Progress and Prospects of Microplastic Biodegradation Processes and Mechanisms: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Retrieval
2.2. Analysis Method
3. Results
3.1. Paper Type and Quantity
3.2. Authors, Countries, and Institutions
3.3. Co-Cited Journals and References
3.4. Co-Occurrence and Burst Keywords Discussion
4. Discussion
4.1. The Status of Microplastic Biodegradation Research
4.2. The Current Status of Functional Microorganism Development for Microplastic Biodegradation
4.2.1. Identified Microplastic Degradation of Bacteria and Degradation Mechanisms
4.2.2. Identified Microplastic Degradation and Degradation Mechanisms in Fungi
4.2.3. Microplastic Degradation by Insect Gut Microorganisms and Its Mechanism
4.2.4. Microplastic Degradation Enzymes
4.3. Current Status of Development of Biodegradation of Different Types of Microplastics
(A) | |||||
Taxon | Isolate | Time | % of Degradation | Microplastic | Reference |
Bacteria-Proteobacteria | Acinetobacter pitti IRN19 | 4 w | 26.8 ± 3.04 | LDPE | [59,60] |
Pseudomonas | 8 w | 5.95 ± 0.03 | PE | ||
Alcanivorax borkumensis | 80 d | 3.5 ± 0.34 | LDPE | ||
Pseudomona saeruginosa | 60 d | 51 | LDPE | ||
Achromobacter | 150 d | 9 | HDPE | ||
Comamonas | 90 d | 46.7 | PE | ||
Enterobacter | 30 d | 12 | HDPE | ||
Microbulbifer | 90 d | 36.88 ± 1.25 | HDPE | ||
Stenotrophomonas | 90 d | 18.18 ± 0.69 | HDPE | ||
Bacteria-Firmicutes | Geobacillus stearothermophilus FAFU011 | 56 d | 4.20 | PS | |
Paenibacillus sp. | 60 d | 14.7 | PE | ||
Lysinibacillus | 90 d | 36.88 ± 1.25 | HDPE | ||
Bacteria-Actinobacteria | Rhodococcus sp. IR-SGS-T6 | 60 d | 1.58 | LDPE | |
Nocardia sp. IR-SGS-T3 | 60 d | 1.58 | LDPE | ||
Streptomyces sp. | 60 d | 1.58 | LDPE | ||
Kocuria | 60 d | 14.7 | PE | ||
Bacteria-Bacteroidetes | Sphingobacterium | 28 d | 3.04 | LDPE | |
Fungi-Ascomycota | Aspergillus sp. | 30 d | - | PP/PBAT | |
Fusarium spp. | 28 d | 30 | LDPE | ||
Cladosporium pseudocladosporioides T1.PL.1 | 14 d | 65 | PU | ||
Penicillium sp. | 30 d | - | PP/PBAT | ||
Trichoderma | 28 d | - | PE | ||
Alternaria | 120 d | 52.02 | PE | ||
Lasiodiplodia | 90 d | - | LDPE | ||
(B) | |||||
Insect Name | Microplastic | Degradation Effect | Function Microbial | ||
Waxworms, Indian Mealmoths | Polyethene | Chew and feed on polyethylene; microbial degradation in the body | Nitrobacteria asburiae YT1, Bacillus sp. YPI | ||
Zophobas Morio | Polystyrene | Using polystyrene as the carbon source, the weight and number in feces are reduced, and microbial degradation in vivo | Klebsiella, Citrobacter | ||
Mealworms | Polyethene, polystyrene | Using these two microplastics as carbon sources, there is microbial degradation in the intestine with a combined effect | Citrobacter sp., Kosakonia sp. | ||
Dark Mealworms | Polystyrene | Using polystyrene as a carbon source, polystyrene depolymerization was found in the gut | Enterobacteriaceae | ||
Waxworms | Polyethene | Microbial degradation bacteria were identified in the gut | Enterobacter sp. DI | ||
Yellow Mealworms | Polystyrene | Microbial degradation bacteria were identified in the gut and feces | Aspergillus niger KHJ-1 | ||
Earthworm | Low-density polyethylene | Microbial degradation bacteria were identified in the gut | Rhodococcus jostii, Mycobacterium |
5. Conclusions
- Only a few types of degrading strains have been identified. Fungi are currently only found to degrade polyvinyl chloride (PVC). The role of bacteria and enzymes needs to be investigated further.
