Changes in Water Surface Area of the Lake in the Steppe Region of Mongolia: A Case Study of Ugii Nuur Lake, Central Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Lake Surface Area Calculation
2.3.2. Mann-Kendall (MK) Analytical Method
2.3.3. Innovative Trend Analysis Method (ITAM)
2.3.4. Sen’s Slope Estimator Test
2.3.5. Analysis and Estimation of Climate and Hydrological Variables Influencing the Water Surface Area of the Lake
3. Results and Discussion
3.1. Changes in Lake Water Surface Area
3.2. Trend Analysis
3.2.1. Air Temperature Analysis
3.2.2. Precipitation Analysis
3.2.3. River Discharge Analysis
3.2.4. Evaporation Analysis
3.2.5. Analysis of the Water Surface Area of the Lake
3.3. Impact of Cimate Parameters and Water Balance Components on the Water Surface Area of the Ugii Nuur Lake
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dorjsuren, B.; Yan, D.; Wang, H.; Chonokhuu, S.; Enkhbold, A.; Davaasuren, D.; Girma, A.; Abiyu, A.; Jing, L.; Gedefaw, M. Observed trends of climate and land cover changes in Lake Baikal basin. Environ. Earth Sci. 2018, 77, 725. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Cole, R.; Adams, J.M.; Kapustin, G. Impacts of climate and land-cover changes in arid lands of Central Asia. J. Arid Environ. 2005, 62, 285–308. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Simon, B.; Faure, H.; Faure-Denard, L.; Adams, J.M. Impacts of climatic change on carbon storage in the Sahara–Gobi desert belt since the Last Glacial Maximum. Global Planetary Change 1998, 16–17, 95–105. [Google Scholar] [CrossRef]
- Malsy, M.; Aus der Beek, T.; Eisner, S.; Flörke, M. Climate change impacts on Central Asian water resources. Adv. Geosci. 2012, 32, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Nandintsetseg, B.; Greene, J.S.; Goulden, C.E. Trends in extreme daily precipitation and temperature near lake Hövsgöl, Mongolia. Internat. J. Climatol. 2007, 27, 341–347. [Google Scholar] [CrossRef]
- Liancourt, P.; Boldgiv, B.; Song, D.S.; Spence, L.A.; Helliker, B.R.; Petraitis, P.S.; Casper, B.B. Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe. Glob. Change Biol. 2015, 21, 3489–3498. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Ma, Y.; Feng, Z.; Narantsetseg, T.; Liu, K.-B.; Zhai, X. A prolonged dry mid-Holocene climate revealed by pollen and diatom records from Lake Ugii Nuur in central Mongolia. Quat. Int. 2011, 229, 74–83. [Google Scholar] [CrossRef]
- Walther, M.; Gegeensuvd, T. Ugii Nuur (Central Mongolia) Paleo Environmental Studies of Lake Level Fluctuations and Holocene Climate Change. Geographica-Oekologica 2005, 2, 36. [Google Scholar]
- Jimee, T. A catalog of lakes in Mongolia; Shuvuun Saaral Publishing: Ulaanbaatar, Mongolia, 2000; pp. 15–16. [Google Scholar]
- Schwanghart, W.; Schütt, B.; Walther, M. Holocene climate evolution of the Ugii Nuur basin, Mongolia. Adv. Atmos. Sci. 2008, 25, 986–998. [Google Scholar] [CrossRef] [Green Version]
- Schwanghart, W.; Schütt, B. Holocene morphodynamics in the Ugii Nuur basin, Mongolia—insights from a sediment profile and 1D electrical resistivity tomography. Zeitschrift für Geomorphologie, Supplementary Issues 2008, 52, 35–55. [Google Scholar] [CrossRef]
- Tsegmid, S. Physical geography of Mongolia; Institute of Geography and Permafrost, Mongolia, Mongolian Academy of Sciences, Press of State Publishing: Ulaanbaatar, Mongolia, 1969; pp. 148–153. [Google Scholar]
- Fukumoto, Y.; Kaoru, K.; Orkhonselenge, A.; Ganzorig, U. Holocene environmental changes in northern Mongolia inferred from diatom and pollen records of peat sediment. Quat. Int. 2012, 254, 83–91. [Google Scholar] [CrossRef]
