Effect of Gossypol on Gene Expression in Swine Granulosa Cells
Abstract
:1. Introduction
2. Results
2.1. GP Exposure Affected the Number of Viable Swine GCs
2.2. Overview of Sequencing Data Using RNA-Seq Analysis
2.3. Differential Gene Expression of GCs by GP Exposure Using RNA-Seq Analysis
2.4. Validation of Selected Genes by qRT-PCR
2.5. GP Cytotoxicity Induced Various Changes in GCs’ Protein Expression
3. Discussion
4. Materials and Methods
4.1. Isolation and GCs Primary Culture
4.2. Subculture and GP Treatments
4.3. Measurement of Cell Proliferation
4.4. RNA Extraction, Library Construction, and Sequencing Analysis
4.5. Identification of DEGs
4.6. GO Enrichment and KEGG Pathway Enrichment Analysis
4.7. Quantitative RT-PCR
4.8. Western Blot Analysis
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brocas, C.; Rivera, R.M.; Paula-Lopes, F.F.; McDowell, L.R.; Calhoun, M.C.; Staples, C.R.; Wilkinson, N.S.; Boning, A.J.; Chenoweth, P.J.; Hansen, P.J. Deleterious Actions of Gossypol on Bovine Spermatozoa, Oocytes, and Embryos. Biol. Reprod. 1997, 57, 901–907. [Google Scholar] [CrossRef] [PubMed]
- El-Sharaky, A.S.; Newairy, A.A.; Elguindy, N.M.; Elwafa, A.A. Spermatotoxicity, Biochemical Changes and Histological Alteration Induced by Gossypol in Testicular and Hepatic Tissues of Male Rats. Food Chem. Toxicol. 2010, 48, 3354–3361. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, E.M. Gossypol: A Contraceptive for Men. Contraception 2002, 65, 259–263. [Google Scholar] [PubMed]
- Fombad, R.B.; Bryant, M.J. An Evaluation of the use of Cottonseed Cake in the Diet of Growing Pigs. Trop. Anim. Health Prod. 2004, 36, 295–305. [Google Scholar] [PubMed]
- Holmberg, C.A.; Weaver, L.D.; Guterbock, W.M.; Genes, J.; Montgomery, P. Pathological and Toxicological Studies of Calves Fed a High Concentration Cotton Seed Meal Diet. Vet. Pathol. 1988, 25, 147–153. [Google Scholar]
- Morgan, S.; Stair, E.L.; Martin, T.; Edwards, W.C.; Morgan, G.L. Clinical, Clinicopathologic, Pathologic, and Toxicologic Alterations Associated with Gossypol Toxicosis in Feeder Lambs. Am. J. Vet. Res. 1988, 49, 493–499. [Google Scholar]
- Wang, J.; Jin, L.; Li, X.; Deng, H.; Chen, Y.; Lian, Q.; Ge, R.; Deng, H. Gossypol Induces Apoptosis in Ovarian Cancer Cells through Oxidative Stress. Mol. BioSystems 2013, 9, 1489–1497. [Google Scholar]
- Kovacic, P. Mechanism of Drug and Toxic Actions of Gossypol: Focus on Reactive Oxygen Species and Electron Transfer. Curr. Med. Chem. 2003, 10, 2711–2718. [Google Scholar]
- Tso, W.; Lee, C. Gossypol Uncoupling of Respiratory Chain and Oxidative Phosphorylation in Ejaculated Boar Spermatozoa. Contraception 1982, 25, 649–655. [Google Scholar] [CrossRef]
- Payne, A.H.; Hales, D.B. Overview of Steroidogenic Enzymes in the Pathway from Cholesterol to Active Steroid Hormones. Endocr. Rev. 2004, 25, 947–970. [Google Scholar]
