Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables
Abstract
:1. Introduction
2. Preliminaries
2.1. Fuzzy Set and Fuzzy Number
- 1.
- and are nonincreasing for any .
- 2.
- .
- 3.
- and for any .
- 4.
- There exists a such that holds for any t larger than . Similarly, there exists a such that holds for any t larger than .
- 1.
- is nonincreasing for any .
- 2.
- .
- 3.
- for any .
- 4.
- There exists a such that holds for any t larger than .
2.2. Fuzzy Random Variable
2.3. Special Types of Fuzzy Random Variables Used in Decision Making
3. Discrete Fuzzy Random Variable
Definitions of Discrete Fuzzy Random Variables
4. Problem Formulation
4.1. Model Using Discrete L-R Fuzzy Random Variables
4.2. Model Using Discrete Triangular Fuzzy Random Variables
5. Possibility/Necessity-Based Probabilistic Expectation
5.1. Preliminary: Possibility and Necessity Measures
5.1.1. Possibility Measure
5.1.2. Necessity Measure
5.2. Optimization Criteria in Fuzzy Random Environments
6. Discrete Fuzzy Random Linear Programming Models Using Possibility/Necessity-Based Probabilistic Expectation
6.1. Possibility-Based Probabilistic Expectation (PPE) Model
6.2. Necessity-Based Probabilistic Expectation Model (NPE Model)
Scalarization-Based Problems for Obtaining a Pareto Optimal Solution
7. Solution Algorithms
7.1. Solution Algorithm for the PPE Model
- Case 1: If the value of is equal to 1, as shown in Figure 13.
- Case 2: If , the value of is calculated as the ordinate of the crossing point between the membership function of fuzzy goal and the objective function , as shown in Figure 14. The abscissa of the crossing point of two functions ( and ) is obtained by solving the equationThen, the solution of (37) isConsequently, the ordinate of the crossing point is calculated as
- Case 3: If , the value of is equal to 0, as shown in Figure 15.
- Step 1:
- (Calculation of possible objective function values)Using a linear programming technique, solve individual minimization problems (34) for , namely
- Step 2:
- (Setting of membership functions of fuzzy goals)Ask the DM to specify the values of and , . If the DM has no idea of how and , are determined, then the DM can set the following values calculated by (33) as
- Step 3:
- (Derivation of a strong Pareto optimal solution of PPE model)Using a nonlinear programming technique, solve the following augmented maximin problem (38):
7.2. Solution Algorithm for the NPE Model
- Case 1: If , the value of is equal to 1, as shown in Figure 16.
- Case 2: If , the value of is calculated as the ordinate of the crossing point between the membership functions of fuzzy goal and the objective function , as shown in Figure 17. The abscissa of the crossing point of two functions ( and ) is obtained by solving the equationThen, the solution of (41) isConsequently, the ordinate of the crossing point is calculated as
- Case 3: If , the value of is equal to 0, as shown in Figure 18.