- Wang, W.; Ma, Y.; Feng, Z.; Meng, H.; Sang, Y.; Zhai, X. Vegetation and climate changes during the last 8660 cal. a BP in central Mongolia, based on a high-resolution pollen record from Lake Ugii Nuur. Chin. Sci. Bul. 2009, 54, 1579–1589. [Google Scholar] [CrossRef] [Green Version]
- Pagma, K.; Peck, J.A.; Fowell, S.J. Lake Systems and Paleoclimate investigation of the Holocene, Mongolia. In Proceedings of the Mongolian Academy of Sciences; Mongolian Academy of Sciences: Ulaanbaatar, Mongolia, 2002; Volume 42, pp. 67–89. [Google Scholar]
- Information and Research Institute of Meteorology Hydrology and Environment of Mongolia. Assessment of Water Resources of Lakes in Mongolia Based on Land and Satellite Data Information; Project report. Press of Admon printing: Mongolia, Ulaanbaatar, 2018; pp. 123–124. [Google Scholar]
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environ. Monit. Assess. 2011, 178, 247–256. [Google Scholar] [CrossRef]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- Valeyev, A.; Karatayev, M.; Abitbayeva, A.; Uxukbayeva, S.; Bektursynova, A.; Sharapkhanova, Z. Monitoring Coastline Dynamics of Alakol Lake in Kazakhstan Using Remote Sensing Data. Geosciences 2019, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-Y.; Xu, H.-Y.; Sun, Y.-L.; Zhang, D.-S.; Yang, Z.-P. Lake-Level Change and Water Balance Analysis at Lake Qinghai, West China during Recent Decades. Water Resour. Manag. 2007, 21, 1505–1516. [Google Scholar] [CrossRef]
- Yin, X.; Nicholson, S.E. The water balance of Lake Victoria. Hydrol. Sci. J. 1998, 43, 789–811. [Google Scholar] [CrossRef]
- Tamaddun, K.A.; Kalra, A.; Bernardez, M.; Ahmad, S. Effects of ENSO on Temperature, Precipitation, and Potential Evapotranspiration of North India’s Monsoon: An Analysis of Trend and Entropy. Water 2019, 11, 189. [Google Scholar] [CrossRef] [Green Version]
- Dorjsuren, B.; Yan, D.; Wang, H.; Chonokhuu, S.; Enkhbold, A.; Yiran, X.; Girma, A.; Gedefaw, M.; Abiyu, A. Observed Trends of Climate and River Discharge in Mongolia’s Selenga Sub-Basin of the Lake Baikal Basin. Water 2018, 10, 1436. [Google Scholar] [CrossRef] [Green Version]
- Archive and Database center at the National Agency of Meteorology and Environment of Mongolia. Available online: http://namem.gov.mn/ (accessed on 15 September 2019).
- USGS Global Visualization Viewer. Available online: https://glovis.usgs.gov (accessed on 1 March 2013).
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Ma, M.; Wang, X.; Veroustraete, F.; Dong, L. Change in area of Ebinur Lake during the 1998–2005 period. Int. J. Remote Sens. 2007, 28, 5523–5533. [Google Scholar] [CrossRef]
- Lu, S.; Ouyang, N.; Wu, B.; Wei, Y.; Tesemma, Z. Lake water volume calculation with time series remote-sensing images. Int. J. Remote Sens. 2013, 34, 7962–7973. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Yang, H.; Li, H.; Thompson, J.R.; Li, L.; Song, K.; Chen, B.; Gao, H.; Wu, J. Impacts of Climate Change on Tibetan Lakes: Patterns and Processes. Remote Sens. 2018, 10, 358. [Google Scholar] [CrossRef] [Green Version]
- Gedefaw, M.; Wang, H.; Yan, D.; Song, X.; Yan, D.; Dong, G.; Wang, J.; Girma, A.; Ali, B.; Batsuren, D.; et al. Trend Analysis of Climatic and Hydrological Variables in the Awash River Basin, Ethiopia. Water 2018, 10, 1554. [Google Scholar] [CrossRef] [Green Version]
- Gedefaw, M.; Yan, D.; Wang, H.; Qin, T.; Wang, K. Analysis of the Recent Trends of Two Climate Parameters over Two Eco-Regions of Ethiopia. Water 2019, 11, 161. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sheng, Z.; Jing, J. Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data. Earth Planet. Phys. 2019, 3, 414–424. [Google Scholar] [CrossRef]
