Optimized Conditioning Factors Using Machine Learning Techniques for Groundwater Potential Mapping
Abstract
:1. Introduction
2. Study Area and Data Used
3. Data Preparation
- Six elevation elements (slope angle, aspect angle, altitude, profile curvature, plan curvature, slope length);
- Five water-related factors (river density, distance from river, stream power index (SPI), terrain roughness index (TRI), and topographic wetness index (TWI));
- Three geological factors (lithology, fault density, and distance from fault);
- Land use data, as illustrated in Figure 3.
3.1. Groundwater Conditioning Factor Analysis and Optimization
3.1.1. Variance Inflation Factor (VIF)
3.1.2. Chi-Square Factor Optimization
3.1.3. Gini Importance
4. Methodology
4.1. Modeling Process
4.1.1. Linear Discriminant Analysis (LDA)
4.1.2. Mixture Discriminant Analysis (MDA)
4.1.3. Random Forest (RF) Model
- is the total trees that need to be grown. More trees will theoretically end up with more stable models and covariate importance estimates. The tradeoff is both a higher memory and computing time. For datasets that are small, 50 trees, for example, may suffice. However, larger datasets might require 500 or more trees. Typically, might not have a significant impact on the results. In this work, we set as a conservative number.
- refers to the number of available variables for splitting at each tree node. The specific values for differ across the literature. For example, the author of [55] reported that different values have little impact on classification accuracy as well as other metrics such as sensitivity, specificity, kappa, and ROC. Conversely, the author of [56] asserts that a specific value of is important and greatly influences predictor performance. Due to conflicting evidence, we determined through a validation dataset. Specifically, we randomly selected 70% of the dataset to calibrate the random forest model. The remainder (30%) was used for validation, i.e., for accuracy testing. Effectively, we were after an value that minimizes the mean squared error (MSE) in the validation dataset.
4.2. Accuracy Assessment
5. Results
- Slope aspect, slope length, SPI, and TRI were the least important conditioning factors for GPMs, while distance from the river, land cover, altitude, and lithology were the most important factors.
- A slight correlation was confirmed by Gini coefficient (all value less than 0.5) and Cramer’s V (all values less than 0.37) for all factors.
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhat, T.A. An Analysis of Demand and Supply of Water in India. J. Environ. Earth Sci. 2014, 4, 67–72. [Google Scholar]
- Manap, M.A.; Sulaiman, W.N.A.; Ramli, M.F.; Pradhan, B.; Surip, N. A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arab. J. Geosci. 2013, 6, 1621–1637. [Google Scholar] [CrossRef]
- Akinwumiju, A.S.; Olorunfemi, M.O.; Afolabi, O. GIS-based integrated groundwater potential assessment of Osun drainage basin, southwestern Nigeria. IFE J. Sci. 2016, 18, 147–168. [Google Scholar]
- Madani, K. Water management in Iran: What is causing the looming crisis? J. Environ. Stud. Sci. 2014, 4, 315–328. [Google Scholar] [CrossRef]
- Bastani, M.; Kholghi, M.; Rakhshandehroo, G.R. Inverse modeling of variable-density groundwater flow in a semi-arid area in Iran using a genetic algorithm. Hydrogeol. J. 2010, 18, 1191–1203. [Google Scholar] [CrossRef]
- Rahmati, O.; Pourghasemi, H.R.; Melesse, A.M. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena 2016, 137, 360–372. [Google Scholar] [CrossRef]
