Identification of a One Health Intervention for Brucellosis in Jordan Using System Dynamics Modelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Articulation
2.2. Dynamic Hypothesis
2.3. Model Building
2.4. Model Testing
2.5. Intervention Designs and Evaluation
2.6. Evaluation of Interventions
3. Results
3.1. Model Sub-Systems
3.2. Model Testing
3.3. Sensitive Variables
3.4. Simulation of the Proposed Intervention Scenarios
3.5. The Cumulative Number of Reported Cases of Human Brucellosis
One Health Outcomes
4. Discussion
4.1. Intervention Scenario Discussion
4.1.1. Scenario One: Farmers’ Visits Intervention
4.1.2. Scenario Two: Market Trade Restriction
4.1.3. Scenario Three: Awareness of Farmers Intervention
4.1.4. Scenario Four: Test and Cull Intervention
4.1.5. Scenario Five: Slaughter of Aborted/Suspected Sheep
4.1.6. Scenarios Six and Seven: Vaccination and Immunity Effectiveness
4.1.7. Scenario Eight: One Health
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model Structures
Appendix B. Input Variables Used in the Model and Their Values
Variable Name | Unit | Value | References | |
Ewe Infection Section | ||||
1. | Target ram: ewe proportion | Dimensionless | 0.03 | [53] |
2. | Ewe birth probability | Dimensionless | 0.51 | [54] |
3. | Ewe maturation time | Month | 9 | [55] |
4. | General death rate (5 years) | Per month | 0.0176 | [37] |
5. | General slaughter rate | Per month | 0.025 | [6] |
6. | Vaccination immunity loss time | Month | 8 | [29,37] |
7. | Livestock Brucella transmission rate | Dimensionless | 0.00002125 | [56] |
8. | Fraction of infected sheep restocked | Dimensionless | 0.50 | [20] |
9. | Inflow time illegal livestock | Month | 86 | 2010–2011 |
10. | Probability of infected mature ewes—illegal | Dimensionless | 0.402 | Estimation |
11. | Restriction on illegal entry | Dimensionless | 0.50 | Not implemented |
12. | Restriction on buy and sell livestock | Dimensionless | 0 | Not implemented |
13. | Ewe cull fraction | Dimensionless | 0 | [6] |
14. | Aborted slaughter rate | Per month | 0.33 | [20] |
Ram Infection Section | ||||
15. | Ram maturation time | Month | 8 | [54] |
16. | Probability of re-stocked infected ram | Dimensionless | 0.49 | [20] |
17. | Ram removal rate | Per month | 0 | [6] |
18. | Infertile slaughter rate | Per month | 0.33 | [20] |
19. | Ram cull fraction | Per month | 0 | Not implemented |
20. | Testing and removing mature rams | Per month | 0 | Not implemented |
Pregnancy Section | ||||
21. | Breeding season | Month | every 10 months | |
22. | Successful pregnancy percentage | Per month | 93.4 | [57] |
23. | Pregnancy time | Month | 5 | [55] |
24. | Lactating time | Month | 5 | [55] |
25. | Twining rate | Per month | 0.05 | [54,55] |
26. | Normal abortion proportion | Per month | 0.0275 | [58] |
27. | Fraction change in served vaccinated ewes | Per month | 1 | |
28. | Test and cull infected lactating ewe fraction | Dimensionless | 0 | Not implemented |
Mating Probability Section | ||||
29. | Times and ewe being served per season | Dimensionless | 5 | Estimation |
30. | Isolated infected ram fraction | Dimensionless | 0.36 | [20] |
31. | Isolated infected ewe fraction | Dimensionless | 0.36 | [20] |
SIR Model Human | ||||
32. | Acquired awareness fraction (Vet) | Person/visit/month | 0.386 | [20] |
