Viruses of Freshwater Mussels during Mass Mortality Events in Oregon and Washington, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.1.1. Columbia River Watershed, OR
2.1.2. Chehalis River Watershed, WA
2.2. Sample Collection
2.2.1. Western Ridged Mussel (Gonidea angulata) Sampling
2.2.2. Western Pearlshell (Margaritifera falcata) Sampling
2.3. Viral Nucleic Acid Extraction and Sequencing
2.4. Bioinformatics and Virus Classification
2.5. Statistical Analysis
3. Results
3.1. Virus Sequencing, Characterization, and Diversity
3.2. Associations between Viruses and Health Status
3.3. Multivariate Virome Assessment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaughn, C.C.; Hakenkamp, C.C. The Functional Role of Burrowing Bivalves in Freshwater Ecosystems. Freshw. Biol. 2001, 46, 1431–1446. [Google Scholar] [CrossRef] [Green Version]
- Haag, W.R. The decline of the North American mussel fauna. In North American Freshwater Mussels Natural History, Ecology, and Conservation; Cambridge University Press: Cambridge, UK, 2012; pp. 316–390. ISBN 9781139048217. [Google Scholar]
- Haag, W.R. Reassessing Enigmatic Mussel Declines in the United States. Freshw. Mollusk Biol. Conserv. 2019, 22, 43. [Google Scholar] [CrossRef] [Green Version]
- Downing, J.A.; Van Meter, P.; Woolnough, D.A. Suspects and Evidence: A Review of the Causes of Extirpation and Decline in Freshwater Mussels. Anim. Biodivers. Conserv. 2010, 33, 151–185. [Google Scholar] [CrossRef]
- Blehert, D.S.; Hicks, A.C.; Behr, M.; Meteyer, C.U.; Berlowski-Zier, B.M.; Buckles, E.L.; Coleman, J.T.H.; Darling, S.R.; Gargas, A.; Niver, R.; et al. Bat White-Nose Syndrome: An Emerging Fungal Pathogen? Science 2009, 323, 227. [Google Scholar] [CrossRef] [PubMed]
- Lips, K.R. Overview of Chytrid Emergence and Impacts on Amphibians. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150465. [Google Scholar] [CrossRef] [Green Version]
- Aldridge, D.C.; Ollard, I.S.; Bespalaya, Y.V.; Bolotov, I.N.; Douda, K.; Geist, J.; Haag, W.R.; Klunzinger, M.W.; Lopes-Lima, M.; Mlambo, M.C.; et al. Freshwater Mussel Conservation: A Global Horizon Scan of Emerging Threats and Opportunities. Glob. Chang. Biol. 2023, 29, 575–589. [Google Scholar] [CrossRef]
- Neves, R.J. Recent Die-Offs of Freshwater Mussels in the United States: An Overview. In Proceedings of the Workshop on Die-offs of Freshwater Mussels in the United States; U.S. Fish and Wildlife Service: Davenport, IA, USA, 1986. [Google Scholar]
- Richard, J.C.; Leis, E.; Dunn, C.D.; Agbalog, R.; Waller, D.; Knowles, S.; Putnam, J.; Goldberg, T.L. Mass Mortality in Freshwater Mussels (Actinonaias pectorosa) in the Clinch River, USA, Linked to a Novel Densovirus. Sci. Rep. 2020, 10, 14498. [Google Scholar] [CrossRef]
- Richard, J.C.; Leis, E.M.; Dunn, C.D.; Harris, C.; Agbalog, R.E.; Campbell, L.J.; Knowles, S.; Waller, D.L.; Putnam, J.G.; Goldberg, T.L. Freshwater Mussels Show Elevated Viral Richness and Intensity during a Mortality Event. Viruses 2022, 14, 2603. [Google Scholar] [CrossRef]
- Richard, J.C.; Campbell, L.J.; Leis, E.M.; Agbalog, R.E.; Dunn, C.D.; Waller, D.L.; Knowles, S.; Putnam, J.G.; Goldberg, T.L. Mussel Mass Mortality and the Microbiome: Evidence for Shifts in the Bacterial Microbiome of a Declining Freshwater Bivalve. Microorganisms 2021, 9, 1976. [Google Scholar] [CrossRef]
