An Improved Approach for Evapotranspiration Estimation Using Water Balance Equation: Case Study of Yangtze River Basin
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. GRACE Data and TWSC
3.2. Precipitation, Discharge, and ET
3.3. An Improved Approach for Estimation of Monthly ET
4. Results and Discussion
4.1. ET Estimation Over the YRB
4.2. Comparing ET Anomalies with P and TWS Anomalies
4.3. Limiting Factors of ET
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
TWSA | terrestrial water storage anomalies |
TWSC/ΔS | terrestrial water storage change |
SM | soil moisture |
TEM | near-surface temperature |
RHU | relative humidity |
WIN | wind speed |
References
- Moiwo, J.P.; Tao, F. Satellite signal shows storage-unloading subsidence in North China. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 6043–6075. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Chen, J.; Seneviratne, S.I.; Viterbo, P.; Holl, S.; Wilson, C.R. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 2004, 31, L20504. [Google Scholar] [CrossRef]
- Billah, M.M.; Goodall, J.L.; Narayan, U.; Reager, J.T.; Lakshmi, V.; Famiglietti, J.S. A methodology for evaluating evapotranspiration estimates at the watershed-scale using GRACE. J. Hydrol. 2015, 523, 574–586. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Castle, S.L.; Reager, J.T.; Thomas, B.F.; Purdy, A.J.; Lo, M.-H.; Famiglietti, J.S.; Tang, Q. Remote detection of water management impacts on evapotranspiration in the Colorado River basin. Geophys. Res. Lett. 2016, 43, 5089–5097. [Google Scholar] [CrossRef]
- Cesanelli, A.; Guarracino, L. Estimation of regional evapotranspiration in the extended Salado Basin (Argentina) from satellite gravity measurements. Hydrogeol. J. 2011, 19, 629–639. [Google Scholar] [CrossRef]
- Ramillien, G.; Frappart, F.; Güntner, A.; Ngo-Duc, T.; Cazenave, A.; Laval, K. Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Syed, T.H.; Webster, P.J.; Famiglietti, J.S. Assessing variability of evapotranspiration over the ganga river basin using water balance computations. Water Resour. Res. 2014, 50, 2551–2565. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, T.; Zhou, F.; Ciais, P.; Mao, J.; Shi, X.; Piao, S. A worldwide analysis of spatiotemporal changes in water balance-based evapotranspiration from 1982 to 2009. J. Geophys. Res. Atmos. 2014, 119, 1186–1202. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Zhang, C.; Gong, H.; Yeh, P.J.F.; Shen, Y.; Guo, Y.; Huang, Z.; Li, X. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China. Geophys. Res. Lett. 2017, 44, 190–199. [Google Scholar] [CrossRef]
- Rodell, M.; McWilliams, E.B.; Famiglietti, J.S.; Beaudoing, H.K.; Nigro, J. Estimating evapotranspiration using an observation based terrestrial water budget. Hydrol. Processes 2011, 25, 4082–4092. [Google Scholar] [CrossRef]
- Wang, X.; de Linage, C.; Famiglietti, J.; Zender, C.S. Gravity recovery and climate experiment (GRACE) detection of water storage changes in the three gorges reservoir of China and comparison with in situ measurements. Water Resour. Res. 2011, 47, W12502. [Google Scholar] [CrossRef]