33. | Farmer normal visit fraction | visit/person | 0.38 | [20] |
34. | Fraction of people who consume milk produced by their sheep | Dimensionless | 0.75 | [20] |
35. | Refugee pulse value | Person | 120 | Estimation |
36. | Refugee pulse time | Month | 89 | 2010–2011 |
37. | Human birth rate | Per month | 0.002 | [59] |
38. | Human death rate | Per month | 0.002 | [59] |
39. | Number of susceptible farmers (farmers numbers) | Person | 31,400 | [6] |
40. | Transmission rate to human consumption | Per month | 3.19 × 10−7 | [60] |
41. | Transmission rate to human contact | Per month | 3.19 × 10−7 | [60] |
42. | Asymptomatic fraction | Per month | 0.205 | [27] |
43. | Symptomatic fraction | Per month | 0.795 | [27] |
44. | Successful treatment and recovery | Per month | 1 | [61] |
Food Safety (Milk Production) | ||||
45. | Milk production per sheep | Liter/sheep/month | 16 | [55] |
46. | Human milk consumption quantity | Liter/month | 7.09 | [53] |
47. | Pasteurization fraction | Dimensionless | 0.14 | [20] |
Public Health Sector | ||||
48. | Symptomatic visit fraction | Visit/person/month | 0.349 | Estimation |
49. | Proper case identification fraction per visit | Case/visit | 0.794 | Estimation |
50. | Sample collection fraction per case | Sample/case | 0.657 | Estimation |
51. | Diagnosed positively per sample | Confirmed casesSample | 0.92 | [62] |
52. | Reporting delay | Month | 12 | Yearly reporting |
53. | Delay time (end of reporting) | Month | 12 | Yearly publishing |
54. | Time of the increase in reporting | Month | 100 | Refugee inflow 2010–2011 |
55. | Added reported cases: refugees | Confirmed case | 2 | Estimation |
56. | Fraction of lost registered cases | Dimensionless | 0.2 | Estimation |
57. | Other reported cases | Confirmed case/month | 2 | Estimation |
Veterinary Health System | ||||
58. | Livestock vaccination rate | Per month | 0.015 | [47] |
59. | Farms identified per visit | Farm/visit | 1 | |
60. | Farmers fraction requesting medicine | Dimensionless | 0.39 | [20] |
61. | Sample collection fraction | Dimensionless | 0.20 | Estimation |
62. | RBT test (positive results fraction) | Dimensionless | 0.79 | [63] |
63. | Farms managed per farmer | Farm/person | 1 |
Appendix C
References
- Pappas, G.; Memish, Z.A. Brucellosis in the middle East: A persistent medical, socioeconomic and political issue. J. Chemother. 2007, 19, 243–248. [Google Scholar] [CrossRef]
- Dadar, M.; Shahali, Y.; Whatmore, A.M. Human brucellosis caused by raw dairy products: A review on the occurrence, major risk factors and prevention. Int. J. Food Microbiol. 2019, 2, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Pappas, G.; Papadimitriou, P.; Akritidis, N.; Christou, L.; Tsianos, E.V. The new global map of human brucellosis. Lancet. Infect. Dis. 2006, 6, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.R.; Cotrim de Almeida, J.V.F.; Cardoso de Oliveira, I.R.; Faria de Oliveira, L.; Pereira, L.J.; Zangerônimo, M.G.; Lage, A.P.; Dorneles, E.M.S. Occupational exposure to Brucella spp.: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2020, 14, e0008164. [Google Scholar] [CrossRef]
- Franc, K.A.; Krecek, R.C.; Häsler, B.N.; Arenas-Gamboa, A.M. Brucellosis remains a neglected disease in the developing world: A call for interdisciplinary action. BMC Public Health 2018, 18, 125. [Google Scholar] [CrossRef] [PubMed]