- Zhang, J.; Cheng, X.; Jin, Q.; Su, X.; Li, M.; Yan, C.; Jiao, X.; Li, D.; Lin, Y.; Cai, Y. Comparison of the Transcriptomic Analysis between Two Chinese White Pear (Pyrus Bretschneideri Rehd.) Genotypes of Different Stone Cells Contents. PLoS ONE 2017, 12, e0187114. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Cao, M.; Lai, F.; Yang, F.; Ge, W.; Zhang, X.; Cheng, S.; Sun, X.; Qin, G.; Shen, W. Oxidative Stress Induced by Zearalenone in Porcine Granulosa Cells and its Rescue by Curcumin in Vitro. PLoS ONE 2015, 10, e0127551. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yuan, H.; Guo, C.; Lu, Y.; Deng, S.; Yang, Y.; Wei, Q.; Wen, L.; He, Z. Zearalenone Induces Apoptosis and Necrosis in Porcine Granulosa Cells Via a Caspase-3-and Caspase-9-dependent Mitochondrial Signaling Pathway. J. Cell. Physiol. 2012, 227, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Caloni, F.; Ranzenigo, G.; Cremonesi, F.; Spicer, L.J. Effects of a Trichothecene, T-2 Toxin, on Proliferation and Steroid Production by Porcine Granulosa Cells. Toxicon 2009, 54, 337–344. [Google Scholar] [CrossRef]
- He, X.; Wu, C.; Cui, Y.; Zhu, H.; Gao, Z.; Li, B.; Hua, J.; Zhao, B. The Aldehyde Group of Gossypol Induces Mitochondrial Apoptosis Via ROS-SIRT1-p53-PUMA Pathway in Male Germline Stem Cell. Oncotarget 2017, 8, 100128–100140. [Google Scholar] [CrossRef]
- Zhang, G.L.; Zhang, R.Q.; Sun, X.F.; Cheng, S.F.; Wang, Y.F.; Ji, C.L.; Feng, Y.Z.; Yu, J.; Ge, W.; Zhao, Y.; et al. RNA-Seq Based Gene Expression Analysis of Ovarian Granulosa Cells Exposed to Zearalenone in Vitro: Significance to Steroidogenesis. Oncotarget 2017, 8, 64001–64014. [Google Scholar] [CrossRef]
- Gadelha, I.C.; Fonseca, N.B.; Oloris, S.C.; Melo, M.M.; Soto-Blanco, B. Gossypol Toxicity from Cottonseed Products. Sci. World J. 2014, 2014, 231635. [Google Scholar] [CrossRef]
- Gu, Y.; Li, P.K.; Lin, Y.C.; Rikihisa, Y.; Brueggemeier, R.W. Gossypolone Suppresses Progesterone Synthesis in Bovine Luteal Cells. J. Steroid Biochem. Mol. Biol. 1991, 38, 709–715. [Google Scholar] [CrossRef]
- Lin, Y.C.; Coskun, S.; Sanbuissho, A. Effects of Gossypol on in Vitro Bovine Oocyte Maturation and Steroidogenesis in Bovine Granulosa Cells. Theriogenology 1994, 41, 1601–1611. [Google Scholar] [CrossRef]
- Huang, W.; Khatib, H. Comparison of Transcriptomic Landscapes of Bovine Embryos using RNA-Seq. BMC Genom. 2010, 11, 711. [Google Scholar] [CrossRef]
- Zhao, S.; Fung-Leung, W.P.; Bittner, A.; Ngo, K.; Liu, X. Comparison of RNA-Seq and Microarray in Transcriptome Profiling of Activated T Cells. PLoS ONE 2014, 9, e78644. [Google Scholar] [CrossRef] [PubMed]