- Han, S.-C. Improved estimation of terrestrial water storage changes from GRACE. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. Grace measurements of mass variability in the earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Cazenave, A.; Chen, J. Time-variable gravity from space and present-day mass redistribution in theEarth system. Earth Planet. Sci. Lett. 2010, 298, 263–274. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J. Time-variable gravity from GRACE: First results. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Velicogna, I. Short term mass variability in Greenland, from GRACE. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Cazenave, A.; Dominh, K.; Guinehut, S.; Berthier, E.; Llovel, W.; Ramillien, G.; Ablain, M.; Larnicol, G. Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob. Planet. Chang. 2009, 65, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Famiglietti, J.S.; Rodell, M. Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models. J. Geodesy 2005, 79, 532–539. [Google Scholar] [CrossRef] [Green Version]
- Han, S.-C.; Sauber, J.; Luthcke, S. Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large-scale mass redistribution. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Han, S.C.; Shum, C.K.; Bevis, M.; Ji, C.; Kuo, C.Y. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science 2006, 313, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, K.; Heki, K. Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry. Geophys. Res. Lett. 2011, 38, L00G12. [Google Scholar] [CrossRef]
- Abelen, S.; Seitz, F.; Abarca-del-Rio, R.; Güntner, A. Droughts and floods in the la plata basin in soil moisture data and GRACE. Remote Sens. 2015, 7, 7324–749. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Yang, Z.L.; Niu, G.Y. 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Luo, Z.; Tangdamrongsub, N.; Wang, L.; He, L.; Xu, C.; Li, Q. Characterizing drought and flood events over the Yangtze River basin using the HUST-GRACE2016 solution and ancillary data. Remote Sens. 2017, 9, 1100. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, W.; Zhong, M.; Lemoine, J.-M.; Biancale, R.; Hsu, H.-T.; Xia, J. Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Scanlon, B.; Güntner, A. Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations. Glob. Planet. Chang. 2016, 139, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Eicker, A.; Schumacher, M.; Kusche, J.; Döll, P.; Schmied, H. Calibration/data assimilation approach for integrating GRACE data into the WaterGAP Global Hydrology Model (WGHM) using an ensemble Kalman Filter: First results. Surv. Geophys. 2014, 35, 1285–1309. [Google Scholar] [CrossRef]
- Güntner, A. Improvement of global hydrological models using GRACE data. Surv. Geophys. 2008, 29, 375–397. [Google Scholar] [CrossRef]
- Li, B.; Rodell, M.; Zaitchik, B.F.; Reichle, R.H.; Koster, R.D.; van Dam, T.M. Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe. J. Hydrol. 2012, 446–447, 103–115. [Google Scholar] [CrossRef]
- Niu, G.-Y.; Yang, Z.-L. Assessing a land surface model’s improvements with GRACE estimates. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Chen, J.; Wu, X.; Finlayson, B.L.; Webber, M.; Wei, T.; Li, M.; Chen, Z. Variability and trend in the hydrology of the Yangtze River, China: Annual precipitation and runoff. J. Hydrol. 2014, 513, 403–412. [Google Scholar] [CrossRef]
- Hao, Z.C.; Yang, R.R.; Chen, X.M.; Chen, X.; Liang, Z.H.; Dawa, D.Z. Tempo-spatial patterns of the potential evaporation in the Yangtze River Catchment for the period 1960–2011. J. Glaciol. Geocryol. 2013, 35, 408–419. [Google Scholar]
