Spatial and Temporal Patterns of the Extreme Precipitation across the Tibetan Plateau (1986–2015)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Quality Control
2.3. Extreme Precipitation Indices
2.4. Data Analysis Methods
2.4.1. Spatio-Temporal Analysis Methods
2.4.2. Crossover Wavelet Transform
3. Results
3.1. Temporal Trends of Precipitation Extremes Indices
3.1.1. Temporal Trends of Precipitation Days
3.1.2. Temporal Trends of Precipitation Totals
3.2. Spatial Pattern of Precipitation Extremes Indices
3.2.1. Spatial Pattern of Precipitation Days
3.2.2. Spatial pattern of Precipitation Totals
3.3. Correlation Coefficients of Precipitation Indices
3.4. Extreme Precipitation in Different Ecosystems
3.5. Relationship between Extreme Precipitation and ENSO
4. Discussion
4.1. Spatio-Temporal Variability of Extreme Precipitation
4.2. Characteristics of Extreme Precipitation Indices in Different Ecosystems
4.3. Impacts of Large-Scale Atmospheric Circulation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Indices | AAP | CDD | CWD | PRCPTOT | R10mm | R20mm | R95 | R99 | RX1day | RX5day | SDII |
---|---|---|---|---|---|---|---|---|---|---|---|
AAP | 1 | ||||||||||
CDD | 0.02 | 1 | |||||||||
CWD | 0.52 ** | 0.05 | 1 | ||||||||
PRCPTOT | 0.99 ** | 0.03 | 0.52 ** | 1 | |||||||
R10mm | 0.91 ** | 0.08 | 0.39 * | 0.92 ** | 1 | ||||||
R20mm | 0.55 ** | −0.08 | 0.20 | 0.56 ** | 0.57 ** | 1 | |||||
R95 | 0.67 ** | 0.13 | 0.27 | 0.68 ** | 0.67 ** | 0.89 ** | 1 | ||||
R99 | 0.37 * | 0.25 | 0.33 | 0.38 * | 0.29 | 0.60 ** | 0.69 ** | 1 | |||
RX1day | 0.37 * | 0.11 | 0.34 | 0.37 * | 0.25 | 0.43 * | 0.60 ** | 0.74 ** | 1 | ||
RX5day | 0.65 ** | −0.01 | 0.59 ** | 0.65 ** | 0.59 ** | 0.69 ** | 0.77 ** | 0.70 ** | 0.79 ** | 1 | |
SDII | 0.60 ** | 0.24 | 0.24 | 0.62 ** | 0.75 ** | 0.79 ** | 0.83 ** | 0.61 ** | 0.46 ** | 0.73 ** | 1 |
Indices | AAP | CDD | CWD | PRCPTOT | R10mm | R20mm | R95 | R99 | RX1day | RX5day | SDII |
---|---|---|---|---|---|---|---|---|---|---|---|
AAP | 1 | ||||||||||
CDD | −0.13 | 1 | |||||||||
CWD | 0.69 ** | −0.16 | 1 | ||||||||
PRCPTOT | 0.99 ** | −0.12 | 0.69 ** | 1 | |||||||
R10mm | 0.88 ** | 0.14 | 0.62 ** | 0.88 ** | 1 | ||||||
R20mm | 0.38 * | 0.16 | 0.21 | 0.39 * | 0.36 | 1 | |||||
R95 | 0.50 ** | 0.19 | 0.32 | 0.50 ** | 0.49 ** | 0.92 ** | 1 | ||||
R99 | 0.28 | 0.07 | 0.15 | 0.27 | 0.15 | 0.67 ** | 0.75 ** | 1 | |||
RX1day | 0.48 ** | 0.02 | 0.36 | 0.48 ** | 0.34 | 0.50 ** | 0.62 ** | 0.78 ** | 1 | ||
RX5day | 0.46 * | 0.05 | 0.58 ** | 0.45 * | 0.41 * | 0.48 ** | 0.66 ** | 0.70 ** | 0.74 ** | 1 | |
SDII | 0.58 ** | 0.22 | 0.53 ** | 0.59 ** | 0.63 ** | 0.67 ** | 0.82 ** | 0.62 ** | 0.73 ** | 0.75 ** | 1 |
Indices | AAP | CDD | CWD | PRCPTOT | R10mm | R20mm | R95 | R99 | RX1day | RX5day | SDII |
---|---|---|---|---|---|---|---|---|---|---|---|
AAP | 1 | ||||||||||
CDD | −0.24 | 1 | |||||||||
CWD | 0.58 ** | −0.33 | 1 | ||||||||
PRCPTOT | 0.99 ** | −0.23 | 0.56 ** | 1 | |||||||
R10mm | 0.67 ** | −0.25 | 0.22 | 0.69 ** | 1 | ||||||
R20mm | 0.64 ** | −0.01 | 0.17 | 0.65 ** | 0.54 ** | 1 | |||||
R95 | 0.81 ** | −0.11 | 0.28 | 0.82 ** | 0.89 ** | 0.77 ** | 1 | ||||
R99 | 0.65 ** | −0.03 | 0.18 | 0.66 ** | 0.64 ** | 0.92 ** | 0.83 ** | 1 | |||
RX1day | 0.78 ** | −0.10 | 0.22 | 0.80 ** | 0.81 ** | 0.83 ** | 0.95 ** | 0.91 ** | 1 | ||