- Leis, E.M.; Dziki, S.; Richard, J.C.; Agbalog, R.E.; Waller, D.L.; Putnam, J.G.; Knowles, S.; Goldberg, T.L. Further Bacteriological Analysis of Annual Pheasantshell (Actinonaias pectorosa) Mussel Mortality Events in the Clinch River (Virginia/Tennessee), USA, Reveals a Consistent Association with Yokenella Regensburgei. Freshw. Mollusk Biol. Conserv. 2023, 26, 1–10. [Google Scholar] [CrossRef]
- Starliper, C.E.; Powell, J.; Garner, J.T.; Schill, W.B. Predominant Bacteria Isolated from Moribund Fusconaia Ebena Ebonyshells Experiencing Die-Offs in Pickwick Reservoir, Tennessee River, Alabama. J. Shellfish Res. 2011, 30, 359–366. [Google Scholar] [CrossRef]
- Brian, J.I.; Dunne, S.E.; Ellis, C.L.; Aldridge, D.C. Population-Level Effects of Parasitism on a Freshwater Ecosystem Engineer, the Unionid Mussel Anodonta Anatina. Freshw. Biol. 2021, 66, 2240–2250. [Google Scholar] [CrossRef]
- Brian, J.I.; Reynolds, S.A.; Aldridge, D.C. Parasitism Dramatically Alters the Ecosystem Services Provided by Freshwater Mussels. Funct. Ecol. 2022, 36, 2029–2042. [Google Scholar] [CrossRef]
- Barbosa Solomieu, V.; Renault, T.; Travers, M.A. Mass Mortality in Bivalves and the Intricate Case of the Pacific Oyster, Crassostrea Gigas. J. Invertebr. Pathol. 2015, 131, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, A.C.; Nguyen, T.V.; Merien, F. The Complex Interactions of Ostreid Herpesvirus 1, Vibrio Bacteria, Environment and Host Factors in Mass Mortality Outbreaks of Crassostrea Gigas. Rev. Aquac. 2019, 11, 1148–1168. [Google Scholar] [CrossRef]
- Soon, T.K.; Ransangan, J. Extrinsic Factors and Marine Bivalve Mass Mortalities: An Overview. J. Shellfish Res. 2019, 38, 223–232. [Google Scholar] [CrossRef]
- Pernet, F.; Barret, J.; Marty, C.; Moal, J.; Le Gall, P.; Boudry, P. Environmental Anomalies, Energetic Reserves and Fatty Acid Modifications in Oysters Coincide with an Exceptional Mortality Event. Mar. Ecol. Prog. Ser. 2010, 401, 129–146. [Google Scholar] [CrossRef] [Green Version]
- Petton, B.; De Lorgeril, J.; Mitta, G.; Daigle, G.; Pernet, F.; Alunno-Bruscia, M. Fine-Scale Temporal Dynamics of Herpes Virus and Vibrios in Seawater during a Polymicrobial Infection in the Pacific Oyster Crassostrea Gigas. Dis. Aquat. Organ. 2019, 135, 97–106. [Google Scholar] [CrossRef]
- Paul-Pont, I.; Evans, O.; Dhand, N.K.; Rubio, A.; Coad, P.; Whittington, R.J. Descriptive Epidemiology of Mass Mortality Due to Ostreid Herpesvirus-1 (OsHV-1) in Commercially Farmed Pacific Oysters (Crassostrea Gigas) in the Hawkesbury River Estuary, Australia. Aquaculture 2014, 422–423, 146–159. [Google Scholar] [CrossRef] [Green Version]
- Flegel, T.W. Historic Emergence, Impact and Current Status of Shrimp Pathogens in Asia. J. Invertebr. Pathol. 2012, 110, 166–173. [Google Scholar] [CrossRef]
- Lee, D.; Yu, Y.B.; Choi, J.H.; Jo, A.H.; Hong, S.M.; Kang, J.C.; Kim, J.H. Viral Shrimp Diseases Listed by the OIE: A Review. Viruses 2022, 14, 585. [Google Scholar] [CrossRef]
- Blevins, E.; Jepsen, S.; Box, J.B.; Nez, D.; Howard, J.; Maine, A.; O’Brien, C. Extinction Risk of Western North American Freshwater Mussels: Anodonta Nuttalliana, the Anodonta Oregonensis/Kennerlyi Clade, Gonidea Angulata, and Margaritifera Falcata. Freshw. Mollusk Biol. Conserv. 2019, 20, 71. [Google Scholar] [CrossRef]