- Holistic knowledge of the degradation process needs to be obtained. Current research on the biodegradation and mechanisms of microplastics mainly focuses on the marine environment, with less data available for the soil, water, and atmospheric environments. This limits a holistic understanding of microplastic degradation and makes describing its mechanisms more challenging. Therefore, there is a need to investigate the processes by which microplastic degradation occurs in different environments and the links between them.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACS | American Chemical Society |
ASM | American Society for Microbiology |
UCAS | Chinese Academy of Sciences |
NWAFU | Northwest A&F University |
CAAS | Chinese Academy of Agricultural Sciences |
USA | The United States of America |
PAEs | Phthalates |
PBDEs | Polybrominated Diphenyl Ethers |
BPA | Biphenyl A |
POPs | Persistent Organic Pollutants |
PLA | Polylactic Acid |
PBAT | Polybutylene Terephthalate |
PCL | Polycaprolactone |
PS | Polystyrene |
BP | Bacillus parapsilosis |
BC | Bacillus cereus |
PP | Polypropylene |
PE | Polyethylene |
UN | United Nations |
PET | Polyethylene Terephthalate |
EG | Ethylene Glycol |
MHET | Monohydroxyethyl Tetrahydronaphthalene |
BHET | Bis(2-hydroxyethyl) terephthalate |
TPA | Terephthalic Acid |
TCA | Ultimately The Tricarboxylic Acid Cycle |
LDPE | Low Density Polyethylene |
HDPE | High Density Polyethylene |
PU | Polyurethane |
References
- Peng, G.; Xu, P.; Zhu, B.; Bai, M.; Li, D. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities. Environ. Pollut. 2018, 234, 448–456. [Google Scholar] [CrossRef]
- Zhang, G.-X.; Gu, J.-D. Biodegradability of plastics: The pitfalls. Appl. Environ. Microbiol. 2017, 2, 59–61. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Fendall, L.S.; Sewell, M.A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 2009, 58, 1225–1228. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.; Obbard, J. Prevalence of microplastics in Singapore’s coastal marine environment. Mar. Pollut. Bull. 2006, 52, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tan, Z.; Peng, J.; Qiu, Q.; Li, M. The behaviors of microplastics in the marine environment. Mar. Environ. Res. 2016, 113, 7–17. [Google Scholar] [CrossRef]
- Pan, T.; Liao, H.; Yang, F.; Sun, F.; Guo, Y.; Yang, H.; Feng, D.; Zhou, X.; Wang, Q. Review of microplastics in lakes: Sources, distribution characteristics, and environmental effects. Carbon Res. 2023, 2, 25. [Google Scholar] [CrossRef]
- Piehl, S.; Leibner, A.; Löder, M.G.J.; Dris, R.; Bogner, C.; Laforsch, C. Identification and quantification of macro- and microplastics on an agricultural farmland. Sci. Rep. 2018, 8, 17950. [Google Scholar] [CrossRef]
- Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa Reddy Reddy, M.; Basha, S.; Adimurthy, S.; Ramachandraiah, G. Description of the small plastics fragments in marine sediments along the Alang-Sosiya ship-breaking yard, India. Estuar. Coast. Shelf Sci. 2006, 68, 656–660. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Vanreusel, A.; Mees, J.; Janssen, C.R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 2013, 182, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Cerón, M.R.; Izquierdo, M.; Alegret, N.; Valdez, J.A.; Rodríguez-Fortea, A.; Olmstead, M.M.; Balch, A.L.; Poblet, J.M.; Echegoyen, L. Reactivity differences of Sc3N@C2n (2n = 68 and 80). Synthesis of the first methanofullerene derivatives of Sc3N@D5h-C80. Chem. Commun. 2016, 52, 64–67. [Google Scholar] [CrossRef]