- Sokeng, V.-C.J.; Kouame, F.; Nagatcha, N.; N’da, H.D.; You, L.A.; Rirabe, D. Delineating groundwater potential zones in Western Cameroon Highlands using GIS based Artificial Neural Networks model and remote sensing data. Int. J. Innov. Appl. Stud. 2016, 15, 747–759. [Google Scholar]
- Díaz-Alcaide, S.; Martínez-Santos, P.; Villarroya, F. A commune-level groundwater potential map for the republic of Mali. Water 2017, 9, 839. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K.; Singh, P.K.; Mahnot, S.C.; Gupta, A. Planning and design of cost-effective water harvesting structures for efficient utilization of scarce water resources in semi-arid regions of Rajasthan, India. Water Resour. Manag. 2004, 18, 219–235. [Google Scholar] [CrossRef]
- Sturm, M.; Zimmermann, M.; Schütz, K.; Urban, W.; Hartung, H. Rainwater harvesting as an alternative water resource in rural sites in central northern Namibia. Phys. Chem. Earth 2009, 34, 776–785. [Google Scholar] [CrossRef]
- Wu, P.; Tan, M. Challenges for sustainable urbanization: A case study of water shortage and water environment changes in Shandong, China. Procedia Environ. Sci. 2012, 13, 919–927. [Google Scholar] [CrossRef]
- Chowdhury, A.; Jha, M.K.; Chowdary, V.M.; Mal, B.C. Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. Int. J. Remote Sens. 2008, 30, 231–250. [Google Scholar] [CrossRef]
- Talabi, A.O. Weathering of Meta-Igneous Rocks in Parts of the Basement Terrain of Southwestern Nigeria: Implications on Groundwater Occurrence. Int. J. Sci. Res. Publ. 2015, 5, 1–17. [Google Scholar]
- Deshpande, S.M.; Aher, K.R. Evaluation of Groundwater Quality and its Suitability for Drinking and Agriculture use in Parts of Vaijapur, District Aurangabad, MS, India. J. Chem. Sci. 2012, 2, 25–31. [Google Scholar]
- Elbeih, S.F. An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Eng. J. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Tahmassebipoor, N.; Rahmati, O.; Noormohamadi, F.; Lee, S. Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab. J. Geosci. 2016, 9, 1–18. [Google Scholar] [CrossRef]
- Haghizadeh, A.; Moghaddam, D.D.; Pourghasemi, H.R. GIS-based bivariate statistical techniques for groundwater potential analysis (An example of Iran). J. Earth Syst. Sci. 2017, 126, 1–17. [Google Scholar] [CrossRef]
- Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.T.; Siddiqa, A.; Yaqoob, I. Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges. IEEE Access 2017, 5, 5247–5261. [Google Scholar]
- Pradhan, B.; Seeni, M.I.; Kalantar, B. Performance Evaluation and Sensitivity Analysis of Expert-Based, Statistical, Machine Learning, and Hybrid Models for Producing Landslide Susceptibility Maps. In Laser Scanning Applications in Landslide Assessment; Springer: Cham, Switzerland, 2017; pp. 193–232. ISBN 9783319553429. [Google Scholar]
- Khosravi, K.; Panahi, M.; Tien Bui, D. Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrol. Earth Syst. Sci. 2018, 22, 4771–4792. [Google Scholar] [CrossRef] [Green Version]
- Naghibi, S.A.; Moradi Dashtpagerdi, M. Evaluation of four supervised learning methods for groundwater spring potential mapping in Khalkhal region (Iran) using GIS-based featuresEvaluation de quatre méthodes d’apprentissage supervisé pour la cartographie du potentiel des sources d’eaux souterra. Hydrogeol. J. 2017, 25, 169–189. [Google Scholar] [CrossRef]
- Close, M.E.; Abraham, P.; Humphries, B.; Lilburne, L.; Cuthill, T.; Wilson, S. Predicting groundwater redox status on a regional scale using linear discriminant analysis. J. Contam. Hydrol. 2016, 191, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Zabihi, M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Behzadfar, M. GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environ. Earth Sci. 2016, 75, 1–19. [Google Scholar] [CrossRef]