- Croucher, N.J.; Thomson, N.R. Studying Bacterial Transcriptomes using RNA-Seq. Curr. Opin. Microbiol. 2010, 13, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Marioni, J.C.; Mason, C.E.; Mane, S.M.; Stephens, M.; Gilad, Y. RNA-Seq: An Assessment of Technical Reproducibility and Comparison with Gene Expression Arrays. Genome Res. 2008, 18, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Shuangshuang, G.; Jianning, Y.; Zhendan, S. Systemic Analysis of Gene Expression Profiles in Porcine Granulosa Cells during Aging. Oncotarget 2017, 8, 96588–96603. [Google Scholar] [CrossRef]
- Liu, X.L.; Wu, R.Y.; Sun, X.F.; Cheng, S.F.; Zhang, R.Q.; Zhang, T.Y.; Zhang, X.F.; Zhao, Y.; Shen, W.; Li, L. Mycotoxin Zearalenone Exposure Impairs Genomic Stability of Swine Follicular Granulosa Cells in Vitro. Int. J. Biol. Sci. 2018, 14, 294–305. [Google Scholar] [CrossRef]
- Sadowska, A.; Nynca, A.; Ruszkowska, M.; Paukszto, L.; Myszczynski, K.; Orlowska, K.; Swigonska, S.; Molcan, T.; Jastrzebski, J.P.; Ciereszko, R.E. Transcriptional Profiling of Porcine Granulosa Cells Exposed to 2, 3, 7, 8-Tetrachlorodibenzo-P-Dioxin. Chemosphere 2017, 178, 368–377. [Google Scholar] [CrossRef]
- Sahin, F.; Avci, C.B.; Gunduz, C.; Sezgin, C.; Simsir, I.Y.; Saydam, G. Gossypol Exerts its Cytotoxic Effect on HL-60 Leukemic Cell Line Via Decreasing Activity of Protein Phosphatase 2A and Interacting with Human Telomerase Reverse Transcriptase Activity. Hematology 2010, 15, 144–150. [Google Scholar]
- Volate, S.R.; Kawasaki, B.T.; Hurt, E.M.; Milner, J.A.; Kim, Y.S.; White, J.; Farrar, W.L. Gossypol Induces Apoptosis by Activating p53 in Prostate Cancer Cells and Prostate Tumor-Initiating Cells. Mol. Cancer. Ther. 2010, 9, 461–470. [Google Scholar] [CrossRef]
- Moon, D.; Choi, Y.H.; Moon, S.; Kim, W.; Kim, G. Gossypol Decreases Tumor Necrosis Factor-A-Induced Intercellular Adhesion Molecule-1 Expression Via Suppression of NF-κB Activity. Food Chem. Toxicol. 2011, 49, 999–1005. [Google Scholar]
- Atmaca, H.; Gorumlu, G.; Karaca, B.; Degirmenci, M.; Tunali, D.; Cirak, Y.; Purcu, D.U.; Uzunoglu, S.; Karabulut, B.; Sanli, U.A. Combined Gossypol and Zoledronic Acid Treatment Results in Synergistic Induction of Cell Death and Regulates Angiogenic Molecules in Ovarian Cancer Cells. Eur. Cytokine Netw. 2009, 20, 121–130. [Google Scholar]
- Konac, E.; Ekmekci, A.; Yurtcu, E.; Ergun, M.A. An in Vitro Study of Cytotoxic Effects of Gossypol on Human Epidermoid Larynx Carcinoma Cell Line (HEp-2). Exp. Oncol. 2005, 27, 81–83. [Google Scholar] [PubMed]
- Badawy, S.Z.; Souid, A.; Cuenca, V.; Montalto, N.; Shue, F. Gossypol Inhibits Proliferation of Endometrioma Cells in Culture. Asian J. Androl. 2007, 9, 388–393. [Google Scholar] [PubMed]
- Basini, G.; Bussolati, S.; Baioni, L.; Grasselli, F. Gossypol, a Polyphenolic Aldehyde from Cotton Plant, Interferes with Swine Granulosa Cell Function. Domest. Anim. Endocrinol. 2009, 37, 30–36. [Google Scholar] [PubMed]