RX5day | 0.81 ** | −0.18 | 0.30 | 0.84 ** | 0.85 ** | 0.73 ** | 0.93 ** | 0.77 ** | 0.92 ** | 1 | |
SDII | 0.67 ** | 0.02 | 0.09 | 0.70 ** | 0.73 ** | 0.48 ** | 0.78 ** | 0.54 ** | 0.78 ** | 0.78 ** | 1 |
References
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Wu, Z.; Dijkstra, P.; Koch, G.W.; PeÑUelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Chang. Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Knapp, A.K.; Beier, C.; Briske, D.D. Consequences of More Extreme Precipitation Regimes for Terrestrial. BioScience 2008, 58, 811–821. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Asadieh, B.; Krakauer, N.Y. Global trends in extreme precipitation: Climate models vs. observations. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 11369–11393. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- Peterson, T.C.; Zhang, X.; Brunet-India, M.; Vázquez-Aguirre, J.L. Changes in North American extremes derived from daily weather data. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, E.; Aziz Barry, A.; Brunet, M.; Ekang, L.; Fernandes, A.; Massoukina, M.; Mbah, J.; Mhanda, A.; do Nascimento, D.J.; Peterson, T.C.; et al. Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, X.; Wu, D.; Tang, B.; Xu, P.; Du, X.; Wang, H. Spatiotemporal Variability in Extreme Precipitation in China from Observations and Projections. Water 2018, 10, 1089. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Wei, J.; Wang, S.; Li, X.; Li, S.; Zhao, A.; Li, X.; Fan, J. Changes in extreme precipitation over Northeast China, 1960–2011. Quat. Int. 2013, 298, 177–186. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.-Y.; Zhang, Z.; Chen, Y.D.; Liu, C.-L.; Lin, H. Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze River basin and possible association with large-scale circulation. J. Hydrol. 2008, 353, 215–227. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, X.; Wang, B. Changes in precipitation extremes in Southeastern Tibet, China. Quat. Int. 2015, 380–381, 49–59. [Google Scholar] [CrossRef]
- Kang, S.; Xu, Y.; You, Q.; Flügel, W.-A.; Pepin, N.; Yao, T. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Yang, X.; Hao, Y.; Guo, H.; Kossi, F.; Xin, Z.; Wei, W.; Zhang, Z.; Zhang, X.; et al. Analysis of Precipitation Extremes in the Qinghai-Tibetan Plateau, China: Spatio-Temporal Characteristics and Topography Effects. Atmosphere 2017, 8, 127. [Google Scholar] [CrossRef]
- Fowler, H.J.; Wilby, R.L. Detecting changes in seasonal precipitation extremes using regional climate model projections: Implications for managing fluvial flood risk. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Chuntian, C.; Chau, K.W. Three-person multi-objective conflict decision in reservoir flood control. Eur. J. Oper. Res. 2002, 142, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Bao, Q.; Hoskins, B.; Wu, G.; Liu, Y. Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Peng, G.; Leslie, L.M.; Shao, X.; Sha, W. Seasonal and regional temperature changes in China over the 50 year period 1951–2000. Meteorol. Atmos. Phys. 2005, 89, 105–115. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK, 2013. [Google Scholar]
- Xu, Z.X.; Gong, T.L.; Li, J.Y. Decadal trend of climate in the Tibetan Plateau—Regional temperature and precipitation. Hydrol. Process. 2008, 22, 3056–3065. [Google Scholar] [CrossRef]
