An Inspiration Recommendation System for Automotive Styling Design Based on User Behavior Data and Group Preferences
Abstract
:1. Introduction
- The development of an IR system that leverages a three-dimensional integration of car user features, explicit feedback, and implicit feedback. The purpose is to inspire design concepts that resonate with the collective preferences of user groups, creating ISADs with a high match to the common preferences of aligned user groups.
- Establishing a method for identifying groups with aligned preferences through user portraits. The fixed association rule is applied to filter and identify relevant subsets, forming the foundational basis for constructing a user portrait. Then, groups are shaped with high styling scores, setting the stage for ISAD recommendations based on shared preferences.
- We introduce a method to address data sparsity in recommending design inspiration for durable products with low repurchase rates. Before NBPR’s biased recommendation, purchasing behavior guides preference identification, and expert scoring assesses similarity for car design elements of interest. The total score determines if the recommended parts align with user preferences. Additionally, a scoring system for preferences expands the range of user-preferred designs, mitigating the sparsity of the item preference matrix due to limited purchases, thereby enhancing the quality of ISAD recommendations.
- We propose an evaluation approach for group preference recommendations, assessing recommendation performance of individual users within aligned user groups using metrics from CF, HS-CF, and BPR models. This method, coupled with preprocessing through similarity clustering and common demand mining, indirectly evaluates the ability of IR to recommend preferences for the user group. It offers an objective standard for evaluating group preference recommendations, effectively tackling the challenge of diverse user preferences that render existing metrics inapplicable.
2. Related Work
2.1. Applications of Mining User Behavior Data
2.2. Recommendation System
2.3. Acquiring Inspiration for Automotive Design
3. Materials and Methods
3.1. Framework
3.2. Key Phrase Representation and Derivation
3.2.1. Clustering Feature Information and Determining the Special Association Rule
3.2.2. Development and Recommendation of NBPR
3.3. IR System Evaluation
3.3.1. Baseline Models
3.3.2. Evaluation Metrics
4. Case Study
4.1. Experimental Data Acquisition and Preprocessing
4.2. IR System Process
5. Results and Discussion
6. Conclusions
- (1)
- We construct an IR system tailored for automobile modeling design, addressing the gap in user group preference recommendation models for durable goods. By analyzing user behavior data, this approach uncovers high-density preference clusters of cars among similar groups, mitigating the sparsity of car purchase behavior. This offers a novel avenue for designers to draw inspiration.
- (2)
- This manuscript proposes a method for identifying users with similar preferences. By systematically cleaning user characteristic attribute information and explicit feedback data, we achieve the personalized identification of users with shared preferences. This lays the groundwork for the broader application of group preference recommendation systems.
- (3)