- Hsiao, W.T.; Tsai, M.D.; Jow, G.M.; Tien, L.T.; Lee, Y.J. Involvement of Smac, p53, and Caspase Pathways in Induction of Apoptosis by Gossypol in Human Retinoblastoma Cells. Mol. Vis. 2012, 18, 2033–2042. [Google Scholar] [PubMed]
- Fang, Y.; Yu, H.; Liang, X.; Xu, J.; Cai, X. Chk1-Induced CCNB1 Overexpression Promotes Cell Proliferation and Tumor Growth in Human Colorectal Cancer. Cancer Biol. Ther. 2014, 15, 1268–1279. [Google Scholar]
- Adhikari, D.; Zheng, W.; Shen, Y.; Gorre, N.; Ning, Y.; Halet, G.; Kaldis, P.; Liu, K. Cdk1, but Not Cdk2, is the Sole Cdk that is Essential and Sufficient to Drive Resumption of Meiosis in Mouse Oocytes. Hum. Mol. Genet. 2012, 21, 2476–2484. [Google Scholar] [CrossRef]
- Jiang, J.; Slivova, V.; Jedinak, A.; Sliva, D. Gossypol Inhibits Growth, Invasiveness, and Angiogenesis in Human Prostate Cancer Cells by Modulating NF-κB/AP-1 Dependent-and Independent-Signaling. Clin. Exp. Metastasis 2012, 29, 165–178. [Google Scholar]
- Kuroda, T.; Naito, K.; Sugiura, K.; Yamashita, M.; Takakura, I.; Tojo, H. Analysis of the Roles of Cyclin B1 and Cyclin B2 in Porcine Oocyte Maturation by Inhibiting Synthesis with Antisense RNA Injection. Biol. Reprod. 2004, 70, 154–159. [Google Scholar]
- Sugiura, K.; Naito, K.; Endo, T.; Tojo, H. Study of Germinal Vesicle Requirement for the Normal Kinetics of Maturation/M-Phase-Promoting Factor Activity during Porcine Oocyte Maturation. Biol. Reprod. 2006, 74, 593–600. [Google Scholar] [CrossRef]
- Stanley, J.A.; Lee, J.; Nithy, T.K.; Arosh, J.A.; Burghardt, R.C.; Banu, S.K. Chromium-VI Arrests Cell Cycle and Decreases Granulosa Cell Proliferation by Down-Regulating Cyclin-Dependent Kinases (CDK) and Cyclins and Up-Regulating CDK-Inhibitors. Reprod. Toxicol. 2011, 32, 112–123. [Google Scholar]
- Mendez, R.; Richter, J.D. Translational Control by CPEB: A Means to the End. Nat. Rev. Mol. Cell Biol. 2001, 2, 521. [Google Scholar] [CrossRef] [PubMed]
- Komrskova, P.; Susor, A.; Malik, R.; Prochazkova, B.; Liskova, L.; Supolikova, J.; Hladky, S.; Kubelka, M. Aurora Kinase A is Not Involved in CPEB1 Phosphorylation and Cyclin B1 mRNA Polyadenylation during Meiotic Maturation of Porcine Oocytes. PLoS ONE 2014, 9, e101222. [Google Scholar] [CrossRef] [PubMed]
- Nakahata, S.; Kotani, T.; Mita, K.; Kawasaki, T.; Katsu, Y.; Nagahama, Y.; Yamashita, M. Involvement of Xenopus Pumilio in the Translational Regulation that is Specific to Cyclin B1 mRNA during Oocyte Maturation. Mech. Dev. 2003, 120, 865–880. [Google Scholar] [CrossRef] [PubMed]
- Stebbins-Boaz, B.; Cao, Q.; de Moor, C.H.; Mendez, R.; Richter, J.D. Maskin is a CPEB-Associated Factor that Transiently Interacts with eIF-4E. Mol. Cell 1999, 4, 1017–1027. [Google Scholar]
- Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix Metalloproteinases and the Regulation of Tissue Remodelling. Nat. Rev. Mol. Cell Biol. 2007, 8, 221. [Google Scholar] [CrossRef] [PubMed]
- Curry, T.E., Jr.; Osteen, K.G. Cyclic Changes in the Matrix Metalloproteinase System in the Ovary and Uterus. Biol. Reprod. 2001, 64, 1285–1296. [Google Scholar] [CrossRef]
- Zhu, G.; Kang, L.; Wei, Q.; Cui, X.; Wang, S.; Chen, Y.; Jiang, Y. Expression and Regulation of MMP1, MMP3, and MMP9 in the Chicken Ovary in Response to Gonadotropins, Sex Hormones, and TGFB1. Biol. Reprod. 2014, 90, 57, 1–11. [Google Scholar] [CrossRef]
- Kuittinen, O.; Apaja-Sarkkinen, M.; Turpeenniemi-Hujanen, T. Gelatinases (MMP-2 and MMP-9), TIMP-1 Expression and the Extent of Neovascularization in Aggressive non-Hodgkin’s Lymphomas. Eur. J. Haematol. 2003, 71, 91–99. [Google Scholar] [CrossRef]
- Shin, S.; Sung, B.; Cho, Y.; Kim, H.; Ha, N.; Hwang, J.; Chung, C.; Jung, Y.; Oh, B. An Anti-Apoptotic Protein Human Survivin is a Direct Inhibitor of Caspase-3 and-7. Biochemistry 2001, 40, 1117–1123. [Google Scholar] [CrossRef]
- Branca, M.; Giorgi, C.; Santini, D.; Di Bonito, L.; Ciotti, M.; Costa, S.; Benedetto, A.; Casolati, E.A.; Favalli, C.; Paba, P. Survivin as a Marker of Cervical Intraepithelial Neoplasia and High-Risk Human Papillomavirus and a Predictor of Virus Clearance and Prognosis in Cervical Cancer. Am. J. Clin. Pathol. 2005, 124, 113–121. [Google Scholar] [CrossRef]
- Rahman, K.W.; Li, Y.; Wang, Z.; Sarkar, S.H.; Sarkar, F.H. Gene Expression Profiling Revealed Survivin as a Target of 3,3′-Diindolylmethane-Induced Cell Growth Inhibition and Apoptosis in Breast Cancer Cells. Cancer Res. 2006, 66, 4952–4960. [Google Scholar] [PubMed]
- Barć, J.; Karpeta, A.; Gregoraszczuk, E.Ł. Action of Halowax 1051 on Enzymes of Phase I (CYP1A1) and Phase II (SULT1A and COMT) Metabolism in the Pig Ovary. Int. J. Endocrinol. 2013, 2013, 590261. [Google Scholar] [PubMed]
- Cannady, E.A.; Dyer, C.A.; Christian, P.J.; Sipes, I.G.; Hoyer, P.B. Expression and Activity of Cytochromes P450 2E1, 2A, and 2B in the Mouse Ovary: The Effect of 4-Vinylcyclohexene and its Diepoxide Metabolite. Toxicol. Sci. 2003, 73, 423–430. [Google Scholar] [PubMed]
- Xu, C.; Li, C.Y.; Kong, A.T. Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics. Arch. Pharm. Res. 2005, 28, 249. [Google Scholar]
- Ptak, A.; Ludewig, G.; Kapiszewska, M.; Magnowska, Z.; Lehmler, H.; Robertson, L.W.; Gregoraszczuk, E.L. Induction of Cytochromes P450, Caspase-3 and DNA Damage by PCB3 and its Hydroxylated Metabolites in Porcine Ovary. Toxicol. Lett. 2006, 166, 200–211. [Google Scholar] [CrossRef]