- Ding, M.; Zhang, Y.; Liu, L.; Zhang, W.; Wang, Z.; Bai, W. The relationship between NDVI and precipitation on the Tibetan Plateau. J. Geogr. Sci. 2007, 17, 259–268. [Google Scholar] [CrossRef]
- Limsakul, A.; Singhruck, P. Long-term trends and variability of total and extreme precipitation in Thailand. Atmos. Res. 2016, 169, 301–317. [Google Scholar] [CrossRef]
- Verdon-Kidd, D.C.; Kiem, A.S. Regime shifts in annual maximum rainfall across Australia—Implications for intensity–frequency–duration (IFD) relationships. Hydrol. Earth Syst. Sci. 2015, 19, 4735–4746. [Google Scholar] [CrossRef]
- Bothe, O.; Fraedrich, K.; Zhu, X. The large-scale circulations and summer drought and wetness on the Tibetan plateau. Int. J. Climatol. 2009, 30, 844–855. [Google Scholar] [CrossRef]
- Ali, S.; Uijttewaal, W.S.J. Flow resistance of vegetated oblique weir-like obstacles during high water stages. Hydrol. Earth Syst. Sci. 2014, 18, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Lin, Y.; Wright, J.S.; Ming, Y.; Xie, Y.; Wang, B.; Luo, Y.; Huang, W.; Huang, J.; Wang, L.; et al. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat. Commun. 2016, 7, 10925. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Tang, Y.; Cui, X.; Du, M.; Zhao, L.; Li, Y.; Xu, S.; Zhou, H.; Kato, T.; Qi, P.; et al. Characterizing evapotranspiration over a meadow ecosystem on the Qinghai-Tibetan Plateau. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Sun, J.; Qin, X.; Yang, J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Environ. Monit. Assess. 2016, 188, 20. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Sulaiman, S.O.; Deo, R.C.; Chau, K.-W. An enhanced extreme learning machine model for river fl ow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. J. Hydrol. 2019, 569, 387–408. [Google Scholar] [CrossRef]
- Xu, X.; Lu, C.; Shi, X.; Gao, S. World water tower: An atmospheric perspective. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Wang, W.-c.; Chau, K.-w.; Qiu, L.; Chen, Y.-b. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Environ. Res. 2015, 139, 46–54. [Google Scholar] [CrossRef]
- Cui, P.; Jia, Y. Mountain hazards in the Tibetan Plateau: Research status and prospects. Natl. Sci. Rev. 2015, 2, 397–402. [Google Scholar] [CrossRef]
- Nowak, A.S.; Nobis, M. Distribution patterns, floristic structure and habitat requirements of the alpine river plant community Stuckenietum amblyphyllae ass. nova (Potametea) in the Pamir Alai Mountains (Tajikistan). Acta Soc. Bot. Pol. 2012, 81, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Cheng, G.; Li, W.; Sha, Y.; Yang, Y. On the Variation of NDVI with the Principal Climatic Elements in the Tibetan Plateau. Remote Sens. 2013, 5, 1894–1911. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Sun, J.; Xiong, J. Spatial-Temporal Patterns and Controls of Evapotranspiration across the Tibetan Plateau (2000–2012). Adv. Meteorol. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- WMO. Calculation of Monthly and Annual 30-Year Standard Normals; WMO: Geneva, Switzerland, 1989. [Google Scholar]
- Zhang, X.; Yang, F. RClimDex (1.0) User Manual; Climate Research Branch Environment Canada: Ottawa, ON, Canada, 2004.