- Livada, I.; Synnefa, A.; Haddad, S.; Paolini, R.; Garshasbi, S.; Ulpiani, G.; Fiorito, F.; Vassilakopoulou, K.; Osmond, P.; Santamouris, M. Time series analysis of ambient air-temperature during the period 1970–2016 over Sydney, Australia. Sci. Total Environ. 2019, 648, 1627–1638. [Google Scholar] [CrossRef]
- Gedefaw, M.; Yan, D.; Wang, H.; Qin, T.; Girma, A.; Abiyu, A.; Batsuren, D. Innovative Trend Analysis of Annual and Seasonal Rainfall Variability in Amhara Regional State, Ethiopia. Atmosphere 2018, 9, 326. [Google Scholar] [CrossRef] [Green Version]
- Cherinet, A.A.; Yan, D.; Wang, H.; Song, X.; Qin, T.; Kassa, M.T.; Girma, A.; Dorjsuren, B.; Gedefaw, M.; Wang, H.; et al. Impacts of Recent Climate Trends and Human Activity on the Land Cover Change of the Abbay River Basin in Ethiopia. Adv. Meteorol. 2019, 2019, 14. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, J.; Xu, C.-y.; Wang, Z.; Sobkowiak, L.; Long, C. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sci. 2013, 23, 359–369. [Google Scholar] [CrossRef]
- Mbanguka, R.P.; Lyon, S.W.; Holmgren, K.; Girons Lopez, M.; Jarsjö, J. Water Balance and Level Change of Lake Babati, Tanzania: Sensitivity to Hydroclimatic Forcings. Water 2016, 8, 572. [Google Scholar] [CrossRef] [Green Version]
- Dalton, J. Experimental Essays on the Constitution of Mixed Gases: On the Force of Steam or Vapour from Water or Other Liquids in Different Temperatures, Both in a Torricelli Vacuum and in Air; on Evaporation; and on Expansion of Gases by Heat. Mem. Liter. Philosoph. Soc. Manch. 1802, 5, 536–602. [Google Scholar]
- Penman, H.L.; Keen, B.A. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Series, A. Mathemat. Physic. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.Y.; Singh, V.P. Cross Comparison of Empirical Equations for Calculating Potential Evapotranspiration with Data from Switzerland. Water Resour. Manag. 2002, 16, 197–219. [Google Scholar] [CrossRef]
- Gombo, D. Surface Water Regime and Resources in Mongolia; Admon Printing: Ulaanbaatar, Mongolia, 2015; pp. 120–156. [Google Scholar]
- Magnus, G. Versuche über die Spannkräfte des Wasserdampfs. Ann. Phys. 1844, 137, 225–247. [Google Scholar] [CrossRef] [Green Version]
- Matveev, L.T. Fundamentals of General Meteorology: Physics of the Atmosphere; Hydrometeorological press: Leningrad, Russia, 1967. [Google Scholar]
- Fifth generation ECMWF atmospheric ReanAlysis of the global climate (ERA5). Available online: https://cds.climate.copernicus.eu/ (accessed on 14 June 2018).
- WMO. Guide to Meteorological Instruments and Methods of Observation WMO-No. 8; WMO: Geneva, Switzerland, 2008. [Google Scholar]
- Hellman, G. Über die Bewegung der Luft in den untersten Schichten der Atmosphäre. Meteorol Z. 1916, 34, 273–285. [Google Scholar]
- Tar, K.; Lázár, I.; Gyarmati, R. Statistical Estimation of the Next Day’s Average Wind Speed and Wind Power. In Proceedings of the Perspectives of Renewable Energy in the Danube Region, Budapest, Hungary, 26–27 March 2015; pp. 175–191. [Google Scholar]
- Sawaya, K.E.; Olmanson, L.G.; Heinert, N.J.; Brezonik, P.L.; Bauer, M.E. Extending satellite remote sensing to local scales: Land and water resource monitoring using high-resolution imagery. Remote Sens. Environ. 2003, 88, 144–156. [Google Scholar] [CrossRef]
- Shang, S.; Shang, S. Simplified Lake Surface Area Method for the Minimum Ecological Water Level of Lakes and Wetlands. Water 2018, 10, 1056. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Li, G.; Rubinato, M.; Ma, G.; Zhou, J.; Jia, G.; Yu, X.; Wang, H. Analysis of Long-Term Water Level Variations in Qinghai Lake in China. Water 2019, 11, 2136. [Google Scholar] [CrossRef] [Green Version]