- Step 1:
- (Calculation of possible objective function values)By using a linear programming technique, solve individual minimization problems (34) for , namely
- Step 2:
- (Setting of membership functions of fuzzy goals)Ask the DM to specify the values of and , . If the decision has no idea of how and , are determined, the DM could set the values calculated by (33) as
- Step 3:
- (Derivation of a (strong) Pareto optimal solution of the NPE model)Solve the following augmented maximin problem (42) using a nonlinear programming technique:
8. Numerical Experiments
8.1. Crop Area Planning Problem Under a Fuzzy Random Environment
8.2. Computational Times for Different Size Problems
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Dantzig, G.B. Linear programming under uncertainty. Manag. Sci. 1955, 1, 197–206. [Google Scholar] [CrossRef]
- Aiche, F.; Abbas, M.; Dubois, D. Chance-constrained programming with fuzzy stochastic coefficients. Fuzzy Optim. Decis. Mak. 2013, 12, 125–152. [Google Scholar] [CrossRef] [Green Version]
- Katagiri, H.; Sakawa, M. Interactive multiobjective fuzzy random programming through the level set-based probability model. Inf. Sci. 2011, 181, 1641–1650. [Google Scholar] [CrossRef]
- Inuiguchi, M.; Kato, K.; Katagiri, H. Fuzzy Multi-Criteria Optimization: Possibilistic and Fuzzy/Stochastic Approaches. In Multiple Criteria Decision Analysis; Springer: Berlin/Heidelberg, Germany, 2016; pp. 851–902. [Google Scholar]
- Katagiri, H.; Sakawa, M.; Kato, K.; Nishizaki, I. Interactive multiobjective fuzzy random linear programming: Maximization of possibility and probability. Eur. J. Oper. Res. 2008, 188, 530–539. [Google Scholar] [CrossRef]
- Katagiri, H.; Uno, T.; Kato, K.; Tsuda, H.; Tsubaki, H. Random fuzzy multiobjective programming: Optimization of possibilistic Value at Risk (pVaR). Expert Syst. Appl. 2013, 40, 563–574. [Google Scholar] [CrossRef]
- Luhandjula, M.K. Fuzzy stochastic linear programming: Survey and future research directions. Eur. J. Oper. Res. 2006, 174, 1353–1367. [Google Scholar] [CrossRef]
- Luhandjula, M.K.; Joubert, J.W. On some optimisation models in a fuzzy-stochastic environment. Eur. J. Oper. Res. 2010, 207, 1433–1441. [Google Scholar] [CrossRef]
- Nematian, J. A random fuzzy multi-objective linear programming approach through possibility theory. Eur. J. Ind. Eng. 2015, 9, 512–537. [Google Scholar] [CrossRef]
- Yano, H. Fuzzy decision making for fuzzy random multiobjective linear programming problems with variance covariance matrices. Inf. Sci. 2014, 272, 111–125. [Google Scholar] [CrossRef]
- Yano, H. Multiobjective programming problems involving fuzzy coefficients, random variable coefficients and fuzzy random variable coefficients. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2015, 23, 483–504. [Google Scholar] [CrossRef]
- Katagiri, H.; Sakawa, M.; Kato, K.; Nishizaki, I. A fuzzy random multiobjective 0-1 programming based on the expectation optimization model using possibility and necessity measures. Math. Comput. Model. 2004, 40, 411–421. [Google Scholar] [CrossRef]
- Dutta, P.; Chakraborty, D.; Roy, A.R. A single-period inventory model with fuzzy random variable demand. Math. Comput. Modell. 2005, 41, 915–922. [Google Scholar] [CrossRef]
- Wang, X. Continuous review inventory model with variable lead time in a fuzzy random environment. Expert Syst. Appl. 2011, 38, 11715–11721. [Google Scholar] [CrossRef]