- Wang, X.L. Accounting for Autocorrelation in Detecting Mean Shifts in Climate Data Series Using the Penalized Maximal t or F Test. J. Appl. Meteorol. Climatol. 2008, 47, 2423–2444. [Google Scholar] [CrossRef]
- Kiem, A.S.; Franks, S.W. On the identification of ENSO-induced rainfall and runoff variability: A comparison of methods and indices. Hydrol. Sci. J. 2001, 46, 715–727. [Google Scholar] [CrossRef]
- Ouyang, R.; Liu, W.; Fu, G.; Liu, C.; Hu, L.; Wang, H. Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years. Hydrol. Earth Syst. Sci. 2014, 11, 3651–3661. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Hoar, T.J. El Niño and climate change. Geophys. Res. Lett. 1997, 24, 3057–3060. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Ma, W.; Guo, D.; Mohammat, A. Large-scale pattern of biomass partitioning across China’s grasslands. Glob. Ecol. Biogeogr. 2010, 19, 268–277. [Google Scholar] [CrossRef]
- Zhou, B.; Liang, C.; Zhao, P.; Dai, Q. Analysis of Precipitation Extremes in the Source Region of the Yangtze River during 1960–2016. Water 2018, 10, 1691. [Google Scholar] [CrossRef]
- Zhang, K.; Pan, S.; Cao, L.; Wang, Y.; Zhao, Y.; Zhang, W. Spatial distribution and temporal trends in precipitation extremes over the Hengduan Mountains region, China, from 1961 to 2012. Quat. Int. 2014, 349, 346–356. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Chen, Z. Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960–2010. Hydrol. Process. 2013, 27, 1807–1818. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Cao, L.; Xu, X. Changes in precipitation extremes over the Pearl River Basin, southern China, during 1960–2012. Quat. Int. 2014, 333, 26–39. [Google Scholar] [CrossRef]
- Rahimzadeh, F.; Asgari, A.; Fattahi, E. Variability of extreme temperature and precipitation in Iran during recent decades. Int. J. Climatol. 2009, 29, 329–343. [Google Scholar] [CrossRef]
- Cao, L.; Pan, S. Changes in precipitation extremes over the “Three-River Headwaters” region, hinterland of the Tibetan Plateau, during 1960–2012. Quat. Int. 2014, 321, 105–115. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, J.; She, D. Spatiotemporal variation and statistical characteristic of extreme precipitation in the middle reaches of the Yellow River Basin during 1960–2013. Theor. Appl. Climatol. 2018, 135, 391–408. [Google Scholar] [CrossRef]
- Yan, G.; Qi, F.; Wei, L.; Aigang, L.; Yu, W.; Jing, Y.; Aifang, C.; Yamin, W.; Yubo, S.; Li, L.; et al. Changes of daily climate extremes in Loess Plateau during 1960–2013. Quat. Int. 2015, 371, 5–21. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S.; Huang, Q.; Xie, Y.; Leng, G.; Luan, J.; Song, X.; Wei, X.; Li, X. Identification of the non-stationarity of extreme precipitation events and correlations with large-scale ocean-atmospheric circulation patterns: A case study in the Wei River Basin, China. J. Hydrol. 2017, 548, 184–195. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhang, Y.; Hong, S. Temporal and spatial variations of precipitation in Northwest China during 1960–2013. Atmos. Res. 2017, 183, 283–295. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Chu, G.; Sun, Q.; Yang, K.; Li, A.; Yu, X.; Xu, T.; Yan, F.; Wang, H.; Liu, M.; Wang, X.; et al. Evidence for decreasing South Asian summer monsoon in the past 160 years from varved sediment in Lake Xinluhai, Tibetan Plateau. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Cannon, F.; Carvalho, L.M.; Jones, C.; Bookhagen, B. Multi-annual variations in winter westerly disturbance activity affecting the Himalaya. Clim. Dyn. 2015, 44, 441–455. [Google Scholar] [CrossRef]
- Liu, H.; Liu, X.; Dong, B. Intraseasonal variability of winter precipitation over central asia and the western tibetan plateau from 1979 to 2013 and its relationship with the North Atlantic Oscillation. Dyn. Atmos. Oceans 2017, 79, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Xu, Z.X. Regionalization of precipitation and the spatiotemporal distribution of extreme precipitation in southwestern China. Nat. Hazards 2015, 80, 1195–1211. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Zhou, X.; Lai, C.; Lin, W.; Chen, X. Observed changes in precipitation extremes across 11 basins in China during 1961–2013. Int. J. Climatol. 2016, 36, 2866–2885. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Wei, J.; Wang, S.; Li, S.; Ma, Q.; Li, X.; Pan, S. Changes in extreme events of temperature and precipitation over Xinjiang, northwest China, during 1960–2009. Quat. Int. 2013, 298, 141–151. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Wang, B.; Sun, M.; Li, X. Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973–2011. Quat. Int. 2013, 313–314, 110–117. [Google Scholar] [CrossRef]
- Durack, P.J.; Wijffels, S.E.; Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 2012, 336, 455–458. [Google Scholar] [CrossRef]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Prein, A.F.; Rasmussen, R.M.; Ikeda, K.; Liu, C.; Clark, M.P.; Holland, G.J. The future intensification of hourly precipitation extremes. Nat. Clim. Chang. 2016, 7, 48–52. [Google Scholar] [CrossRef]
- Tian, L.; Yao, T.; Li, Z.; MacClune, K.; Wu, G.; Xu, B.; Li, Y.; Lu, A.; Shen, Y. Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Ali Ghorbani, M.; Kazempour, R.; Chau, K.-W.; Shamshirband, S.; Taherei Ghazvinei, P. Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: A case study in Talesh, Northern Iran. Eng. Appl. Comput. Fluid Mech. 2018, 12, 724–737. [Google Scholar] [CrossRef]
- Moazenzadeh, R.; Mohammadi, B.; Shamshirband, S.; Chau, K.-w. Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Eng. Appl. Comput. Fluid Mech. 2018, 12, 584–597. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.W.; Quiroz, R.A.; de Jong, S.M. Understanding precipitation patterns and land use interaction in Tibet using harmonic analysis of SPOT VGT-S10 NDVI time series. Int. J. Remote Sens. 2008, 26, 2281–2296. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, S.; Zhao, D.; Zheng, D.; Pan, T. Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau. J. Geogr. Sci. 2013, 23, 195–207. [Google Scholar] [CrossRef]