- Xerces Society for Invertebrate Conservation. Petition to List The Western Ridged Mussel Gonidea Angulata as an Endangered Species Under the U.S. Endangered Species Act; Xerces Society for Invertebrate Conservation: Portland, OR, USA, 2020. [Google Scholar]
- Goldberg, T.L.; Blevins, E.; Leis, E.M.; Standish, I.F.; Richard, J.C.; Lueder, M.R.; Cer, R.Z.; Bishop-Lilly, K.A. Plasticity, Paralogy, and Pseudogenization: Rhabdoviruses of Freshwater Mussels Elucidate Mechanisms of Viral Genome Diversification and the Evolution of the Finfish-Infecting Rhabdoviral Genera. J. Virol. 2023, 97, e00196-23. [Google Scholar] [CrossRef] [PubMed]
- Toohey-Kurth, K.; Sibley, S.D.; Goldberg, T.L. Metagenomic Assessment of Adventitious Viruses in Commercial Bovine Sera. Biologicals 2017, 47, 64–68. [Google Scholar] [CrossRef]
- Cochrane, G.R.; Galperin, M.Y. The 2010 Nucleic Acids Research Database Issue and Online Database Collection: A Community of Data Resources. Nucleic Acids Res. 2009, 38, D1–D4. [Google Scholar] [CrossRef] [PubMed]
- Nurk, S.; Meleshko, D.; Korobeynikov, A.; Pevzner, P.A. MetaSPAdes: A New Versatile Metagenomic Assembler. Genome Res. 2017, 27, 824–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for Clustering the next-Generation Sequencing Data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Tisza, M.J.; Belford, A.K.; Dominguez-Huerta, G.; Bolduc, B.; Buck, C.B. Cenote-Taker 2 Democratizes Virus Discovery and Sequence Annotation. Virus Evol. 2021, 7, veaa100. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The Conserved Domain Database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [Google Scholar] [CrossRef] [Green Version]
- Naccache, S.N.; Hackett, J.; Delwart, E.L.; Chiu, C.Y. Concerns over the Origin of NIH-CQV, a Novel Virus Discovered in Chinese Patients with Seronegative Hepatitis. Proc. Natl. Acad. Sci. USA 2014, 111, 2014. [Google Scholar] [CrossRef]
- Asplund, M.; Kjartansdóttir, K.R.; Mollerup, S.; Vinner, L.; Fridholm, H.; Herrera, J.A.R.; Friis-Nielsen, J.; Hansen, T.A.; Jensen, R.H.; Nielsen, I.B.; et al. Contaminating Viral Sequences in High-Throughput Sequencing Viromics: A Linkage Study of 700 Sequencing Libraries. Clin. Microbiol. Infect. 2019, 25, 1277–1285. [Google Scholar] [CrossRef] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2014, 12, 59–60. [Google Scholar] [CrossRef]
- Huson, D.H.; Auch, A.F.; Qi, J.; Schuster, S.C. MEGAN Analysis of Metagenomic Data. Genome Res. 2007, 17, 377–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ondov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive Metagenomic Visualization in a Web Browser. BMC Bioinform. 2011, 12, 385. [Google Scholar] [CrossRef] [Green Version]
- Adriaenssens, E.M.; Roux, S.; Brister, J.R.; Karsch-Mizrachi, I.; Kuhn, J.H.; Varsani, A.; Yigang, T.; Reyes, A.; Lood, C.; Lefkowitz, E.J.; et al. Guidelines for Public Database Submission of Uncultivated Virus Genome Sequences for Taxonomic Classification. Nat. Biotechnol. 2023, 41, 898–902. [Google Scholar] [CrossRef]
- Roux, S.; Emerson, J.B.; Eloe-Fadrosh, E.A.; Sullivan, M.B. Benchmarking Viromics: An in Silico Evaluation of Metagenome-Enabled Estimates of Viral Community Composition and Diversity. PeerJ 2017, 2017, e3817. [Google Scholar] [CrossRef] [Green Version]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PloS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 25 July 2021).