- Giri, P.K.; Maiti, M.K.; Maiti, M. Entropy based solid transportation problems with discounted unit costs under fuzzy random environment. OPSEARCH 2014, 51, 479–532. [Google Scholar] [CrossRef]
- Nematian, J. A robust single row facility layout problem with fuzzy random variables. Int. J. Adv. Manuf. Technol. 2014, 72, 255–267. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G.; Baetz, B.W. An inexact probabilistic-possibilistic optimization framework for flood management in a hybrid uncertain environment. IEEE Trans. Fuzzy Syst. 2015, 23, 897–908. [Google Scholar] [CrossRef]
- Katagiri, H.; Kato, K.; Hasuike, T. A random fuzzy minimum spanning tree problem through a possibility-based value at risk model. Expert Syst. Appl. 2012, 39, 205–220. [Google Scholar] [CrossRef]
- Katagiri, H.; Sakawa, S.; Ishii, H. Fuzzy random bottleneck spanning tree problems using possibility and necessity measures. Eur. J. Oper. Res. 2004, 152, 88–95. [Google Scholar] [CrossRef]
- Gil, M.A. Fuzzy random variables: Development and state of the art. Proccedings of the 25th Linz Seminar on Fuzzy Set Theory, Linz, Austria, 3–7 February 2004; pp. 11–15. [Google Scholar]
- Gil, M.A.; Lopez-Diaz, M.; Ralescu, D.A. Overview on the development of fuzzy random variables. Fuzzy Sets Syst. 2006, 157, 2546–2557. [Google Scholar] [CrossRef]
- Klement, E.P.; Puri, M.L.; Ralescu, D.A. Limit theorems for fuzzy random variables. Proc. R. Soc. Lond. 1986, 407, 171–182. [Google Scholar] [CrossRef]
- Kwakernaak, H. Fuzzy random variables-1. Definitions and theorems. Inf. Sci. 1978, 15, 1–29. [Google Scholar] [CrossRef]
- Puri, M.L.; Ralescu, D.A. Fuzzy random variables. J. Math. Anal. Appl. 1986, 14, 409–422. [Google Scholar] [CrossRef]
- Shapiro, A.F. Fuzzy random variables. Insur. Math. Econ. 2009, 44, 307–314. [Google Scholar] [CrossRef]
- Luhandjula, M.K. Fuzziness and randomness in an optimization framework. Fuzzy Sets Syst. 1996, 77, 291–297. [Google Scholar] [CrossRef]
- Luhandjula, M.K.; Gupta, M.M. On fuzzy stochastic optimization. Fuzzy Sets Syst. 1996, 81, 47–55. [Google Scholar] [CrossRef]
- Liu, B. Fuzzy random chance-constrained programming. IEEE Trans. Fuzzy Syst. 2001, 9, 713–720. [Google Scholar]
- Liu, Y.-K.; Liu, B. A class of fuzzy random optimization: Expected value models. Inf. Sci. 2003, 155, 89–102. [Google Scholar] [CrossRef]
- Katagiri, H.; Mermri, E.B.; Sakawa, M.; Kato, K.; Nishizaki, I. A possibilistic and stochastic programming approach to fuzzy random MST problems. IEICE Trans. Inf. Syst. 2005, 88, 1912–1919. [Google Scholar] [CrossRef]
- Katagiri, H.; Sakawa, M. A study on fuzzy random linear programming problems based on possibility and necessity measures. In Fuzzy Sets and Systems-IFSA 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 725–732. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014; Available online: http://www.R-project.org/ (accessed on 6 September 2017).
- Dubois, D.; Prade, H. Possibility Theory; John Wiley & Sons: Hoboken, NJ, USA, 1988. [Google Scholar]
- Kruse, R.; Meyer, K.D. Statistics with Vague Data; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1987. [Google Scholar]
- Katagiri, H.; Sakawa, M.; Ishii, H. Studies of stochastic programming models using possibility and necessity measures for linear programming problems with fuzzy random variable coefficients. Electron. Commun. Jpn. Part III 2005, 88, 68–75. [Google Scholar] [CrossRef]