- Zhang, Z.-Z.; Chao, B.F.; Lu, Y.; Hsu, H.-T. An effective filtering for GRACE time-variable gravity: Fan filter. Geophys. Res. Lett. 2009, 36, L17311. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.L. Low degree spherical harmonic influences on gravity recovery and climate experiment (GRACE) water storage estimates. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; McNab, A.; Rudolf, B.; Schneider, U. The global precipitation climatology project (GPCP) combined precipitation dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Golub, G.H.; Heath, M.; Wahba, G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21, 215–223. [Google Scholar] [CrossRef]
- Vinukollu, R.K.; Meynadier, R.; Sheffield, J.; Wood, E.F. Multi-model, multi-sensor estimates of global evapotranspiration: Climatology, uncertainties and trends. Hydrol. Processes 2011, 25, 3993–4010. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, Q.; Singh, V.P. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China. Int. J. Climatol. 2014, 35, 3556–3567. [Google Scholar] [CrossRef]
- Zhang, Z.; Chao, B.F.; Chen, J.; Wilson, C.R. Terrestrial water storage anomalies of Yangtze River basin droughts observed by GRACE and connections with ENSO. Glob. Planet. Chang. 2015, 126, 35–45. [Google Scholar] [CrossRef]
- Xu, J.J.; He., Q.; Liu, H.; Chen, J.Y. Preliminary analysis of characteristics of the exceptional low discharge and IST cause over the Yangtze River, 2006. Resour. Environ. Yangtze Basin 2008, 716–722. [Google Scholar]
- Peng, J.B.; Zhang, Q.Y.; Bueh, C. On the Characteristics and possible cause of a serve drought and heat wave in the Sichuan-Chongqing region in 2006. Clim. Environ. Res. 2007, 12, 464–474. (In Chinese) [Google Scholar]
- Duan, H.X.; Wang, J.; Liu, Y.; Li, Y.; Wang, S. The features of continuous heavy drought from autumn 2009 to spring 2010 in southwest China and analysis of its atmospheric circulation anomalies. J. Glaciol. Geocryol. 2013, 35, 1022–1035. [Google Scholar]
- Huang, R.; Liu, Y.; Wang, L.; Wang, L. Analysis of the causes of severe drought occurring in Southwest China from the fall of 2009 to the spring of 2010. Chin. J. Atmos. Sci. 2012, 36, 443–457. [Google Scholar]
- Lu, E.; Luo, Y.; Zhang, R.; Wu, Q.; Liu, L. Regional atmospheric anomalies responsible for the 2009–2010 severe drought in China. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Tang, J.; Cheng, H.; Liu, L. Assessing the recent droughts in southwestern china using satellite gravimetry. Water Resour. Res. 2014, 50, 3030–3038. [Google Scholar] [CrossRef]
- Lu, E.; Liu, S.; Luo, Y.; Zhao, W.; Li, H.; Chen, H.; Zeng, Y.; Liu, P.; Wang, X.; Higgins, R.W.; et al. The atmospheric anomalies associated with the drought over the Yangtze River basin during spring 2011. J. Geophys. Res. Atmos. 2014, 119, 5881–5894. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karam, H.N.; Bras, R.L. Climatological basin-scale Amazonian evapotranspiration estimated through a water budget analysis. J. Hydrometeorol. 2008, 9, 1048–1060. [Google Scholar] [CrossRef]
- Fan, Y.; van den Dool, H. Climate prediction center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
Catchment | Station | Area (104 km2) | MAP (mm) | MAT (°C) |
---|---|---|---|---|
Jinshajiang | Pingshan | 45.86 | 720 | 9.6 |
Wujiang | Wulong | 8.30 | 1029 | 15.3 |
Minjiang | Gaochang | 13.54 | 948 | 11.8 |
Jialingjiang | Beibei | 15.67 | 927 | 16.7 |
Hanjiang | Xiantao | 14.47 | 918 | 15.9 |