- Oksanen, J.; Guillaume Blanchet, F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. 2020. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1778707 (accessed on 25 July 2021).
- Walker, P.J.; Freitas-Astua, J.; Bejerman, N.; Blasdell, K.R.; Breyta, R.; Dietzgen, R.G.; Fooks, A.R.; Kondo, H.; Kurath, G.; Kuzmin, I.V.; et al. ICTV Virus Taxonomy Profile: Rhabdoviridae 2022. J. Gen. Virol. 2022, 103, 2021–2022. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.; Eden, J.S.; et al. Redefining the Invertebrate RNA Virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef]
- Wolf, Y.I.; Silas, S.; Wang, Y.; Wu, S.; Bocek, M.; Kazlauskas, D.; Krupovic, M.; Fire, A.; Dolja, V.V.; Koonin, E.V. Doubling of the Known Set of RNA Viruses by Metagenomic Analysis of an Aquatic Virome. Nat. Microbiol. 2020, 5, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Kuzmin, I.V.; Novella, I.S.; Dietzgen, R.G.; Padhi, A.; Rupprecht, C.E. The Rhabdoviruses: Biodiversity, Phylogenetics, and Evolution. Infect. Genet. Evol. 2009, 9, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Y.; Mo, L.; Huo, C.; Wang, Z.; Zhong, P.; Jia, D.; Zhang, X.; Chen, Q.; Chen, H.; et al. A Neuron-Specific Antiviral Mechanism Modulates the Persistent Infection of Rice Rhabdoviruses in Leafhopper Vectors. Front. Microbiol. 2020, 11, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ergünay, K.; Brinkmann, A.; Litzba, N.; Günay, F.; Kar, S.; Öter, K.; Örsten, S.; Sarikaya, Y.; Alten, B.; Nitsche, A.; et al. A Novel Rhabdovirus, Related to Merida Virus, in Field-Collected Mosquitoes from Anatolia and Thrace. Arch. Virol. 2017, 162, 1903–1911. [Google Scholar] [CrossRef]
- Harvey, E.; Holmes, E.C. Diversity and Evolution of the Animal Virome. Nat. Rev. Microbiol. 2022, 20, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Raghwani, J.; Faust, C.L.; François, S.; Nguyen, D.; Marsh, K.; Raulo, A.; Hill, S.C.; Parag, K.V.; Simmonds, P.; Knowles, S.C.L.; et al. Seasonal Dynamics of the Wild Rodent Faecal Virome. Mol. Ecol. 2022, 1–14. [Google Scholar] [CrossRef]
- Campbell, S.J.; Ashley, W.; Gil-Fernandez, M.; Newsome, T.M.; Di Giallonardo, F.; Ortiz-Baez, A.S.; Mahar, J.E.; Towerton, A.L.; Gillings, M.; Holmes, E.C.; et al. Red Fox Viromes in Urban and Rural Landscapes. Virus Evol. 2020, 6, veaa065. [Google Scholar] [CrossRef]
- Campbell, L.J.; Castillo, N.A.; Dunn, C.D.; Perez, A.; Schmitter-Soto, J.J.; Mejri, S.C.; Boucek, R.E.; Corujo, R.S.; Adams, A.J.; Rehage, J.S.; et al. Viruses of Atlantic Bonefish (Albula vulpes) in Florida and the Caribbean Show Geographic Patterns Consistent with Population Declines. Environ. Biol. Fishes 2023, 106, 303–317. [Google Scholar] [CrossRef]
- Scapolatiello, A.; Rosani, U.; Manfrin, C.; Puljas, S.; Pallavicini, A.; Gerdol, M. Identification of Five Picorna-like Viruses Associated with the Endangered Cave-Dwelling Bivalve Congeria Kusceri (Bole, 1962). Invertebr. Surviv. J. 2022, 19, 28–36. [Google Scholar] [CrossRef]