- Jordanian Ministry of Agriculture. MoA Report; Jordanian Ministry of Agriculture: Amman, Jordan, 2011. [Google Scholar]
- Musallam, I.I.; Abo-Shehada, M.N.; Hegazy, Y.M.; Holt, H.R.; Guitian, F.J. Systematic review of brucellosis in the Middle East: Disease frequency in ruminants and humans and risk factors for human infection. Epidemiol. Infect. 2016, 144, 671–685. [Google Scholar] [CrossRef]
- Ducrotoy, M.J.; Ammary, K.; Ait Lbacha, H.; Zouagui, Z.; Mick, V.; Prevost, L.; Bryssinckx, W.; Welburn, S.C.; Benkirane, A. Narrative overview of animal and human brucellosis in Morocco: Intensification of livestock production as a driver for emergence? Infect. Dis. Poverty 2015, 4, 57. [Google Scholar] [CrossRef]
- Buttigieg, S.C.; Savic, S.; Cauchi, D.; Lautier, E.; Canali, M.; Aragrande, M. Brucellosis Control in Malta and Serbia: A One Health Evaluation. Front. Vet. Sci. 2018, 5, 147. [Google Scholar] [CrossRef]
- Taha, H.; Durham, J.; Smith, C.; Reid, S. Qualitative Causal Loop Diagram: One Health Model Conceptualizing Brucellosis in Jordan. Systems 2023, 11, 422. [Google Scholar] [CrossRef]
- Rwashana, A.S.; Nakubulwa, S.; Nakakeeto-Kijjambu, M.; Adam, T. Advancing the application of systems thinking in health: Understanding the dynamics of neonatal mortality in Uganda. Health Res. Policy Syst. 2014, 12, 36. [Google Scholar] [CrossRef]
- Newell, B.; Proust, K.; Dyball, R.; McManus, P. Seeing obesity as a systems problem. N. S. W. Public Health Bull. 2007, 18, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Maani, K.; Cavana, R.Y. Systems Thinking, System Dynamics: Managing Change and Complexity, 2nd ed.; Prentice Hall: Auckland, NZ, USA, 2007. [Google Scholar]
- Sterman, J. Business Dynamics, System Thinking and Modeling for a Complex World; McGraw-Hill Education: Columbus, OH, USA, 2000; Volume 19. [Google Scholar]
- Elias, A.; Cavana, R.; Jackson, L. Stakeholder Analysis to Enrich the Systems Thinking and Modelling Methodology. In Proceedings of the 19th International Conference of the Systems Dynamics Society, Atlanta, GA, USA, 23–27 July 2001. [Google Scholar]
- WHO. WHO|The Human Resources for Health Toolkit. Available online: https://www.who.int/workforcealliance/knowledge/toolkit/hrhtoolkitpurposepages/en/index1.html (accessed on 1 October 2023).
- Halcomb, E.J.; Davidson, P.M. Is verbatim transcription of interview data always necessary? Appl. Nurs. Res. ANR 2006, 19, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Tessier, S. From Field Notes, to Transcripts, to Tape Recordings: Evolution or Combination? Int. J. Qual. Methods 2012, 11, 446–460. [Google Scholar] [CrossRef]
- Chichakly, T. Stella Architect. Available online: https://www.iseesystems.com/store/products/stella-architect.aspx (accessed on 1 October 2023).
- Musallam, I.I.; Abo-Shehada, M.N.; Guitian, J. Knowledge, Attitudes, and Practices Associated with Brucellosis in Livestock Owners in Jordan. Am. J. Trop. Med. Hyg. 2015, 93, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Dimiter, P. Analytical solutions and parameter estimation of the SIR epidemic model. Math. Anal. Infect. Dis. 2022, 163–189. [Google Scholar]
- Jordan Ministry of Health. Available online: http://www.moh.gov.jo/Pages/viewpage.aspx?pageID=240 (accessed on 1 October 2023).