- We propose a multi-user joint evaluation method to assess the quality of a single user’s TOP-N list using multiple dimensions of indicators. This approach allows us to verify the recommendation accuracy of the IR system, providing an effective evaluation framework for group preference recommendations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.D.; Lou, S.H.; Zheng, H.; Feng, Y.X.; Gao, Y.C.; Zeng, S.Y.; Tan, J.R. A cognitive analysis-based key concepts derivation approach for product design. Expert Syst. Appl. 2024, 236, 121289. [Google Scholar] [CrossRef]
- Yang, K.; Li, Y.; Xiong, Y.; Yan, J.-Y.; Na, H.-Z. A model for computer-aided creative design based on cognition and iteration. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2016, 230, 3470–3487. [Google Scholar] [CrossRef]
- Lou, S.H.; Feng, Y.X.; Gao, Y.C.; Zheng, H.; Peng, T.; Tan, J.R. A function-behavior mapping approach for product conceptual design inspired by memory mechanism. Adv. Eng. Inf. 2023, 58, 102236. [Google Scholar] [CrossRef]
- Setchi, R.; Tang, Q.; Stankov, I. Semantic-based information retrieval in support of concept design. Adv. Eng. Inf. 2011, 25, 131–146. [Google Scholar] [CrossRef]
- Robinson, M.A. An empirical analysis of engineers’ information behaviors. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 640–658. [Google Scholar] [CrossRef]
- Ma, M.Y.; Chen, C.W.; Chang, Y.M. Using Kano model to differentiate between future vehicle-driving services. Int. J. Ind. Ergon. 2019, 69, 142–152. [Google Scholar] [CrossRef]
- Li, Z.; Tian, Z.G.; Wang, J.W.; Wang, W.M.; Huang, G.Q. Dynamic mapping of design elements and affective responses: A machine learning based method for affective design. J. Eng. Des. 2018, 29, 358–380. [Google Scholar] [CrossRef]
- Wu, X.Y.; Hong, Z.X.; Feng, Y.X.; Li, M.D.; Lou, S.H.; Tan, J.R. A semantic analysis-driven customer requirements mining method for product conceptual design. Sci. Rep. 2022, 12, 10139. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Li, X.; Zhao, W. Design creativity in product innovation. Int. J. Adv. Manuf. Technol. 2007, 33, 213–222. [Google Scholar] [CrossRef]
- Hou, X.; Gou, B.; Chen, D.; Chu, J. A semantic data-driven knowledge base construction method to assist designers in design inspiration based on traditional motifs. Adv. Eng. Inf. 2023, 56, 101987. [Google Scholar] [CrossRef]
- Saniuk, S.; Grabowska, S.; Gajdzik, B. Personalization of products in the industry 4.0 concept and its impact on achieving a higher level of sustainable consumption. Energies 2020, 13, 5895. [Google Scholar] [CrossRef]
- Cintia Ganesha Putri, D.; Leu, J.S.; Seda, P. Design of an unsupervised machine learning-based movie recommender system. Symmetry 2020, 12, 185. [Google Scholar] [CrossRef]
- Wang, C.D.; Deng, Z.H.; Lai, J.H.; Philip, S.Y. Serendipitous recommendation in e-commerce using innovator-based collaborative filtering. IEEE Trans. Cybern. 2018, 49, 2678–2692. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zheng, Y.F.; Jiang, J.H.; Ren, K. Toward privacy-preserving personalized recommendation services. Engineering 2018, 4, 21–28. [Google Scholar] [CrossRef]
- Wang, C.H. Incorporating user preferences and performance ratings into multi-functional tablet design and recommendation. Int. J. Ind. Eng. Theory Appl. Pract. 2020, 27, 308–320. [Google Scholar]
- Chen, B.Y.; Hu, X.B.; Huo, Y.L.; Deng, X. Research on Recommendation Method of Product Design Scheme Based on Multi-Way Tree and Learning-to-Rank. Machines 2020, 8, 30. [Google Scholar] [CrossRef]
- Zhang, Z.N.; Liu, L.; Wei, W.; Tao, F.; Li, T.M.; Liu, A. A systematic function recommendation process for data-driven product and service design. J. Mech. Des. 2017, 139, 111404. [Google Scholar] [CrossRef]