- McDermid, K.J.; McMullen, T.L. Quantitative analysis of small-plastic debris on beaches in the Hawaiian archipelago. Mar. Pollut. Bull. 2004, 48, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Geng, S.; Wu, C.; Song, K.; Sun, F.; Visvanathan, C.; Xie, F.; Wang, Q. Microplastics contamination in different trophic state lakes along the middle and lower reaches of Yangtze River Basin. Environ. Pollut. 2019, 254, 112951. [Google Scholar] [CrossRef]
- Barnes, D.K.; Walters, A.; Gonçalves, L. Macroplastics at sea around Antarctica. Mar. Environ. Res. 2010, 70, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, M.; Sandhop, N.; Schewe, I.; D’hert, D. Observations of floating anthropogenic litter in the Barents Sea and Fram Strait, Arctic. Polar Biol. 2016, 39, 553–560. [Google Scholar] [CrossRef]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Liebezeit, G.; Dubaish, F. Microplastics in Beaches of the East Frisian Islands Spiekeroog and Kachelotplate. Bull. Environ. Contam. Toxicol. 2012, 89, 213–217. [Google Scholar] [CrossRef]
- Nor, N.H.M.; Obbard, J.P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bull. 2014, 79, 278–283. [Google Scholar] [CrossRef]
- Desforges, J.-P.W.; Galbraith, M.; Dangerfield, N.; Ross, P.S. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 2014, 79, 94–99. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, X.; White, J.C.; Tang, Z.; Wu, F. Micro/nanoplastics contamination of the terrestrial environment: Exposure routes, dose, and co-contaminants complicate the risk calculus. Carbon Res. 2023, 2, 24. [Google Scholar] [CrossRef]
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef]
- Qin, M.; Chen, C.; Song, B.; Shen, M.; Cao, W.; Yang, H.; Zeng, G.; Gong, J. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J. Clean. 2021, 312, 127816. [Google Scholar] [CrossRef]
- Yuan, J.; Ma, J.; Sun, Y.; Zhou, T.; Zhao, Y.; Yu, F. Microbial degradation and other environmental aspects of microplastics/plastics. Sci. Total Environ. 2020, 715, 136968. [Google Scholar] [CrossRef]
- Xiang, P.; Zhang, T.; Wu, Q.; Li, Q. Systematic Review of Degradation Processes for Microplastics: Progress and Prospects. Sustainability 2023, 15, 12698. [Google Scholar] [CrossRef]
- Devi, K.N.; Raju, P.; Santhanam, P.; Kumar, S.D.; Krishnaveni, N.; Roopavathy, J.; Perumal, P. Biodegradation of low-density polyethylene and polypropylene by microbes isolated from Vaigai River, Madurai, India. Arch. Microbiol. 2021, 203, 6253–6265. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Luo, Y.; Sha, A.; Xiao, W.; Xiong, Z.; Chen, X.; He, J.; Peng, L.; Zou, L. Analysis of synonymous codon usage patterns in mitochondrial genomes of nine Amanita species. Front. Microbiol. 2023, 8, 1134228. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Chen, Y.; Liu, Y.; Guo, H.-C. Scientometric analysis of phosphorus research in eutrophic lakes. Scientometrics 2015, 102, 1951–1964. [Google Scholar] [CrossRef]
- Liu, Z.; You, X. Recent progress of microplastic toxicity on human exposure base on in vitro and in vivo studies. Sci. Total Environ. 2023, 903, 166766. [Google Scholar] [CrossRef]
- Borrelle, S.B.; Ringma, J.; Law, K.L.; Monnahan, C.C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G.H.; Hilleary, M.A.; et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020, 369, 1515–1518. [Google Scholar] [CrossRef]