- Karpeta, A.; Warzecha, K.; Jerzak, J.; Ptak, A.; Gregoraszczuk, E.L. Activation of the Enzymes of Phase I (CYP2B1/2) and Phase II (SULT1A and COMT) Metabolism by 2, 2′, 4, 4′-Tetrabromodiphenyl Ether (BDE47) in the Pig Ovary. Reprod. Toxicol. 2012, 34, 436–442. [Google Scholar]
- Pocar, P.; Klonisch, T.; Brandsch, C.; Eder, K.; Frohlich, C.; Hoang-Vu, C.; Hombach-Klonisch, S. AhR-Agonist-Induced Transcriptional Changes of Genes Involved in Thyroid Function in Primary Porcine Thyrocytes. Toxicol. Sci. 2006, 89, 408–414. [Google Scholar] [CrossRef]
- Jackowska, M.; Kempisty, B.; Woźna, M.; Piotrowska, H.; Antosik, P.; Zawierucha, P.; Bukowska, D.; Nowicki, M.; Jaśkowski, J.; Brüssow, K. Differential Expression of GDF9, TGFB1, TGFB2 and TGFB3 in Porcine Oocytes Isolated from Follicles of Different Size before and After Culture in Vitro. Acta Vet. Hung. 2013, 61, 99–115. [Google Scholar] [CrossRef]
- Dragovic, R.A.; Ritter, L.J.; Schulz, S.J.; Amato, F.; Thompson, J.G.; Armstrong, D.T.; Gilchrist, R.B. Oocyte-Secreted Factor Activation of SMAD 2/3 Signaling Enables Initiation of Mouse Cumulus Cell Expansion. Biol. Reprod. 2007, 76, 848–857. [Google Scholar]
- Fair, T. Mammalian Oocyte Development: Checkpoints for Competence. Reprod. Fertil. Dev. 2009, 22, 13–20. [Google Scholar]
- Luo, S.; Kleemann, G.A.; Ashraf, J.M.; Shaw, W.M.; Murphy, C.T. TGF-Β and Insulin Signaling Regulate Reproductive Aging Via Oocyte and Germline Quality Maintenance. Cell 2010, 143, 299–312. [Google Scholar] [PubMed]
- da Silveira, J.C.; Winger, Q.A.; Bouma, G.J.; Carnevale, E.M. Effects of Age on Follicular Fluid Exosomal microRNAs and Granulosa Cell Transforming Growth Factor-Β Signalling during Follicle Development in the Mare. Reprod. Fertil. Dev. 2015, 27, 897–905. [Google Scholar] [PubMed]
- Bhowmick, D.; Srivastava, S.; D’Silva, P.; Mugesh, G. Highly Efficient Glutathione Peroxidase and Peroxiredoxin Mimetics Protect Mammalian Cells Against Oxidative Damage. Angew. Chem. 2015, 127, 8569–8573. [Google Scholar]
- Wood, Z.A.; Schröder, E.; Harris, J.R.; Poole, L.B. Structure, Mechanism and Regulation of Peroxiredoxins. Trends Biochem. Sci. 2003, 28, 32–40. [Google Scholar] [PubMed]
- Kubo, E.; Singh, D.P.; Fatma, N.; Akagi, Y. TAT-Mediated Peroxiredoxin 5 and 6 Protein Transduction Protects Against High-Glucose-Induced Cytotoxicity in Retinal Pericytes. Life Sci. 2009, 84, 857–864. [Google Scholar] [CrossRef]
- Leyens, G.; Verhaeghe, B.; Landtmeters, M.; Marchandise, J.; Knoops, B.; Donnay, I. Peroxiredoxin 6 is Upregulated in Bovine Oocytes and Cumulus Cells during in Vitro Maturation: Role of Intercellular Communication. Biol. Reprod. 2004, 71, 1646–1651. [Google Scholar]
- Jakobsson, P.; Morgenstern, R.; Mancini, J.; Ford-Hutchinson, A.; Persson, B. Common Structural Features of MAPEG—A Widespread Superfamily of Membrane Associated Proteins with Highly Divergent Functions in Eicosanoid and Glutathione Metabolism. Protein Sci. 1999, 8, 689–692. [Google Scholar]