- Ali, S.; Wang, G.j.; Riaz, S. Aspect based sentiment analysis of ridesharing platform reviews for kansei engineering. IEEE Access 2020, 8, 173186–173196. [Google Scholar] [CrossRef]
- Jia, R.; Li, R.; Yu, M.; Wang, S. E-commerce purchase prediction approach by user behavior data. In Proceedings of the 2017 International Conference on Computer, Information and Telecommunication Systems (CITS), Dalian, China, 21–23 July 2017; pp. 1–5. [Google Scholar]
- Liu, L.F.; Li, Y.; Xiong, Y.; Cao, J.; Yuan, P. An EEG study of the relationship between design problem statements and cognitive behaviors during conceptual design. AI EDAM 2018, 32, 351–362. [Google Scholar] [CrossRef]
- Su, L.W.; Yang, Q.Y.; Chen, H.Y.; Zeng, X.F.; Hu, R.L. Design of Marketing Recommendation System for Power Grid Enterprises Based on User Behavior data. Tech. Autom. Appl. 2023, 42, 153–156. [Google Scholar]
- Lazer, D.; Brewer, D.; Christakis, N.; Fowler, J.; King, G. Life in the network: The coming age of computational social. Science 2009, 323, 721–723. [Google Scholar] [CrossRef] [PubMed]
- Thamaraiselvi, G.; Kaliammal, A. Data mining: Concepts and techniques. SRELS J. Inf. Manag. 2004, 41, 339–348. [Google Scholar]
- Rodden, K.; Leggett, M. Best of both worlds: Improving gmail labels with the affordances of folders. In CHI’10 Extended Abstracts on Human Factors in Computing Systems; ACM: New York, NY, USA, 2010; pp. 4587–4596. [Google Scholar]
- Adar, E.; Teevan, J.; Dumais, S.T. Large scale analysis of web revisitation patterns. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; pp. 1197–1206. [Google Scholar]
- Jung, S.; Herlocker, J.L.; Webster, J. Click data as implicit relevance feedback in web search. Inf. Process. Manag. 2007, 43, 791–807. [Google Scholar] [CrossRef]
- Jawaheer, G.; Szomszor, M.; Kostkova, P. Comparison of implicit and explicit feedback from an online music recommendation service. In Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems, Barcelona, Spain, 26 September 2010; pp. 47–51. [Google Scholar]
- Claypool, M.; Brown, D.; Le, P.; Waseda, M. Inferring user interest. IEEE Internet Comput. 2001, 5, 32–39. [Google Scholar] [CrossRef]
- Buscher, G.; White, R.W.; Dumais, S.; Huang, J. Large-scale analysis of individual and task differences in search result page examination strategies. In Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, Seattle, WA, USA, 8–12 February 2012; pp. 373–382. [Google Scholar]
- Balakrishnan, V.; Ahmadi, K.; Ravana, S.D. Improving retrieval relevance using users’ explicit feedback. Aslib J. Inf. Manag. 2016, 68, 76–98. [Google Scholar] [CrossRef]
- Moon, H.; Park, J.; Kim, S. The importance of an innovative product design on customer behavior: Development and validation of a scale. J. Prod. Innov. Manag. 2015, 32, 224–232. [Google Scholar] [CrossRef]
- Sun, H.; Guo, W.; Shao, H.Y.; Rong, B. Dynamical mining of ever-changing user requirements: A product design and improvement perspective. Adv. Eng. Inform. 2020, 46, 101174. [Google Scholar] [CrossRef]
- Chien, C.F.; Kerh, R.; Lin, K.Y.; Yu, A.P.I. Data-driven innovation to capture user-experience product design: An empirical study for notebook visual aesthetics design. Comput. Ind. Eng. 2016, 99, 162–173. [Google Scholar] [CrossRef]
- Gao, J.; Yao, Y.l.; Zhu, V.C.; Sun, L.Y.; Lin, L. Service-oriented manufacturing: A new product pattern and manufacturing paradigm. J. Intell. Manuf. 2011, 22, 435–446. [Google Scholar] [CrossRef]