- Katagiri, H.; Sakawa, M.; Kato, K.; Ohsaki, S. An interactive fuzzy satisficing method based on the fractile optimization model using possibility and necessity measures for a fuzzy random multiobjective linear programming problem. Electron. Commun. Jpn. Part III 2005, 88, 20–28. [Google Scholar] [CrossRef]
- Katagiri, H.; Sakawa, M.; Ishii, H. A study on fuzzy random portfolio selection problems based on possibility and necessity measures. Sci. Math. Jpn. 2005, 61, 361–370. [Google Scholar]
- Katagiri, H.; Ishii, H. Chance constrained bottleneck spanning tree problem with fuzzy random edge costs. J. Oper. Res. Soc. Jpn. 2000, 43, 128–137. [Google Scholar] [CrossRef]
- Kaufmann, A.; Gupta, M.M. Introduction to Fuzzy Arithmetic. Theory and Applications; Van Nostrand Reinhold: New York, NY, USA, 1985. [Google Scholar]
- Kwakernaak, H. Fuzzy random variables-II. Algorithms and examples for the discrete case. Inf. Sci. 1979, 17, 253–278. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Fuzzy Sets and Systems: Theory and Application; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3–28. [Google Scholar] [CrossRef]
- Inuiguchi, M.; Ichihasi, H. Relative modalities and their use in possibilistic linear programming. Fuzzy Sets Syst. 1990, 35, 303–323. [Google Scholar] [CrossRef]
- Inuiguchi, M.; Ramik, J. Possibilistic linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst. 2000, 111, 3–28. [Google Scholar] [CrossRef]
- Branke, J.; Deb, K.; Miettinen, K.; Slowinski, R. Multiobjective Optimization: Interactive and Evolutionary Approaches; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Zimmermann, H.J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1978, 1, 5–55. [Google Scholar] [CrossRef]
- Lange, K. Numerical Analysis for Statisticians, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Zeng, X.; Kang, S.; Li, F.; Zhang, L.; Guo, P. Fuzzy multi-objective linear programming applying to crop area planning. Agric. Water Manag. 2010, 98, 134–142. [Google Scholar] [CrossRef]
- Katagiri, H.; Hayashida, T.; Nishizaki, I.; Guo, Q. A hybrid algorithm based on tabu search and ant colony optimization for k-minimum spanning tree problems. Expert Syst. Appl. 2012, 39, 5681–5686. [Google Scholar] [CrossRef]
- Sherf, A.F. Vegetable Diseases and Their Control; John Wiley & Sons: Hoboken, NJ, USA, 1986. [Google Scholar]
- Japanese Ministry of Agriculture, Forestry and Fisheries. Data for business statistics by agricultural products in 2007 (Japanese version only). Available online: http://www.e-stat.go.jp/SG1/estat/List.do?lid=000001061833 (accessed on 6 September 2017).
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
Event | Probability | Situation |
---|---|---|
average annual temperature is normal. | ||
average annual temperature is high. | ||
average annual temperature is low. | ||
it happens an epidemic disease for cucurbitaceous vegetables such | ||
as cucumber and watermelon, due to a very high-temperature. | ||
it happens an epidemic disease for solanaceae vegetables | ||
such as bell pepper, eggplant and tomato, due to a very low-temperature. | ||
average annual humidity is normal. | ||
average annual humidity is high. | ||
average annual humidity is low. | ||