- Li, H.; Jiang, H.-D.; Yang, B.; Liao, H. An analysis of research hotspots and modeling techniques on carbon capture and storage. Sci. Total Environ. 2019, 687, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Du, J.; Gao, J.; Liu, G.; Song, Y.; Yang, A.; Wang, H.; Ding, Y.; Wang, Q. Bibliometric Profile of Global Microplastics Research from 2004 to 2019. Int. J. Environ. Res. Public Health 2020, 17, 5639. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Shi, S.; Shi, S.; Jia, Q.; Yuan, G.; Chu, Y.; Wang, H.; Hu, Y.; Cui, H. Bibliometric analysis of potassium channel research. Channels 2020, 14, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-D.; Huang, P.-H.; Chen, Y.-W.; Hsieh, C.-W.; Tain, Y.-L.; Lee, B.-H.; Hou, C.-Y.; Shih, M.-K. Sources, Degradation, Ingestion and Effects of Microplastics on Humans: A Review. Toxics 2023, 11, 747. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Y.; Wang, J.; Zhang, M.; Jia, W.; Qin, X. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ. Pollut. 2019, 254, 112983. [Google Scholar] [CrossRef]
- Krueger, M.C.; Harms, H.; Schlosser, D. Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol. 2015, 99, 8857–8874. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, L.; Chao, J.; Yang, X.; Wang, Q. Research Progress of Microplastics in Freshwater Sediments in China. Environ. Sci. Pollut. Res. 2020, 27, 31046–31060. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Sun, F.; Zhang, C.; Zhang, R.; Wang, H.; Wang, X. Progress of microplastic-microbial interactions in soil environment. J. Bioeng. 2023, 39, 500–515. [Google Scholar] [CrossRef]
- Feng, W.; Wang, T.; Zhu, Y.; Sun, F.; Giesy, J.P.; Wu, F. Chemical composition, sources, and ecological effect of organic phosphorus in water ecosystems: A review. Carbon Res. 2023, 2, 12. [Google Scholar] [CrossRef]
- Wang, T.; Feng, W.; Liu, J.; Fan, W.; Li, T.; Song, F.; Yang, F.; Liao, H.; Leppäranta, M. Eutrophication in cold-arid lakes: Molecular characteristics and transformation mechanism of DOM under microbial action at the ice-water interface. Carbon Res. 2024, 3, 42. [Google Scholar] [CrossRef]
- Muhonja, C.N.; Makonde, H.; Magoma, G.; Imbuga, M. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS ONE 2018, 13, e0198446. [Google Scholar] [CrossRef] [PubMed]
- Nauendorf, A.; Krause, S.; Bigalke, N.K.; Gorb, E.V.; Gorb, S.N.; Haeckel, M.; Wahl, M.; Treude, T. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments. Mar. Pollut. Bull. 2016, 103, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnol. Adv. 2020, 40, 107501. [Google Scholar] [CrossRef] [PubMed]
- Miri, S.; Saini, R.; Davoodi, S.M.; Pulicharla, R.; Brar, S.K.; Magdouli, S. Biodegradation of microplastics: Better late than never. Chemosphere 2022, 286, 131670. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; Huo, Y.; Yang, Y. Microbial Degradation and Valorization of Plastic Wastes. Front. Microbiol. 2020, 11, 442. [Google Scholar] [CrossRef]
- Zhang, A.; Hou, Y.; Wang, Q.; Wang, Y. Characteristics and polyethylene biodegradation function of a novel cold-adapted bacterial laccase from Antarctic sea ice psychrophile Psychrobacter sp. NJ228. J. Hazard. Mater. 2022, 39, 129656. [Google Scholar] [CrossRef]
- Kannan, M.; Mubarakali, D.; Thiyonila, B.; Krishnan, M.; Padmanaban, B.; Shantkriti, S. Insect gut as a bioresource for potential enzymes—An unexploited area for industrial biotechnology. Biocatal. Agric. Biotechnol. 2019, 18, 101010. [Google Scholar] [CrossRef]
- Amobonye, A.; Bhagwat, P.; Singh, S.; Pillai, S. Plastic biodegradation: Frontline microbes and their enzymes. Sci. Total Environ. 2021, 759, 143536. [Google Scholar] [CrossRef]