- Zhao, X. Research on the Application of Interconnection Thinking in Product Design Innovation. Design 2023, 8, 79–84. [Google Scholar] [CrossRef]
- Alfarhood, S.; Alfarhood, M. CAML: A Context-Aware Metric Learning approach for improved recommender systems. Alex. Eng. J. 2024, 100, 53–60. [Google Scholar] [CrossRef]
- Van Meteren, R.; Van Someren, M. Using content-based filtering for recommendation. In Proceedings of the Machine Learning in the New Information Age: MLnet/ECML2000 Workshop, Barcelona, Spain, 30 May 2000; pp. 47–56. [Google Scholar]
- Iyengar, S.S.; Lepper, M.R. When choice is demotivating: Can one desire too much of a good thing? J. Personal. Soc. Psychol. 2000, 79, 995. [Google Scholar] [CrossRef] [PubMed]
- Loeb, S.; Terry, D. Information filtering. Commun. ACM 1992, 35, 26–28. [Google Scholar] [CrossRef]
- Cantador, I.; Fernández, M.; Vallet, D.; Castells, P.; Picault, J.; Ribiere, M. A multi-purpose ontology-based approach for personalised content filtering and retrieval. Adv. Semant. Media Adapt. Pers. 2008, 93, 25–51. [Google Scholar]
- Salter, J.; Antonopoulos, N. CinemaScreen recommender agent: Combining collaborative and content-based filtering. IEEE Intell. Syst. 2006, 21, 35–41. [Google Scholar] [CrossRef]
- Iwahama, K.; Hijikata, Y.; Nishida, S. Content-based filtering system for music data. In Proceedings of the 2004 International Symposium on Applications and the Internet Workshops, 2004 Workshops, Tokyo, Japan, 26–30 January 2004; pp. 480–487. [Google Scholar]
- Im, I.; Hars, A. Does a one-size recommendation system fit all? the effectiveness of collaborative filtering based recommendation systems across different domains and search modes. ACM Trans. Inf. Syst. 2007, 26, 4. [Google Scholar] [CrossRef]
- Cai, Y.; Leung, H.F.; Li, Q.; Min, H.; Tang, J.; Li, J. Typicality-based collaborative filtering recommendation. IEEE Trans. Knowl. Data Eng. 2013, 26, 766–779. [Google Scholar] [CrossRef]
- Liu, L.w.; Lecue, F.; Mehandjiev, N. Semantic content-based recommendation of software services using context. ACM Trans. Web 2013, 7, 1–20. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Liao, L.j. Next point-of-interest recommendation via a category-aware Listwise Bayesian Personalized Ranking. J. Comput. Sci. 2018, 28, 206–216. [Google Scholar] [CrossRef]
- De Campos, L.M.; Fernández-Luna, J.M.; Huete, J.F.; Rueda-Morales, M.A. Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks. Int. J. Approx. Reason. 2010, 51, 785–799. [Google Scholar] [CrossRef]
- Basilico, J.; Hofmann, T. Unifying collaborative and content-based filtering. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 9. [Google Scholar]
- Esteban, A.; Zafra, A.; Romero, C. Helping university students to choose elective courses by using a hybrid multi-criteria recommendation system with genetic optimization. Knowl.-Based Syst. 2020, 194, 105385. [Google Scholar] [CrossRef]
- Walek, B.; Fojtik, V. A hybrid recommender system for recommending relevant movies using an expert system. Expert Syst. Appl. 2020, 158, 113452. [Google Scholar] [CrossRef]
- Zhang, X.F.; Liu, H.J.; Chen, X.Y.; Zhong, J.B.; Wang, D. A novel hybrid deep recommendation system to differentiate user’s preference and item’s attractiveness. Inf. Sci. 2020, 519, 306–316. [Google Scholar] [CrossRef]
- Amato, F.; Moscato, V.; Picariello, A.; Piccialli, F. SOS: A multimedia recommender system for online social networks. Future Gener. Comput. Syst. 2019, 93, 914–923. [Google Scholar] [CrossRef]