- Sun, X.; Renard, B.; Thyer, M.; Westra, S.; Lang, M. A global analysis of the asymmetric effect of ENSO on extreme precipitation. J. Hydrol. 2015, 530, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Xie, J.; Zhao, Y.; He, H.; He, G. Spatiotemporal variability of extreme precipitation in Shaanxi province under climate change. Theor. Appl. Climatol. 2016, 130, 831–845. [Google Scholar] [CrossRef]
- Liu, H.; Duan, K. Effects of North Atlantic Oscillation on summer precipitation over the Tibetan Plateau. Glaciol. Geocryol. 2012, 2, 311–318. [Google Scholar]
- Lovejoy, S.; Schertzer, D.; Ladoy, P. Fractal characterization of inhomogeneous geophysical measuring networks. Nature 1986, 319, 43–44. [Google Scholar] [CrossRef]
Ecosystem | The Number of Observatory | Average Elevation (m) |
---|---|---|
Forest | 17 | 2919.6 |
Alpine meadow | 30 | 3629.9 |
Alpine steppe | 12 | 3517.1 |
Desert steppe | 5 | 2874.5 |
Other observatory | 12 | 1678.6 |
Index | Descriptive Name | Definition | Units |
---|---|---|---|
CDD | Consecutive dry days | Maximum number of consecutive dry days | days |
CWD | Consecutive wet days | Maximum number of consecutive wet days | days |
R10mm | Number of moderate precipitation days | Annual count of days when RR ≥ 10 mm | days |
R20mm | Number of heavy precipitation days | Annual count of days when RR ≥ 20 mm | days |
SDII | Simple daily intensity index | Average precipitation on wet days | mm/day |
PRCPTOT | Wet day precipitation | Annual total PRCP in wet days (RR ≥ 1 mm) | mm |
RX1day | Maximum 1-day precipitation | Annual maximum 1-day precipitation | mm |
RX5day | Maximum 5-day precipitation | Annual maximum consecutive 5-day precipitation | mm |
R95 | Very wet day precipitation | Annual total precipitation when RR > 95th percentile | mm |
R99 | Extremely wet day precipitation | Annual total precipitation when RR > 99th percentile | mm |
Indices | AAP | CDD | CWD | PRCPTOT | R10mm | R20mm | R95 | R99 | RX1day | RX5day | SDII |
---|---|---|---|---|---|---|---|---|---|---|---|
AAP | 1 | ||||||||||
CDD | −0.06 | 1 | |||||||||
CWD | 0.52 ** | −0.16 | 1 | ||||||||
PRCPTOT | 0.99 ** | −0.05 | 0.51 * | 1 | |||||||
R10mm | 0.94 ** | 0.01 | 0.43 * | 0.95 ** | 1 | ||||||
R20mm | 0.71 ** | −0.27 | 0.25 | 0.72 ** | 0.68 ** | 1 | |||||
R95 | 0.71 ** | −0.08 | 0.22 | 0.72 ** | 0.68 ** | 0.87 ** | 1 | ||||
R99 | 0.35 * | 0.09 | 0.13 | 0.35 * | 0.28 | 0.44 ** | 0.69 ** | 1 | |||
RX1day | 0.35 * | 0.14 | 0.11 | 0.36 * | 0.26 | 0.35 * | 0.64 ** | 0.78 ** | 1 | ||
RX5day | 0.56 ** | −0.05 | 0.39 * | 0.57 ** | 0.52 ** | 0.61 ** | 0.81 ** | 0.76 ** | 0.78 ** | 1 | |
SDII | 0.65 ** | 0.16 | 0.19 | 0.66 ** | 0.74 ** | 0.65 ** | 0.75 ** | 0.60 ** | 0.55 ** | 0.76 ** | 1 |
Indices | AAP | CDD | CWD | PRCPTOT | R10mm | R20mm | R95 | R99 | RX1day | RX5day | SDII |
---|---|---|---|---|---|---|---|---|---|---|---|
AAP | 1 | ||||||||||
CDD | −0.14 | 1 | |||||||||
CWD | 0.45 * | 0.36 | 1 | ||||||||
PRCPTOT | 1 | −0.14 | 0.45 * | 1 | |||||||
R10mm | 0.95 ** | −0.16 | 0.41 * | 0.95 ** | 1 | ||||||
R20mm | 0.85 ** | −0.13 | 0.43 * | 0.85 ** | 0.81 ** | 1 | |||||
R95 | 0.83 ** | −0.09 | 0.31 | 0.83 ** | 0.77 ** | 0.92 ** | 1 | ||||
R99 | 0.39 * | −0.01 | −0.08 | 0.39 * | 0.30 | 0.43 * | 0.68 ** | 1 | |||