- Burke, J.G.; Lich, K.H.; Neal, J.W.; Meissner, H.I.; Yonas, M.; Mabry, P.L. Enhancing dissemination and implementation research using systems science methods. Int. J. Behav. Med. 2015, 22, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Borshchev, A.; Filippov, A. From system dynamics and discrete event to practical agent based modeling: Reasons, Techniques, Tools. In Proceedings of the 22nd International Conference of the System Dynamics Society, Oxford, UK, 25–29 July 2004. [Google Scholar]
- Homer, J.B.; Hirsch, G.B. System dynamics modeling for public health: Background and opportunities. Am. J. Public Health 2006, 96, 452–458. [Google Scholar] [CrossRef]
- Li, Y.J.; Li, X.L.; Liang, S.; Fang, L.Q.; Cao, W.C. Epidemiological features and risk factors associated with the spatial and temporal distribution of human brucellosis in China. BMC Infect. Dis. 2013, 13, 547. [Google Scholar] [CrossRef]
- Zhen, Q.; Lu, Y.; Yuan, X.; Qiu, Y.; Xu, J.; Li, W.; Ke, Y.; Yu, Y.; Huang, L.; Wang, Y.; et al. Asymptomatic brucellosis infection in humans: Implications for diagnosis and prevention. Clin. Microbiol. Infect. 2013, 19, E395–E397. [Google Scholar] [CrossRef]
- Ritter, C.; Adams, C.L.; Kelton, D.F.; Barkema, H.W. Factors associated with dairy farmers’ satisfaction and preparedness to adopt recommendations after veterinary herd health visits. J. Dairy Sci. 2019, 102, 4280–4293. [Google Scholar] [CrossRef]
- Corbel, M.J. Brucellosis in Humans and Animals; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Zhang, N.; Zhou, H.; Huang, D.-S.; Guan, P. Brucellosis awareness and knowledge in communities worldwide: A systematic review and meta-analysis of 79 observational studies. PLoS Negl. Trop. Dis. 2019, 13, e0007366. [Google Scholar] [CrossRef]
- Brough, H.A.; Solomon, A.W.; Wall, R.A.; Isaza, F.; Pasvol, G. Brucellosis acquired by eating imported cheese. J. Paediatr. Child Health 2011, 47, 840–841. [Google Scholar] [CrossRef] [PubMed]
- Morgan, W.J. Brucellosis in animals: Diagnosis and control. Proc. R. Soc. Med. 1969, 62, 1050–1052. [Google Scholar]
- Abu Shaqra, Q.M. Epidemiological aspects of brucellosis in Jordan. Eur. J. Epidemiol. 2000, 16, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Svensson, C.; Lind, N.; Reyher, K.K.; Bard, A.M.; Emanuelson, U. Trust, feasibility, and priorities influence Swedish dairy farmers’ adherence and nonadherence to veterinary advice. J. Dairy Sci. 2019, 102, 10360–10368. [Google Scholar] [CrossRef] [PubMed]
- Bellemain, V. The role of veterinary services in animal health and food safety surveillance, and coordination with other services. Rev. Sci. Tech. 2013, 32, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Kebede, H.; Melaku, A.; Kebede, E. Constraints in animal health service delivery and sustainable improvement alternatives in North Gondar, Ethiopia. Onderstepoort J. Vet. Res. 2014, 81, 713. [Google Scholar] [CrossRef]
- Beauvais, W.; Musallam, I.; Guitian, J. Vaccination control programs for multiple livestock host species: An age-stratified, seasonal transmission model for brucellosis control in endemic settings. Parasites Vectors 2016, 9, 55. [Google Scholar] [CrossRef]
- World Organisation for Animal Health. Role and importance of the Veterinary Services. Available online: https://www.oie.int/solidarity/role-and-importance-of-veterinary-services/ (accessed on 11 June 2020).
- World Organisation for Animal Health. Brucellosis. Available online: https://www.oie.int/en/animal-health-in-the-world/animal-diseases/Brucellosis/ (accessed on 11 June 2020).