- Sharma, S.; Koehl, L.; Bruniaux, P.; Zeng, X.; Wang, Z. Development of an intelligent data-driven system to recommend personalized fashion design solutions. Sensors 2021, 21, 4239. [Google Scholar] [CrossRef]
- Chen, D.l.; Cheng, P.P. Development of design system for product pattern design based on Kansei engineering and BP neural network. Int. J. Cloth. Sci. Technol. 2022, 34, 335–346. [Google Scholar] [CrossRef]
- Papagelis, M.; Plexousakis, D.; Kutsuras, T. Alleviating the sparsity problem of collaborative filtering using trust inferences. In Proceedings of the International Conference on Trust Management, Paris, France, 23–26 May 2005; pp. 224–239. [Google Scholar]
- Wang, D.; Du, R.; Yang, Q.; Yu, D.; Wan, F.; Gong, X.; Xu, G.; Deng, S. Category-aware self-supervised graph neural network for session-based recommendation. World Wide Web 2024, 27, 61. [Google Scholar] [CrossRef]
- Suryadi, F.M.; Baizal, Z. Ontology-based Car Recommender System Using Functional Requirements Interaction. In Proceedings of the 2023 International Conference on Advancement in Data Science, E-Learning and Information System (ICADEIS), Bali, Indonesia, 2–3 August 2023; pp. 1–6. [Google Scholar]
- Sawalkar, M.M.; Kumbhar, R.; Jamkar, K.; Mandlik, M.; Patil, H. Vehicle Insurance Recommendation System. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2022, 8, 584–589. [Google Scholar] [CrossRef]
- Alabduljabbar, R.; Alghamdi, M.; Alshamlan, H. Personalized Car Recommendations Using Knowledge-Based Methods. In Proceedings of the 2023 Intelligent Methods, Systems, and Applications (IMSA), Giza, Egypt, 15–16 July 2023; pp. 539–544. [Google Scholar]
- Khalid, H.; Dangelmaier, M.; Lim, T. The CATER approach to vehicle mass customization. In Proceedings of the 2007 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 2–5 December 2007; pp. 1273–1276. [Google Scholar]
- Tan, H.; Zhu, Y.; Zhao, J. Development of an automotive user interface design knowledge system. In Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Seoul, Republic of Korea, 17–20 September 2022; pp. 201–208. [Google Scholar]
- Sivaramakrishnan, A.; Krishnamachari, M.; Balasubramanian, V. Recommending customizable products: A multiple choice knapsack solution. In Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics, Larnaca, Cyprus, 13–15 July 2015; pp. 1–10. [Google Scholar]
- Fedullo, T.; Morato, A.; Tramarin, F.; Cattini, S.; Rovati, L. Artificial intelligence-based measurement systems for automotive: A comprehensive review. In Proceedings of the 2022 IEEE International Workshop on Metrology for Automotive (Metroautomotive), Modena, Italy, 4–6 July 2022; pp. 122–127. [Google Scholar]
- Burnap, A.; Hartley, J.; Pan, Y.; Gonzalez, R.; Papalambros, P.Y. Balancing design freedom and brand recognition in the evolution of automotive brand styling. Des. Sci. 2016, 2, e9. [Google Scholar] [CrossRef]
- Buxton, W.; Fitzmaurice, G.; Balakrishnan, R.; Kurtenbach, G. Large displays in automotive design. IEEE Comput. Graph. Appl. 2000, 20, 68–75. [Google Scholar] [CrossRef]
- Mougenot, C.; Bouchard, C.; Aoussat, A.; Westerman, S. Inspiration, images and design: An investigation of designers’ information gathering strategies. J. Des. Res. 2008, 7, 331–351. [Google Scholar] [CrossRef]
- Eckert, C.; Stacey, M.; Clarkson, P. Algorithms and inspirations: Creative reuse of design experience. In Proceedings of the Greenwich 2000 International Symposium: Digital Creativity; University of Greenwich: London, UK; pp. 1–10.