- Lee, S.; Hong, S.M.; Jung, H.S. GIS-based groundwater potential mapping using artificial neural network and support vector machine models: The case of Boryeong city in Korea. Geocarto Int. 2018, 33, 847–861. [Google Scholar] [CrossRef]
- Lee, S.; Lee, C.W. Application of decision-tree model to groundwater productivity-potential mapping. Sustainability 2015, 7, 13416–13432. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Abbaspour, K. A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS. Theor. Appl. Climatol. 2018, 131, 967–984. [Google Scholar] [CrossRef]
- Falah, F.; Ghorbani Nejad, S.; Rahmati, O.; Daneshfar, M.; Zeinivand, H. Applicability of generalized additive model in groundwater potential modelling and comparison its performance by bivariate statistical methods. Geocarto Int. 2017, 32, 1069–1089. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y. Applying various algorithms for species distribution modelling. Integr. Zool. 2013, 8, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Hoang, N.D.; Bui, D.T. Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: A multi-dataset study. Bull. Eng. Geol. Environ. 2018, 77, 191–204. [Google Scholar] [CrossRef]
- Ju, J.; Kolaczyk, E.D.; Gopal, S. Gaussian mixture discriminant analysis and sub-pixel land cover characterization in remote sensing. Remote Sens. Environ. 2003, 84, 550–560. [Google Scholar] [CrossRef]
- Lombardo, F.; Obach, R.S.; DiCapua, F.M.; Bakken, G.A.; Lu, J.; Potter, D.M.; Gao, F.; Miller, M.D.; Zhang, Y. A hybrid mixture discriminant analysis-random forest computational model for the prediction of volume of distribution of drugs in human. J. Med. Chem. 2006, 49, 2262–2267. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Discriminant Analysis by Gaussian Mixtures. J. R. Stat. Soc. Ser. B 1996, 58, 155–176. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Zhu, A.X.; Shahabi, H.; Pham, B.T.; Chen, W.; Pradhan, B.; Tien Bui, D. A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China). Environ. Earth. Sci. 2017, 76, 652. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009, 45, 1–16. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards 2012, 63, 965–996. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Dolatkordestani, M.; Rezaei, A.; Amouzegari, P.; Heravi, M.T.; Kalantar, B.; Pradhan, B. Application of rotation forest with decision trees as base classifier and a novel ensemble model in spatial modeling of groundwater potential. Environ. Monit. Assess. 2019, 191, 248. [Google Scholar] [CrossRef] [PubMed]
- Golkarian, A.; Naghibi, S.A.; Kalantar, B.; Pradhan, B. Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS. Environ. Monit. Assess. 2018, 190, 149. [Google Scholar] [CrossRef] [PubMed]
- Daneshfar, M.; Zeinivand, H. Journal of Applied Hydrology. J. Appl. Hydrol. 2015, 2, 45–61. [Google Scholar]
- Kordestani, M.D.; Naghibi, S.A.; Hashemi, H.; Ahmadi, K.; Kalantar, B.; Pradhan, B. Groundwater potential mapping using a novel data-mining ensemble model. Hydrogeol. J. 2019, 27, 211–224. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Golkarian, A.; Naghibi, S.A.; Kalantar, B.; Pradhan, B. GIS-based Groundwater Spring Potential Mapping Using Data Mining Boosted Regression Tree and Probabilistic Frequency Ratio Models in Iran. Aims Geosci. 2017, 3, 91–115. [Google Scholar]
- Pourtaghi, Z.S.; Pourghasemi, H.R. Evaluation de la potentialité des sources d’eau souterraine à partir d’un SIG et cartographie dans le district de Birjand, Sud de la province de Khorasan, Iran. Hydrogeol. J. 2014, 22, 643–662. [Google Scholar] [CrossRef]