RX1day | 0.37 * | 0.05 | −0.03 | 0.31 | 0.22 | 0.36 | 0.60 ** | 0.86 ** | 1 | ||
RX5day | 0.58 ** | −0.08 | 0.15 | 0.58 ** | 0.54 ** | 0.62 ** | 0.79 ** | 0.83 ** | 0.69 ** | 1 | |
SDII | 0.76 ** | −0.06 | 0.29 | 0.77 ** | 0.84 ** | 0.75 ** | 0.81 ** | 0.52 ** | 0.47 ** | 0.68 ** | 1 |
Index | CDD (day/year) | CWD (day/year) | R10mm (day/year) | R20mm (day/year) |
---|---|---|---|---|
Forest | 0.625 * | 0.015 | −0.049 | −0.018 |
Alpine meadow | 0.454 * | −0.001 | 0.05 | 0.016 |
Alpine steppe | 0.011 | 0.033 ** | 0.06 ** | −0.001 |
Desert steppe | 0.455 | −0.005 | 0.01 | 0.006 ** |
Index | PRCPTOT (mm/year) | R95 (mm/year) | R99 (mm/year) | RX1day (mm/year) | RX5day (mm/year) | SDII (mm/day/year) |
---|---|---|---|---|---|---|
Forest | −1.187 | −0.336 | 0.204 | 0.064 | 0.1 | 0.004 |
Alpine meadow | 1.393 | 0.616 | 0.311 * | 0.002 | 0.103 | 0.01 * |
Alpine steppe | 1.306 * | 0.204 | 0.228 | 0.128 * | 0.255 * | 0.015 * |
Desert steppe | 0.283 | 0.313 * | 0.192 * | 0.192 * | 0.248 * | 0.024 * |
Index | Tibetan Plateau | Western Tibetan Plateau | Southeastern Tibetan | Three-River Headwaters | China | Loess Plateau | Xinjiang Province | Southwest China |
---|---|---|---|---|---|---|---|---|
CDD (day/year) | 0.43 * | −0.052 | 0.455 * | −0.206 * | −0.273 * | −1.865 * | −0.002 | −0.124 |
CWD (day/year) | −0.006 | 0.017 | −0.035 | −0.016 | −0.141 * | −0.0009 | 0.005 | 0.116 |
R10mm (day/year) | 0.023 | −0.006 | 0.046 | 0.016 | 0.004 | −0.003 | 0.02 * | 0.013 |
R20mm (day/year) | 0.003 | −0.011 | 0.004 | 0.0004 | 0.002 * | |||
PRCPTOT (mm/year) | 0.583 | 0.047 | 0.495 | 0.833 * | 0.113 | 0.187 * | −0.42 | |
R95 (mm/year) | 0.282 | 0.048 | −0.331 | 0.383 * | 0.339 * | −0.059 | 0.628 * | 0.674 |
R99 (mm/year) | 0.26 * | 0.041 | −0.284 | 0.19 * | 0.177 * | −0.025 | 0.326 * | 0.571 * |
RX1day (mm/year) | 0.053 | 0.036 | −0.049 | −0.016 | 0.05 * | −0.022 | 0.079 * | 0.036 |
RX5day (mm/year) | 0.138 | 0.125 | −0.028 | −0.044 | 0.036 | −0.084 | 0.085 * | 0.026 |
SDII (mm/day/year) | 0.01 * | −0.001 | 0.006 | 0.002 | 0.007 * | −0.012 * | 0.004 * | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, J.; Yong, Z.; Wang, Z.; Cheng, W.; Li, Y.; Zhang, H.; Ye, C.; Yang, Y. Spatial and Temporal Patterns of the Extreme Precipitation across the Tibetan Plateau (1986–2015). Water 2019, 11, 1453. https://doi.org/10.3390/w11071453
Xiong J, Yong Z, Wang Z, Cheng W, Li Y, Zhang H, Ye C, Yang Y. Spatial and Temporal Patterns of the Extreme Precipitation across the Tibetan Plateau (1986–2015). Water. 2019; 11(7):1453. https://doi.org/10.3390/w11071453
Chicago/Turabian StyleXiong, Junnan, Zhiwei Yong, Zegen Wang, Weiming Cheng, Yi Li, Hao Zhang, Chongchong Ye, and Yanmei Yang. 2019. "Spatial and Temporal Patterns of the Extreme Precipitation across the Tibetan Plateau (1986–2015)" Water 11, no. 7: 1453. https://doi.org/10.3390/w11071453
APA StyleXiong, J., Yong, Z., Wang, Z., Cheng, W., Li, Y., Zhang, H., Ye, C., & Yang, Y. (2019). Spatial and Temporal Patterns of the Extreme Precipitation across the Tibetan Plateau (1986–2015). Water, 11(7), 1453. https://doi.org/10.3390/w11071453