- Chebud, Y.A.; Melesse, A.M. Modelling lake stage and water balance of Lake Tana, Ethiopia. Hydrol. Process. 2009, 23, 3534–3544. [Google Scholar] [CrossRef]
- Du, Y.; Berndtsson, R.; An, D.; Zhang, L.; Hao, Z.; Yuan, F. Hydrologic Response of Climate Change in the Source Region of the Yangtze River, Based on Water Balance Analysis. Water 2017, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.; Shen, G.; Li, Y. Lake variations in response to climate change in the Tibetan Plateau in the past 40 years. Int. J. Digit. Earth 2013, 6, 534–549. [Google Scholar] [CrossRef]
- Orkhonselenge, A.; Komatsu, G.; Uuganzaya, M. Middle to late Holocene sedimentation dynamics and paleoclimatic conditions in the Lake Ulaan basin, southern Mongolia. Géomorphol. Relief Process. Environ. 2018, 24, 351–363. [Google Scholar] [CrossRef]
- Krapivin, V.F.; Mkrtchyan, F.A.; Rochon, G.L. Hydrological Model for Sustainable Development in the Aral Sea Region. Hydrology 2019, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Chikita, K.A.; Oyagi, H.; Aiyama, T.; Okada, M.; Sakamoto, H.; Itaya, T. Thermal Regime of A Deep Temperate Lake and Its Response to Climate Change: Lake Kuttara, Japan. Hydrology 2018, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Goshime, D.W.; Absi, R.; Ledésert, B. Evaluation and Bias Correction of CHIRP Rainfall Estimate for Rainfall-Runoff Simulation over Lake Ziway Watershed, Ethiopia. Hydrology 2019, 6, 68. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Fang, J.; Ma, S.; Cai, Q.; Xiong, X.; Tian, D.; Zhao, X.; Fang, L.; Zhang, H.; Zhu, J.; et al. Changes in China’s lakes: Climate and human impacts. Nat. Sci. Rev. 2019, 7, 132–140. [Google Scholar]
Years | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 |
Lake area | 26.04 | 25.96 | 25.84 | 24.45 | 25.98 | 26.74 | 25.74 | 26.43 | 26.48 | 26.78 | 25.88 |
Years | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
Lake area | 25.91 | 26.17 | 25.89 | 27.11 | 25.69 | 24.81 | 24.95 | 25.30 | 25.43 | 24.80 | 24.35 |
Years | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
Lake area | 23.68 | 22.79 | 22.24 | 21.80 | 22.16 | 22.52 | 23.37 | 23.13 | 24.19 | 24.38 | 24.60 |
No | Parameters | Mann-Kendall Trend Analysis | Innovative Trend Analysis | Sen’s SlopeEstimator Test Approach |
---|---|---|---|---|
1 | Trend of annual average air temperature | 4.595 *** | 16.076 *** | 0.065 |
2 | Trend of total annual precipitation | −0.902 | −0.542 | −0.888 |
3 | Trend of total annual river discharge | −5.392 *** | −6.511 *** | −0.015 |
4 | Trend of total annual evaporation | 4.385 *** | 4.328 *** | 2.256 ** |
5 | Trend of water surface area | −6.021 *** | −0.896 | −0.102 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumiya, E.; Dorjsuren, B.; Yan, D.; Dorligjav, S.; Wang, H.; Enkhbold, A.; Weng, B.; Qin, T.; Wang, K.; Gerelmaa, T.; et al. Changes in Water Surface Area of the Lake in the Steppe Region of Mongolia: A Case Study of Ugii Nuur Lake, Central Mongolia. Water 2020, 12, 1470. https://doi.org/10.3390/w12051470
Sumiya E, Dorjsuren B, Yan D, Dorligjav S, Wang H, Enkhbold A, Weng B, Qin T, Wang K, Gerelmaa T, et al. Changes in Water Surface Area of the Lake in the Steppe Region of Mongolia: A Case Study of Ugii Nuur Lake, Central Mongolia. Water. 2020; 12(5):1470. https://doi.org/10.3390/w12051470
Chicago/Turabian StyleSumiya, Erdenesukh, Batsuren Dorjsuren, Denghua Yan, Sandelger Dorligjav, Hao Wang, Altanbold Enkhbold, Baisha Weng, Tianlin Qin, Kun Wang, Tuvshin Gerelmaa, and et al. 2020. "Changes in Water Surface Area of the Lake in the Steppe Region of Mongolia: A Case Study of Ugii Nuur Lake, Central Mongolia" Water 12, no. 5: 1470. https://doi.org/10.3390/w12051470