- Zare, M.; Porghasemi, H.R.; Vafakhah, M.; Pradhan, B. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab. J. Geosci. 2013, 6, 2873–2888. [Google Scholar] [CrossRef]
- Moore, I.D.; Burch, G.J. Sediment transport capacity of sheet and rill flow' Application of unit stream power theory. Water Resour. Res. 1986, 22, 1350–1360. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B. Terrain-based catchment partitioning and runoff prediction using vector elevation data. Water Resour. Res. 1991, 27, 1177–1191. [Google Scholar] [CrossRef]
- Różycka, M.; Migoń, P.; Michniewicz, A. Topographic Wetness Index and Terrain Ruggedness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland. Z. Geomorphol. 2015, 59, 227–245. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 027–046. [Google Scholar] [CrossRef]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Rausch, J.R.; Kelley, K. A comparison of linear and mixture models for discriminant analysis under nonnormality. Behav. Res. Methods 2009, 41, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with Random forest using very high spatial resolution 8-band worldView-2 satellite data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Catani, F.; Lagomarsino, D.; Segoni, S.; Tofani, V. Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues. Nat. Hazards Earth Syst. Sci. 2013, 13, 2815–2831. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. Forest 2002, 2, 18–22. [Google Scholar]
- Cutler, R.; Lawler, J.; Thomas Edwards, J.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Strobl, C.; Boulesteix, A.L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C.; Mohammadi, M.; Moradi, H.R. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab. J. Geosci. 2013, 6, 2351–2365. [Google Scholar] [CrossRef]
- Egan, J.P. Signal Detection Theory and ROC Analysis Academic Press Series in Cognition and Perception; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Mas, J.-F.; Soares Filho, B.; Pontius, R.; Farfán Gutiérrez, M.; Rodrigues, H. A Suite of Tools for ROC Analysis of Spatial Models. ISPRS Int. J. Geo-Inf. 2013, 2, 869–887. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.; Jung, H. applied sciences Data Mining Approaches for Landslide Susceptibility Mapping in Umyeonsan, Seoul, South Korea. Appl. Sci. 2017, 7, 683. [Google Scholar] [CrossRef]
- Khosravi, K.; Sartaj, M.; Tsai, F.T.C.; Singh, V.P.; Kazakis, N.; Melesse, A.M.; Prakash, I.; Tien Bui, D.; Pham, B.T. A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci. Total Environ. 2018, 642, 1032–1049. [Google Scholar] [CrossRef] [PubMed]
- Negnevitsky, M.; Pavlovsky, V. Neural networks approach to online identification of multiple failures of protection systems. IEEE Trans. Power Deliv. 2005, 20, 588–594. [Google Scholar] [CrossRef]
- Bui, D.T.; Moayedi, H.; Kalantar, B.; Osouli, A.; Pradhan, B.; Nguyen, H.; Rashi, A.S.A. A Novel Swarm Intelligence—Harris Hawks. Sensors 2019, 19, 3590. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, C.; Schaffer, C. Selecting a Classification Method by Cross-Validation. Mach. Learn. 1993, 13, 135–143. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Moghaddam, D.D.; Kalantar, B.; Pradhan, B.; Kisi, O. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. J. Hydrol. 2017, 548, 471–483. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R. classification and regression tree, and random forest machine learning models in Iran GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ. Monit. Assess. 2016, 188, 44. [Google Scholar] [CrossRef] [PubMed]
- Pourtaghi, Z.S.; Pourghasemi, H.R. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeol. J. 2014, 22, 643–662. [Google Scholar] [CrossRef]