- Avila-Granados, L.M.; Garcia-Gonzalez, D.G.; Zambrano-Varon, J.L.; Arenas-Gamboa, A.M. Brucellosis in Colombia: Current Status and Challenges in the Control of an Endemic Disease. Front. Vet. Sci. 2019, 6, 321. [Google Scholar] [CrossRef]
- Lu, S.H.; Tian, B.C.; Kang, X.P.; Zhang, W.; Meng, X.P.; Zhang, J.B.; Lo, S.K. Public awareness of tuberculosis in China: A national survey of 69 253 subjects. Int. J. Tuberc. Lung. Dis. 2009, 13, 1493–1499. [Google Scholar]
- Dieste-Pérez, L.; Frankena, K.; Blasco, J.M.; Muñoz, P.M.; de Jong, M.C. Efficacy of antibiotic treatment and test-based culling strategies for eradicating brucellosis in commercial swine herds. Prev. Vet. Med. 2016, 126, 105–110. [Google Scholar] [CrossRef] [PubMed]
- FAO. Manual on Procedures for Disease Eradication by Stamping Out. Available online: http://www.fao.org/3/y0660e/Y0660E00.htm (accessed on 16 June 2020).
- Johansen, M.V.; Penrith, M.-L. Has Culling Been Properly Assessed as a Valid and Justified Control Intervention Measure for Zoonotic Diseases? PLoS Negl. Trop. Dis. 2009, 3, e541. [Google Scholar] [CrossRef] [PubMed]
- Penrith, M.; Thomson, G. Special factors affecting the control of livestock diseases in sub-Saharan Africa. Infect. Dis. Livest. 2004, 1, 171–177. [Google Scholar]
- Bard, A.M.; Main, D.; Roe, E.; Haase, A.; Whay, H.R.; Reyher, K.K. To change or not to change? Veterinarian and farmer perceptions of relational factors influencing the enactment of veterinary advice on dairy farms in the United Kingdom. J. Dairy Sci. 2019, 102, 10379–10394. [Google Scholar] [CrossRef] [PubMed]
- Musallam, I.I.; Abo-Shehada, M.; Omar, M.; Guitian, J. Cross-sectional study of brucellosis in Jordan: Prevalence, risk factors and spatial distribution in small ruminants and cattle. Prev. Vet. Med. 2015, 118, 387–396. [Google Scholar] [CrossRef]
- Blasco, J.M. A review of the use of B. melitensis Rev 1 vaccine in adult sheep and goats. Prev. Vet. Med. 1997, 31, 275–283. [Google Scholar] [CrossRef]
- WHO. WHO | One Health. 2017. Available online: https://www.who.int/news-room/questions-and-answers/item/one-health (accessed on 1 October 2023).
- Destoumieux-Garzón, D.; Mavingui, P.; Boetsch, G.; Boissier, J.; Darriet, F.; Duboz, P.; Fritsch, C.; Giraudoux, P.; Le Roux, F.; Morand, S.; et al. The One Health Concept: 10 Years Old and a Long Road Ahead. Front. Vet. Sci. 2018, 5, 14. [Google Scholar] [CrossRef]
- Ryu, S.; Kim, B.I.; Lim, J.S.; Tan, C.S.; Chun, B.C. One Health Perspectives on Emerging Public Health Threats. J. Prev. Med. Public Health 2017, 50, 411–414. [Google Scholar] [CrossRef]
- Sorrell, E.M.; El Azhari, M.; Maswdeh, N.; Kornblet, S.; Standley, C.J.; Katz, R.L.; Ablan, I.; Fischer, J.E. Mapping of Networks to Detect Priority Zoonoses in Jordan. Front. Public Health 2015, 3, 219. [Google Scholar] [CrossRef]
- Schoenian, S. A Beginner’s Guide to Raising Sheep. Available online: http://www.sheep101.info/201/ramrepro.html (accessed on 1 October 2023).