Dongting Lake | Chenglingji | 27.46 | 1261 | 17.0 |
Poyang Lake | Hukou | 16.22 | 1507 | 18.1 |
Entire basin (YRB) | Datong | 170.54 | 1059 | 14.4 |
Variable | Non Observation Error | With Observation Error | |||||
---|---|---|---|---|---|---|---|
ET_Li | ET_Rodell | ET_Ramillien | ET_Li | ET_Rodell | ET_Ramillien | ||
R2 | ET0 | 0.98 | 0.92 | 0.75 | 0.90 | 0.88 | 0.73 |
RMSE | ET0 | 5.42 | 8.93 | 17.72 | 9.70 | 11.19 | 18.43 |
Catchment | P | R | ET + ΔS | ET | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ET_Li | ET_Rodell | CLM | NOAH | Mosaic | VIC | MODIS | In Situ | ||||
Jinshajiang | 720 | 301 | 419 | 418 | 420 | 510 | 582 | 681 | 622 | 514 | 907 |
Wujiang | 1029 | 499 | 530 | 529 | 531 | 709 | 892 | 1019 | 970 | 835 | 635 |
Minjiang | 948 | 503 | 445 | 440 | 442 | 656 | 778 | 888 | 746 | 643 | 683 |
Jialingjiang | 927 | 491 | 436 | 429 | 432 | 683 | 842 | 902 | 854 | 661 | 655 |
Hanjiang | 918 | 439 | 409 | 405 | 408 | 658 | 846 | 916 | 855 | 648 | 694 |
Dongting Lake | 1261 | 508 | 822 | 822 | 827 | 749 | 1006 | 1166 | 1098 | 853 | 716 |
Poyang Lake | 1507 | 865 | 642 | 643 | 646 | 761 | 1023 | 1221 | 1124 | 859 | 748 |
Entire basin (YRB) | 1059 | 488 | 571 | 570 | 571 | 663 | 836 | 959 | 886 | 676 | 733 |
Catchment | ET_Li | ET_Rodell | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CLM | NOAH | Mosaic | VIC | MODIS | In Situ | CLM | NOAH | Mosaic | VIC | MODIS | In Situ | |
Jinshajiang | 0.88 | 0.86 | 0.87 | 0.88 | 0.84 | 0.36 | 0.82 | 0.84 | 0.84 | 0.81 | 0.83 | 0.25 |
Wujiang | 0.78 | 0.78 | 0.76 | 0.77 | 0.79 | 0.72 | 0.66 | 0.67 | 0.67 | 0.66 | 0.68 | 0.66 |
Minjiang | 0.86 | 0.88 | 0.86 | 0.87 | 0.87 | 0.75 | 0.78 | 0.80 | 0.79 | 0.78 | 0.80 | 0.64 |
Jialingjiang | 0.71 | 0.76 | 0.71 | 0.72 | 0.71 | 0.79 | 0.74 | 0.75 | 0.72 | 0.72 | 0.72 | 0.70 |
Hanjiang | 0.78 | 0.71 | 0.65 | 0.71 | 0.68 | 0.55 | 0.74 | 0.69 | 0.64 | 0.70 | 0.68 | 0.58 |
Dongting Lake | 0.69 | 0.71 | 0.66 | 0.67 | 0.66 | 0.71 | 0.71 | 0.69 | 0.67 | 0.68 | 0.70 | 0.65 |
Poyang Lake | 0.71 | 0.65 | 0.60 | 0.67 | 0.64 | 0.57 | 0.68 | 0.63 | 0.60 | 0.65 | 0.66 | 0.58 |
Entire basin (YRB) | 0.88 | 0.88 | 0.86 | 0.87 | 0.87 | 0.83 | 0.82 | 0.83 | 0.82 | 0.82 | 0.85 | 0.78 |
Variable | P | R | ET | SM | P-ET |
---|---|---|---|---|---|
P | 1.00 | 0.71 | 0.34 | 0.47 | 0.79 |
R | 0.71 | 1.00 | −0.29 | 0.77 | 0.90 |
ET | 0.34 | −0.29 | 1.00 | −0.17 | −0.31 |
SM | 0.47 | 0.77 | −0.17 | 1.00 | 0.59 |
P-ET | 0.79 | 0.90 | −0.31 | 0.59 | 1.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Luo, Z.; Zhong, B.; Zhou, H. An Improved Approach for Evapotranspiration Estimation Using Water Balance Equation: Case Study of Yangtze River Basin. Water 2018, 10, 812. https://doi.org/10.3390/w10060812
Li Q, Luo Z, Zhong B, Zhou H. An Improved Approach for Evapotranspiration Estimation Using Water Balance Equation: Case Study of Yangtze River Basin. Water. 2018; 10(6):812. https://doi.org/10.3390/w10060812
Chicago/Turabian StyleLi, Qiong, Zhicai Luo, Bo Zhong, and Hao Zhou. 2018. "An Improved Approach for Evapotranspiration Estimation Using Water Balance Equation: Case Study of Yangtze River Basin" Water 10, no. 6: 812. https://doi.org/10.3390/w10060812
APA StyleLi, Q., Luo, Z., Zhong, B., & Zhou, H. (2018). An Improved Approach for Evapotranspiration Estimation Using Water Balance Equation: Case Study of Yangtze River Basin. Water, 10(6), 812. https://doi.org/10.3390/w10060812