- Dey, A.S.; Bose, H.; Mohapatra, B.; Sar, P. Biodegradation of Unpretreated Low-Density Polyethylene (LDPE) by Stenotrophomonas sp. and Achromobacter sp., Isolated from Waste Dumpsite and Drilling Fluid. Front. Microbiol. 2020, 1, 603210. [Google Scholar] [CrossRef]
- Ahmed, T.; Shahid, M.; Azeem, F.; Rasul, I.; Shah, A.A.; Noman, M.; Hameed, A.; Manzoor, N.; Manzoor, I.; Muhammad, S. Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environ. Sci. Pollut. Res. 2018, 25, 7287–7298. [Google Scholar] [CrossRef]
- Kannahi, M.; Sudha, P. Screening of polythene and plastic degrading microbes from Muthupet mangrove soil. J. Chem. Pharm. Res. 2013, 5, 122–127. [Google Scholar]
- Auta, H.S. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ. Pollut. 2017, 231, 1552–1559. [Google Scholar] [CrossRef]
- Lv, S.; Li, Y.; Zhao, S.; Shao, Z. Biodegradation of Typical Plastics: From Microbial Diversity to Metabolic Mechanisms. Int. J. Mol. Sci. 2024, 25, 593. [Google Scholar] [CrossRef]
- Feng, W.; Deng, Y.; Cao, Y.; Liu, J.; Han, Y.; Liu, J.; Miao, Q.; Yang, F.; Zhu, Y.; Giesy, J.P. Biotechnology Remediation and Environmental Behavior of Microplastics in Soils: A Review. Rev. Environ. Contam. Toxicol. 2023, 261, 13. [Google Scholar] [CrossRef]
- Dey, S.; Anand, U.; Kumar, V.; Kumar, S.; Ghorai, M.; Ghosh, A.; Kant, N.; Suresh, S.; Bhattacharya, S.; Bontempi, E.; et al. Microbial strategies for degradation of microplastics generated from COVID-19 healthcare waste. Environ. Res. 2023, 216, 114438. [Google Scholar] [CrossRef]
- Gambarini, V.; Pantos, O.; Kingsbury, J.M.; Weaver, L.; Handley, K.M.; Lear, G. Phylogenetic distribution of plastic-degrading microorganisms. Msystems 2021, 6, e01112-20. [Google Scholar] [CrossRef]
Rank | Author | Country | N (%) | Co-Cited Author | Country | Citations |
---|---|---|---|---|---|---|
1 | Zhang Y | China | 17 (3.27%) | Lin Y | China | 356 |
2 | Li Y | China | 12 (2.31%) | Li C | China | 264 |
3 | Wang J | China | 12 (2.31%) | Li X | China | 212 |
4 | Chen J | China | 9 (1.73%) | Li C | China | 157 |
5 | Chen Y | China | 8 (1.54%) | Li X | China | 119 |
6 | Sun Y | China | 8 (1.54%) | Li X | China | 112 |
7 | Zhang S | China | 8 (1.54%) | Zhang S | China | 76 |
8 | Zhang Z | China | 8 (1.54%) | Xie Y | China | 72 |
9 | Liu Y | China | 7 (1.35%) | Lin Y | China | 172 |
10 | Wang X | China | 7 (1.35%) | Li C | China | 85 |
Rank | Cited Journals | Count | Year |
---|---|---|---|
1 | Environmental Science & Technology | 280 | 2012 |
2 | Science of the Total Environment | 267 | 2016 |
3 | Environmental Pollution | 263 | 2012 |
4 | Marine Pollution Bulletin | 241 | 2012 |
5 | Chemosphere | 234 | 2012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Bian, J.; Han, Y.; Liu, J.; Ma, Y.; Feng, W.; Deng, Y.; Yu, Y. Progress and Prospects of Microplastic Biodegradation Processes and Mechanisms: A Bibliometric Analysis. Toxics 2024, 12, 463. https://doi.org/10.3390/toxics12070463
Cao Y, Bian J, Han Y, Liu J, Ma Y, Feng W, Deng Y, Yu Y. Progress and Prospects of Microplastic Biodegradation Processes and Mechanisms: A Bibliometric Analysis. Toxics. 2024; 12(7):463. https://doi.org/10.3390/toxics12070463
Chicago/Turabian StyleCao, Yingnan, Jing Bian, Yunping Han, Jianguo Liu, Yuping Ma, Weiying Feng, Yuxin Deng, and Yaojiang Yu. 2024. "Progress and Prospects of Microplastic Biodegradation Processes and Mechanisms: A Bibliometric Analysis" Toxics 12, no. 7: 463. https://doi.org/10.3390/toxics12070463