikivie, P. Invisible Axion Search Methods. Rev. Mod. Phys. 2021, 93, 015004. [Google Scholar] [CrossRef]
- Liang, X.; Mead, A.; Siddiqui, M.S.; Van Waerbeke, L.; Zhitnitsky, A. Axion Quark Nugget Dark Matter: Time Modulations and Amplifications. Phys. Rev. D 2020, 101, 043512. [Google Scholar] [CrossRef]
- Salucci, P.; Turini, N.; Di Paolo, C. Paradigms and Scenarios for the Dark Matter Phenomenon. Universe 2020, 6, 118. [Google Scholar] [CrossRef]
- Zhitnitsky, A. Structure formation paradigm and axion quark nugget dark matter model. Phys. Dark Univ. 2023, 40, 101217. [Google Scholar] [CrossRef]
- Henry, R.C.; Murthy, J.; Overduin, J.; Tyler, J. The mystery of the cosmic diffuse ultraviolet background radiation. Astrophys. J. 2014, 798, 14. [Google Scholar] [CrossRef]
- Akshaya, M.S.; Murthy, J.; Ravichandran, S.; Henry, R.C.; Overduin, J. The diffuse radiation field at high galactic latitudes. Astrophys. J. 2018, 858, 101. [Google Scholar] [CrossRef]
- Akshaya, M.S.; Murthy, J.; Ravichandran, S.; Henry, R.C.; Overduin, J. Components of the diffuse ultraviolet radiation at high latitudes. Mon. Not. R. Astron. Soc. 2019, 489, 1120–1126. [Google Scholar] [CrossRef]
- Zhitnitsky, A. The mysterious diffuse UV radiation and axion quark nugget dark matter model. Phys. Lett. B 2022, 828, 137015. [Google Scholar] [CrossRef]
- Zhitnitsky, A. Solar Extreme UV radiation and quark nugget dark matter model. J. Cosmol. Astropart. Phys. 2017, 10, 50. [Google Scholar] [CrossRef]
- Raza, N.; Van Waerbeke, L.; Zhitnitsky, A. Solar corona heating by axion quark nugget dark matter. Phys. Rev. D 2018, 98, 103527. [Google Scholar] [CrossRef]
- Parker, E.N. Nanoflares and the solar X-ray corona. Astrophys. J. 1988, 330, 474–479. [Google Scholar] [CrossRef]
- Homola, P.; Beznosko, D.; Bhatta, G.; Bibrzycki, Ł.; Borczyńska, M.; Bratek, Ł.; Budnev, N.; Burakowski, D.; Alvarez-Castillo, D.E.; Ćwikła, A.; et al. Cosmic-ray extremely distributed observatory. Symmetry 2020, 12, 1835. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhitnitsky, A.; Maroudas, M. Mysterious Anomalies in Earth’s Atmosphere and Strongly Interacting Dark Matter. Symmetry 2025, 17, 79. https://doi.org/10.3390/sym17010079
Zhitnitsky A, Maroudas M. Mysterious Anomalies in Earth’s Atmosphere and Strongly Interacting Dark Matter. Symmetry. 2025; 17(1):79. https://doi.org/10.3390/sym17010079
Chicago/Turabian StyleZhitnitsky, Ariel, and Marios Maroudas. 2025. "Mysterious Anomalies in Earth’s Atmosphere and Strongly Interacting Dark Matter" Symmetry 17, no. 1: 79. https://doi.org/10.3390/sym17010079
APA StyleZhitnitsky, A., & Maroudas, M. (2025). Mysterious Anomalies in Earth’s Atmosphere and Strongly Interacting Dark Matter. Symmetry, 17(1), 79. https://doi.org/10.3390/sym17010079