- Cooper, R.G.; Kleinschmidt, E.J. New products: What separates winners from losers? J. Prod. Innov. Manag. 1987, 4, 169–184. [Google Scholar] [CrossRef]
- Reinertsen, D.G.; Smith, P.G. The strategist’s role in shortening product development. J. Bus. Strategy 1991, 12, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Gick, M.L.; Holyoak, K.J. Analogical problem solving. Cogn. Psychol. 1980, 12, 306–355. [Google Scholar] [CrossRef]
- Chowdhury, H.; Islam, R.; Hussein, M.; Zaid, M.; Loganathan, B.; Alam, F. Design of an energy efficient car by biomimicry of a boxfish. Energy Procedia 2019, 160, 40–44. [Google Scholar] [CrossRef]
- Moulson, T.; Sproles, G. Styling strategy. Bus. Horiz. 2000, 43, 45–52. [Google Scholar] [CrossRef]
- Smeulders, A.W.; Worring, M.; Santini, S.; Gupta, A.; Jain, R. Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1349–1380. [Google Scholar] [CrossRef]
- Nagamachi, M. Kansei engineering: A new ergonomic consumer-oriented technology for product development. Int. J. Ind. Ergon. 1995, 15, 3–11. [Google Scholar] [CrossRef]
- Schütte, S.T.; Eklund, J.; Axelsson, J.R.; Nagamachi, M. Concepts, methods and tools in Kansei engineering. Theor. Issues Ergon. Sci. 2004, 5, 214–231. [Google Scholar] [CrossRef]
- Chang, H.C.; Lai, H.H.; Chang, Y.M. Expression modes used by consumers in conveying desire for product form: A case study of a car. Int. J. Ind. Ergon. 2006, 36, 3–10. [Google Scholar] [CrossRef]
- Du, J.; Li, Y.; Ma, J.l.; Xiong, Y.; Li, W. Retrieval of Semantic-Based Inspirational Sources for Emotional Design. Comput. Intell. Neurosci. 2018, 2018, 17. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Gou, B.; Chen, D.; Chu, J.; Ding, N.; Ma, L. A method to assist designers in optimizing the exterior styling of vehicles based on key features. Expert Syst. Appl. 2024, 254, 124485. [Google Scholar] [CrossRef]
- Zhao, Y. Research on the application of university teaching management evaluation system based on Apriori algorithm. Proc. J. Phys. Conf. Ser. 2021, 1883, 012033. [Google Scholar] [CrossRef]
- Et-Taleby, A.; Boussetta, M.; Benslimane, M. Faults Detection for Photovoltaic Field Based on K-Means, Elbow, and Average Silhouette Techniques through the Segmentation of a Thermal Image. Int. J. Photoenergy 2020, 2020, 6617597. [Google Scholar] [CrossRef]
- Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2013, 1, 90–95. [Google Scholar]
- Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, 26–28 May 1993; pp. 207–216. [Google Scholar]
- Aher, S.B.; Lobo, L. Combination of machine learning algorithms for recommendation of courses in E-Learning System based on historical data. Knowl.-Based Syst. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Yacouby, R.; Axman, D. Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models. In Proceedings of the First Workshop on Evaluation Comparison of NLP Systems 2020, Online, 20 November 2020. [Google Scholar]
- Shi, Y.; Karatzoglou, A.; Baltrunas, L.; Larson, M.; Oliver, N.; Hanjalic, A. CLiMF: Learning to maximize reciprocal rank with collaborative less-is-more filtering. In Proceedings of the Sixth ACM Conference on Recommender Systems, Dublin, Ireland, 9–13 September 2012; pp. 139–146. [Google Scholar]
- He, X.N.; Chen, T.; Kan, M.Y.; Chen, X. TriRank: Review-aware Explainable Recommendation by Modeling Aspects. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 18–23 October 2015; pp. 1661–1670. [Google Scholar]
- Liu, T.Y. Learning to rank for information retrieval. Found. Trends Inf. Retr. 2009, 3, 225–331. [Google Scholar] [CrossRef]
- Jalali, M.; Mustapha, N.; Sulaiman, M.N.; Mamat, A. WebPUM: A Web-based recommendation system to predict user future movements. Expert Syst. Appl. 2010, 37, 6201–6212. [Google Scholar] [CrossRef]