- Kalantar, B.; Pradhan, B.; Amir Naghibi, S.; Motevalli, A.; Mansor, S. Assessment of the effects of training data selection on the landslide susceptibility mapping: A comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics Nat. Hazards Risk 2018, 9, 49–69. [Google Scholar] [CrossRef]
- Stefouli, M.; Vasileiou, E.; Charou, E.; Stathopoulos, N. Remote sensing techniques as a tool for detecting water outflows. Case Study Cephalonia Isl. 2013, 47, 1519. [Google Scholar]
Group | Lithology | Formation | Symbol |
---|---|---|---|
A | Scree | - | |
Young terraces | - | ||
Old terraces | - | ||
Agglomerate | - | ||
Trachy andesitic lava flow | - | ||
Ash tuff, lapilli tuff | - | ||
Olivine basalt | - | ||
B | Green tuff, basaltic and limestone with gypsum, and conglomerate | Karaj | |
C | Gypsum | Karaj | |
Limestone bearing nummulites and alveolina, conglomerate | Ziarat | ||
Conglomerate, agglomerate, some marl, and limestone | Fajan | ||
D | Biogenic and cherty limestone | - | |
Orbitoline bearing limestone | Tizkuh | ||
Massive to well-bedded, cherty limestone | Lar | ||
Well-bedded, partly oolitic-detritic limestone, marlylimestone | Dalichai | ||
E | Dark shale and sandstone with plant remains, coal | Shemshak | |
Thin-bedded limestone | Elika | ||
Cross-bedded, quartzitic sandstone | Dorud |
Variable | Tolerance | VIF |
---|---|---|
Slope Length | 0.2023 | 1.0427 |
Slope | 0.9107 | 5.8622 |
SPI | 0.0820 | 1.0068 |
TRI | 0.9343 | 7.8669 |
River Density | 0.1855 | 1.0356 |
TWI | 0.3886 | 1.1779 |
Plan Curvature | 0.3185 | 1.1129 |
Profile Curvature | 0.1060 | 1.0114 |
Aspect | 0.0253 | 1.0006 |
Altitude | 0.8156 | 2.9876 |
Distance from Fault | 0.2764 | 1.0827 |
Lithology | 0.0338 | 1.0011 |
Land cover | 0.2126 | 1.0473 |
Distance from River | 0.2289 | 1.0553 |
Fault Density | 0.2286 | 1.0551 |
Factor | Chi-Square Method | Gini Importance | |||
---|---|---|---|---|---|
Chi-Square | p-Value | Gini | Information Value (IV) | Cramer’s V (Coefficient) | |
Distance from River | 331.680 | 0.000 | 0.431 | 0.582 | 0.372 |
Land Cover | 221.008 | 0.000 | 0.457 | 0.355 | 0.293 |
Altitude | 116.349 | 0.000 | 0.474 | 0.214 | 0.227 |
Lithology | 99.515 | 0.000 | 0.472 | 0.232 | 0.237 |
Slope | 82.179 | 0.000 | 0.478 | 0.176 | 0.208 |
TWI | 64.824 | 0.000 | 0.486 | 0.114 | 0.167 |
River Density | 64.064 | 0.000 | 0.483 | 0.138 | 0.183 |
Profile Curvature | 45.436 | 0.000 | 0.480 | 0.161 | 0.199 |
TRI | 31.388 | 0.000 | 0.494 | 0.053 | 0.114 |
Fault Density | 25.061 | 0.000 | 0.483 | 0.112 | 0.182 |
Distance from Fault | 24.775 | 0.001 | 0.482 | 0.079 | 0.191 |
Aspect | 6.189 | 0.518 | 0.496 | 0.032 | 0.090 |
Slope Length | 6.126 | 0.409 | 0.497 | 0.020 | 0.071 |
SPI | 3.145 | 0.534 | 0.495 | 0.040 | 0.099 |
Plan Curvature | 1.001 | 0.317 | 0.488 | 0.096 | 0.154 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalantar, B.; Al-Najjar, H.A.H.; Pradhan, B.; Saeidi, V.; Halin, A.A.; Ueda, N.; Naghibi, S.A. Optimized Conditioning Factors Using Machine Learning Techniques for Groundwater Potential Mapping. Water 2019, 11, 1909. https://doi.org/10.3390/w11091909
Kalantar B, Al-Najjar HAH, Pradhan B, Saeidi V, Halin AA, Ueda N, Naghibi SA. Optimized Conditioning Factors Using Machine Learning Techniques for Groundwater Potential Mapping. Water. 2019; 11(9):1909. https://doi.org/10.3390/w11091909
Chicago/Turabian StyleKalantar, Bahareh, Husam A. H. Al-Najjar, Biswajeet Pradhan, Vahideh Saeidi, Alfian Abdul Halin, Naonori Ueda, and Seyed Amir Naghibi. 2019. "Optimized Conditioning Factors Using Machine Learning Techniques for Groundwater Potential Mapping" Water 11, no. 9: 1909. https://doi.org/10.3390/w11091909