- Adriaenssens, E.M.; Farkas, K.; McDonald, J.E.; Jones, D.L.; Allison, H.E.; McCarthy, A.J. Tracing the Fate of Wastewater Viruses Reveals Catchment-Scale Virome Diversity and Connectivity. Water Res. 2021, 203, 117568. [Google Scholar] [CrossRef] [PubMed]
- Cope, W.G.; Bergeron, C.M.; Archambault, J.M.; Jones, J.W.; Beaty, B.; Lazaro, P.R.; Shea, D.; Callihan, J.L.; Rogers, J.J. Understanding the Influence of Multiple Pollutant Stressors on the Decline of Freshwater Mussels in a Biodiversity Hotspot. Sci. Total Environ. 2021, 773, 144757. [Google Scholar] [CrossRef] [PubMed]
- Henley, W.F.; Beaty, B.B.; Jones, J.W. Evaluations of Organ Tissues from Actinonaias pectorosa Collected during a Mussel Die-Off in 2016 at Kyles Ford, Clinch River, Tennessee. J. Shellfish Res. 2019, 38, 681–696. [Google Scholar] [CrossRef]
- Waller, D.; Putnam, J.; Steiner, J.N.; Fisher, B.; Burcham, G.N.; Oliver, J.; Smith, S.B.; Erickson, R.; Remek, A.; Bodoeker, N. Targeted Metabolomics Characterizes Metabolite Occurrence and Variability in Stable Freshwater Mussel Populations. Conserv. Physiol. 2023, 11, coad040. [Google Scholar] [CrossRef]
- de Lorgeril, J.; Lucasson, A.; Petton, B.; Toulza, E.; Montagnani, C.; Clerissi, C.; Vidal-Dupiol, J.; Chaparro, C.; Galinier, R.; Escoubas, J.M.; et al. Immune-Suppression by OsHV-1 Viral Infection Causes Fatal Bacteraemia in Pacific Oysters. Nat. Commun. 2018, 9, 4215. [Google Scholar] [CrossRef] [Green Version]
- Patterson, M.A.; Mair, R.A.; Eckert, N.L.; Gatenby, C.M.; Brady, T.; Jones, J.W.; Simmons, B.R.; Devers, J.L. Freshwater Mussel Propagation for Restoration; Cambridge University Press: Cambridge, UK, 2018; ISBN 9781108551120. [Google Scholar]
River | Site Code | Site Type | Date | Species | Samples | |
---|---|---|---|---|---|---|
Case | Control | |||||
Owyhee River | OWY | Undefined | 7/25/2018 | G. angulata | 3 | 0 |
Chehalis River | LCM2 | Impact | 9/26/2018 | M. falcata | 6 | 0 |
Skookumchuck River | SKO | Control | 9/26/2018 | M. falcata | N/A | 5 |
Crooked River | CRO | Impact | 10/8/2018 | G. angulata | 5 | 5 |
Skookumchuck River | SKO | Control | 8/24/2020 | M. falcata | N/A | 14 |
Chehalis River | LCM2 | Impact | 8/26/2020 | G. angulata | N/A | 3 |
LCM2 | Impact | 8/26/2020 | M. falcata | 12 | 13 | |
Crooked River | CRO | Impact | 9/4/2020 | G. angulata | 5 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richard, J.C.; Blevins, E.; Dunn, C.D.; Leis, E.M.; Goldberg, T.L. Viruses of Freshwater Mussels during Mass Mortality Events in Oregon and Washington, USA. Viruses 2023, 15, 1719. https://doi.org/10.3390/v15081719
Richard JC, Blevins E, Dunn CD, Leis EM, Goldberg TL. Viruses of Freshwater Mussels during Mass Mortality Events in Oregon and Washington, USA. Viruses. 2023; 15(8):1719. https://doi.org/10.3390/v15081719
Chicago/Turabian StyleRichard, Jordan C., Emilie Blevins, Christopher D. Dunn, Eric M. Leis, and Tony L. Goldberg. 2023. "Viruses of Freshwater Mussels during Mass Mortality Events in Oregon and Washington, USA" Viruses 15, no. 8: 1719. https://doi.org/10.3390/v15081719