- Hetland, T.E.; Nymoen, D.A.; Emilsen, E.; Kærn, J.; Tropé, C.G.; Flørenes, V.A.; Davidson, B. MGST1 Expression in Serous Ovarian Carcinoma Differs at various Anatomic Sites, but is Unrelated to Chemoresistance Or Survival. Gynecol. Oncol. 2012, 126, 460–465. [Google Scholar] [CrossRef]
- Imaizumi, N.; Miyagi, S.; Aniya, Y. Reactive Nitrogen Species Derived Activation of Rat Liver Microsomal Glutathione S-Transferase. Life Sci. 2006, 78, 2998–3006. [Google Scholar]
- Ji, Y.; Neverova, I.; Van Eyk, J.E.; Bennett, B.M. Nitration of Tyrosine 92 Mediates the Activation of Rat Microsomal Glutathione s-Transferase by Peroxynitrite. J. Biol. Chem. 2006, 281, 1986–1991. [Google Scholar] [CrossRef]
- Johansson, K.; Åhlen, K.; Rinaldi, R.; Sahlander, K.; Siritantikorn, A.; Morgenstern, R. Microsomal Glutathione Transferase 1 in Anticancer Drug Resistance. Carcinogenesis 2007, 28, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Siritantikorn, A.; Johansson, K.; Åhlen, K.; Rinaldi, R.; Suthiphongchai, T.; Wilairat, P.; Morgenstern, R. Protection of Cells from Oxidative Stress by Microsomal Glutathione Transferase 1. Biochem. Biophys. Res. Commun. 2007, 355, 592–596. [Google Scholar] [CrossRef]
- Sandstrom, J.; Karlsson, K.; Edlund, T.; Marklund, S.L. Heparin-Affinity Patterns and Composition of Extracellular Superoxide Dismutase in Human Plasma and Tissues. Biochem. J. 1993, 294 Pt 3, 853–857. [Google Scholar] [CrossRef]
- Kwon, M.; Lee, K.; Lee, H.; Kim, J.; Kim, T. SOD3 Variant, R213G, Altered SOD3 Function, Leading to ROS-Mediated Inflammation and Damage in Multiple Organs of Premature Aging Mice. Antioxid. Redox Signal. 2015, 23, 985–999. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Lei, R.; Ding, S.; Zhu, S. Skewer: A Fast and Accurate Adapter Trimmer for Next-Generation Sequencing Paired-End Reads. BMC Bioinform. 2014, 15, 182. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript Assembly and Quantification by RNA-Seq Reveals Unannotated Transcripts and Isoform Switching during Cell Differentiation. Nat. Biotechnol. 2010, 28, 511. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Hendrickson, D.G.; Sauvageau, M.; Goff, L.; Rinn, J.L.; Pachter, L. Differential Analysis of Gene Regulation at Transcript Resolution with RNA-Seq. Nat. Biotechnol. 2013, 31, 46. [Google Scholar] [CrossRef]
- Reimand, J.; Arak, T.; Adler, P.; Kolberg, L.; Reisberg, S.; Peterson, H.; Vilo, J. G: Profiler—A Web Server for Functional Interpretation of Gene Lists (2016 Update). Nucleic. Acids Res. 2016, 44, W83–W89. [Google Scholar] [CrossRef]
- Anders, S.; Reyes, A.; Huber, W. Detecting Differential Usage of Exons from RNA-Seq Data. Genome Res. 2012, 22, 2008–2017. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