- Ko, H.; Lee, S.; Park, Y.; Choi, A. A survey of recommendation systems: Recommendation models, techniques, and application fields. Electronics 2022, 11, 141. [Google Scholar] [CrossRef]
- Li, D.; Li, M.; Han, G.; Li, T. A combined deep learning method for internet car evaluation. Neural Comput. Appl. 2021, 33, 4623–4637. [Google Scholar] [CrossRef]
- Wu, P.; Tang, T.; Zhou, L.; Martínez, L. A decision-support model through online reviews: Consumer preference analysis and product ranking. Inf. Process. Manag. 2024, 61, 103728. [Google Scholar] [CrossRef]
- Rahmani, M.K.I.; Pal, N.; Arora, K. Clustering of image data using K-means and fuzzy K-means. Int. J. Adv. Comput. Sci. Appl. 2014, 5, 160–163. [Google Scholar]
- Hu, Y.; Shi, W.; Li, H.; Hu, X. Mitigating data sparsity using similarity reinforcement-enhanced collaborative filtering. ACM Trans. Internet Technol. 2017, 17, 1–20. [Google Scholar] [CrossRef]
User | Feature Information Label | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
1 | 1 | 2 | 2 | 2 | 1 | 2 | 1 |
2 | 1 | 2 | 1 | 1 | 3 | 5 | 3 |
3 | 1 | 1 | 2 | 2 | 1 | 2 | 2 |
4 | 2 | 1 | 2 | 4 | 5 | 4 | 2 |
8055 | 1 | 3 | 1 | 1 | 1 | 3 | 3 |
8056 | 2 | 1 | 2 | 3 | 1 | 2 | 2 |
8057 | 1 | 2 | 3 | 1 | 2 | 3 | 5 |
Attribute Label | Cluster 1 (3623) | Cluster 2 (2410) | Cluster 3 (1465) | Cluster 4 (559) |
---|---|---|---|---|
Gender | Male, Female | Male, Female | Male | Male |
Age | 18–28, 29–38 | 18–28, 39–48 | 29–38, 49–58 | 39–48 |
Location | First-tier, Second-tier | First-tier, Fourth-tier | Third-tier, Else | Third-tier, Fourth-tier |
Fans | 501–2000, 5001–10,000 | <500, >10,000 | <500 | 2001–5000 |
Purpose | Commute, Appointment | Commute, Business | Pick up child | Transport, Business |
Price | <10 W, 10–20 W, 30–40 W | 20–30 W, >40 W | 10–20 W, 20–30 W, | 20–30 W |
Mileage | <2000 km, 2000–5000 km | 5000–10,000 km, 10,000 km–15,000 km | 2000–5000 km, >15,000 km | >15,000 km |
User Portrait | Antecedent x | Consequent y | Confidence Threshold | Support | Confidence | Cluster | Number of Users |
---|---|---|---|---|---|---|---|
[1] | A1, B1, C1, E1, | M5 | 0.3 | 0.11 | 0.42 | 1 | 387 |
[2] | A1, B3, C4, E3 | M5 | 0.3 | 0.04 | 0.31 | 2 | 94 |
Target Users | User Portrait | Explicit Feedback | Common Needs | Kernel Function | Percentage | Number of Model |
---|---|---|---|---|---|---|
[1] | 1 | H3, I5, J4, K3, L5, N4, O4 | Being greater than or equal to the existing score in all evaluation attribute labels | Linear | 0.22 | 85 |
[2] | 2 | H4, I4, J5, K4, L3, N5, O3 | Linear | 0.30 | 28 |
Target Users | Purchased Model | Recommendation List (TOP-5) | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
[1] | Mazda3Axelawhite | Beijing-U7 white | Malibu xl white | AudiA3 white | Mondeo white | Hongqi H6 white |
[2] | Wey VV7 grey | Volvo XC60 silver | Hongqi HS5 grey | Wey VV7 grey | Tiguan L black | Audi Q3 grey |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, W.; Yang, M.; Lin, L. An Inspiration Recommendation System for Automotive Styling Design Based on User Behavior Data and Group Preferences. Systems 2024, 12, 491. https://doi.org/10.3390/systems12110491
Cai W, Yang M, Lin L. An Inspiration Recommendation System for Automotive Styling Design Based on User Behavior Data and Group Preferences. Systems. 2024; 12(11):491. https://doi.org/10.3390/systems12110491
Chicago/Turabian StyleCai, Wanxin, Mingqing Yang, and Li Lin. 2024. "An Inspiration Recommendation System for Automotive Styling Design Based on User Behavior Data and Group Preferences" Systems 12, no. 11: 491. https://doi.org/10.3390/systems12110491
APA StyleCai, W., Yang, M., & Lin, L. (2024). An Inspiration Recommendation System for Automotive Styling Design Based on User Behavior Data and Group Preferences. Systems, 12(11), 491. https://doi.org/10.3390/systems12110491