- Fao, H.E. Awassi Sheep. Available online: http://www.fao.org/3/p8550e/P8550E01.htm (accessed on 15 September 2020).
- Talafha, A.; Ababneh, M. Awassi Sheep Reproduction and Milk Production: Review; Springer: Berlin/Heidelberg, Germany, 2011; Volume 43, pp. 1319–1326. [Google Scholar]
- Zhou, L.; Fan, M.; Hou, Q.; Jin, Z.; Sun, X. Transmission dynamics and optimal control of brucellosis in Inner Mongolia of China. Math. Biosci. Eng. MBE 2018, 15, 543–567. [Google Scholar] [CrossRef]
- Ustuner, H. Main productive performance of Awassi sheep in the Central Anatolian Region of Turkey. Turk. J. Vet. Anim. Sci. 2013, 37, 271–276. [Google Scholar] [CrossRef]
- Al-Talafhah, A.H.; Lafi, S.Q.; Al-Tarazi, Y. Epidemiology of ovine brucellosis in Awassi sheep in Northern Jordan. Prev. Vet. Med. 2003, 60, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Jordan Birth Rate 1950–2020. Available online: https://www.macrotrends.net/countries/JOR/jordan/birth-rate (accessed on 16 January 2021).
- Lou, P.; Wang, L.; Zhang, X.; Xu, J.; Wang, K. Modelling Seasonal Brucellosis Epidemics in Bayingolin Mongol AutonomousPrefecture of Xinjiang, China, 2010-2014. BioMed. Res. Int. 2016, 2016, 5103718. [Google Scholar] [CrossRef] [PubMed]
- Treatment|Brucellosis|CDC. Available online: https://www.cdc.gov/brucellosis/treatment/index.html (accessed on 16 January 2021).
- Ruiz-Mesa, J.D.; Sanchez-Gonzalez, J.; Reguera, J.M.; Martin, L.; Lopez-Palmero, S.; Colmenero, J.D. Rose Bengal test: Diagnostic yield and use for the rapid diagnosis of human brucellosis in emergency departments in endemic areas. Clin. Microbiol. Infect. 2005, 11, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, A. Comparative Assessment of Sensitivity and Specificity of Rose Bengal Test and Modified In-house ELISA by using IS711 TaqMan Real Time PCR Assay as a Gold Standard for the Diagnosis of Bovine Brucellosis. Biomed. Pharmacol. J. 2018, 11, 951–957. [Google Scholar] [CrossRef]
Intervention Scenarios | Combined Reduction in Brucellosis |
---|---|
Test and cull | −154% |
One Health | −135% |
Market trade restrictions | −58% |
Slaughter of aborted or suspected | −48% |
Awareness | −20% |
Farmers visit intervention | −17% |
Combined vaccination and immunity | −16% |
Enhanced immunity | −14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, H.; Smith, C.; Durham, J.; Reid, S. Identification of a One Health Intervention for Brucellosis in Jordan Using System Dynamics Modelling. Systems 2023, 11, 542. https://doi.org/10.3390/systems11110542
Taha H, Smith C, Durham J, Reid S. Identification of a One Health Intervention for Brucellosis in Jordan Using System Dynamics Modelling. Systems. 2023; 11(11):542. https://doi.org/10.3390/systems11110542
Chicago/Turabian StyleTaha, Haitham, Carl Smith, Jo Durham, and Simon Reid. 2023. "Identification of a One Health Intervention for Brucellosis in Jordan Using System Dynamics Modelling" Systems 11, no. 11: 542. https://doi.org/10.3390/systems11110542
APA StyleTaha, H., Smith, C., Durham, J., & Reid, S. (2023). Identification of a One Health Intervention for Brucellosis in Jordan Using System Dynamics Modelling. Systems, 11(11), 542. https://doi.org/10.3390/systems11110542