Ctrl | GP6.25 | GP12.5 | |
---|---|---|---|
Total reads | 20,529,934 | 17,898,643 | 20,353,291 |
Mapped reads | 20,526,910 | 17,897,687 | 20,352,139 |
Yield (Mb) | 3119 | 2720 | 3092 |
Q30 | 91.9 | 89.5 | 92.1 |
Mapping rate (%) | 89.83 | 84.50 | 90.65 |
Unique mapped (%) | 17,843,415 (86.93) | 14,844,050 (82.94) | 17,995,481 (88.42) |
Multiple mapped (%) | 597,953 (2.91) | 405,462 (2.27) | 450,752 (2.21) |
Number of detected genes | 14,344 | 14,294 | 14,482 |
Genes | Description | Log2 Fold Change | p-Value | ||
---|---|---|---|---|---|
GP6.25 | GP12.5 | GP6.25 | GP12.5 | ||
UP | |||||
SLC2A5 | Solute carrier family 2 member 5 | 1.232 | 4.250 | 0.00005 | 0.00005 |
SLC16A3 | Solute carrier family 16 member 3 | 1.385 | 3.279 | 0.0004 | 0.00005 |
MMP3 | Interstitial collagenase 18 kDa interstitial collagenase | 2.896 | 3.279 | 0.00005 | 0.00005 |
SCD | Acyl-CoA desaturase | 1.113 | 3.205 | 0.00005 | 0.00005 |
PPP1R3C | Protein phosphatase 1 regulatory subunit 3C | 2.129 | 2.869 | 0.00005 | 0.00005 |
IL1RL1 | Interleukin 1 receptor-like 1 | 1.276 | 2.815 | 0.00005 | 0.00005 |
GPNMB | Transmembrane glycoprotein NMB precursor | 1.710 | 2.740 | 0.00005 | 0.00005 |
SNTB1 | Syntrophin beta 1 | 1.356 | 2.566 | 0.00005 | 0.00005 |
ENSSSCG00000027013 | - | 1.565 | 2.400 | 0.00005 | 0.00005 |
TFRC | Transferrin receptor protein 1 | 1.724 | 2.314 | 0.00005 | 0.00005 |
DOWN | |||||
TOP2A | DNA topoisomerase 2-alpha | −2.442 | −8.242 | 0.00005 | 0.00255 |
ENSSSCG00000002849 | - | −2.731 | −7.591 | 0.00005 | 0.0108 |
DLGAP5 | DLG associated protein 5 | −2.972 | −6.474 | 0.00005 | 0.0001 |
ASPM | Abnormal spindle microtubule assembly | −4.055 | −6.183 | 0.00005 | 0.00005 |
PBK | T-lymphokine-activated killer cell-originated protein kinase | −1.604 | −6.075 | 0.00005 | 0.00025 |
CCNB3 | Cyclin B3 | −2.915 | −6.070 | 0.00005 | 0.0002 |
CCNB1 | G2/mitotic-specific cyclin-B1 | −3.370 | −5.934 | 0.00005 | 0.00005 |
UBE2C | Ubiquitin conjugating enzyme E2 C | −2.957 | −5.859 | 0.00005 | 0.00005 |
CCNB2 | G2/mitotic-specific cyclin-B2 | −2.840 | −5.793 | 0.00005 | 0.00005 |
CDCA8 | Cell division cycle associated 8 | −2.814 | −5.727 | 0.00005 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, M.-W.; Kim, H.; Choi, S.-Y.; Sharma, N.; Lee, S.-J. Effect of Gossypol on Gene Expression in Swine Granulosa Cells. Toxins 2024, 16, 436. https://doi.org/10.3390/toxins16100436
Hong M-W, Kim H, Choi S-Y, Sharma N, Lee S-J. Effect of Gossypol on Gene Expression in Swine Granulosa Cells. Toxins. 2024; 16(10):436. https://doi.org/10.3390/toxins16100436
Chicago/Turabian StyleHong, Min-Wook, Hun Kim, So-Young Choi, Neelesh Sharma, and Sung-Jin Lee. 2024. "Effect of Gossypol on Gene Expression in Swine Granulosa Cells" Toxins 16, no. 10: 436. https://doi.org/10.3390/toxins16100436