it happens an epidemic disease for cucurbitaceous vegetables such | ||
as cucumber and watermelon, caused by very low-humidity. | ||
it happens an epidemic disease for solanaceae vegetables such | ||
as bell pepper, eggplant and tomato, due to a very low-temperature. |
Parameter | |||||
---|---|---|---|---|---|
89.50 | 95.10 | 83.80 | 97.50 | 61.80 | |
118.50 | 118.80 | 117.90 | 79.60 | 117.00 | |
122.60 | 123.60 | 125.60 | 113.30 | 83.40 | |
90.30 | 82.60 | 93.10 | 85.10 | 66.10 | |
25.80 | 28.90 | 24.40 | 21.50 | 23.70 | |
8.20 | 8.60 | 7.40 | 10.20 | 5.70 | |
10.70 | 10.90 | 10.60 | 8.50 | 11.20 | |
9.00 | 8.70 | 8.80 | 8.70 | 5.90 | |
8.10 | 7.60 | 8.40 | 7.30 | 5.80 | |
2.60 | 3.20 | 2.50 | 2.10 | 2.20 | |
11.40 | 11.80 | 11.30 | 12.20 | 8.60 | |
10.70 | 10.30 | 10.20 | 7.10 | 9.70 | |
9.70 | 9.10 | 9.80 | 8.60 | 5.10 | |
6.40 | 6.20 | 6.40 | 5.90 | 5.00 | |
3.90 | 4.20 | 3.60 | 3.30 | 3.60 |
Parameter | |||||
---|---|---|---|---|---|
97.00 | 100.20 | 90.30 | 102.50 | 124.50 | |
116.50 | 114.60 | 119.50 | 172.50 | 121.90 | |
131.10 | 133.80 | 128.10 | 146.40 | 172.50 | |
88.60 | 86.10 | 93.50 | 89.90 | 139.70 | |
27.60 | 23.10 | 28.10 | 31.40 | 29.50 | |
18.40 | 18.80 | 16.90 | 20.20 | 23.60 | |
11.70 | 11.40 | 12.20 | 17.90 | 13.20 | |
14.70 | 15.60 | 12.90 | 15.90 | 21.80 | |
5.40 | 5.20 | 5.80 | 5.30 | 7.20 | |
5.10 | 4.80 | 5.40 | 6.30 | 5.70 | |
6.80 | 7.10 | 6.80 | 8.10 | 11.70 | |
19.10 | 19.20 | 19.90 | 27.80 | 20.50 | |
6.60 | 7.20 | 6.60 | 7.00 | 8.80 | |
12.30 | 12.70 | 12.10 | 12.60 | 26.70 | |
3.30 | 2.90 | 3.70 | 3.80 | 3.50 |
LHS Value | |||||
---|---|---|---|---|---|
53.20 | 58.80 | 57.70 | 63.70 | 33.00 | |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
−1.00 | −1.00 | −1.00 | −1.00 | −1.00 | |
−53.90 | −80.50 | −75.30 | 0.00 | 0.00 | |
0.00 | 0.00 | 0.00 | −75.00 | −48.40 |
RHS Value | |||||
---|---|---|---|---|---|
30,000.00 | 500.00 | −300.00 | −10,500.00 | −7000.00 |
Parameter | |||||
---|---|---|---|---|---|
−89.50 | −95.10 | −83.80 | −97.50 | −61.80 | |
−118.50 | −118.80 | −117.90 | −79.60 | −117.00 | |
−122.60 | −123.60 | −125.60 | −113.30 | −83.40 | |
−90.30 | −82.60 | −93.10 | −85.10 | −66.10 | |
−25.80 | −28.90 | −24.40 | −21.50 | −23.70 | |
11.40 | 11.80 | 11.30 | 12.20 | 8.60 | |
10.70 | 10.30 | 10.20 | 7.10 | 9.70 | |
9.70 | 9.10 | 9.80 | 8.60 | 5.10 | |
6.40 | 6.20 | 6.40 | 5.90 | 5.00 | |
3.90 | 4.20 | 3.60 | 3.30 | 3.60 | |
8.20 | 8.60 | 7.40 | 10.20 | 5.70 | |
10.70 | 10.90 | 10.60 | 8.50 | 11.20 | |
9.00 | 8.70 | 8.80 | 8.70 | 5.90 | |
8.10 | 7.60 | 8.40 | 7.30 | 5.80 | |
2.60 | 3.20 | 2.50 | 2.10 | 2.20 |
No. of Decision Variable | 10 | 30 | 60 | 100 | 150 | 200 | 250 |
CPU Times (s) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katagiri, H.; Kato, K.; Uno, T. Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables. Symmetry 2017, 9, 254. https://doi.org/10.3390/sym9110254
Katagiri H, Kato K, Uno T. Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables. Symmetry. 2017; 9(11):254. https://doi.org/10.3390/sym9110254
Chicago/Turabian StyleKatagiri, Hideki, Kosuke Kato, and Takeshi Uno. 2017. "Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables" Symmetry 9, no. 11: 254. https://doi.org/10.3390/sym9110254
APA StyleKatagiri, H., Kato, K., & Uno, T. (2017). Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables. Symmetry, 9(11), 254. https://doi.org/10.3390/sym9110254