Evaluation of the GPM-IMERG Precipitation Product for Flood Modeling in a Semi-Arid Mountainous Basin in Morocco
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area and Hydro-Rainfall Data
2.2. The GPM IMERG-E Satellite Precipitation Product
2.3. Soil Moisture Dataset
3. Methods
3.1. Statistical Evaluation of Satellite Precipitation Products
3.2. Hydrological Model
3.3. Hydrological Model Calibration and Validation
4. Results
4.1. GPM IMERG-E Product Evaluation
4.2. Hydrological Model Calibration
4.3. Hydrological Model Validation with Observed and GPM IMERG-E Precipitation
5. Conclusions
- (1)
- Compared to the rain gauge data, satellite precipitation data overestimates the amount of rainfall with a relative Bias of 35.61%.
- (2)
- At the hourly and daily time scales, the GPM IMERG-E presents a fair accuracy to reproduce precipitation amounts and detect precipitation occurrence, with better performances at the daily time step.
- (3)
- The comparison reveals that basin-averaged GPM IMERG-E precipitation is in better agreement with interpolated precipitation over the catchment from observed data than a direct pixel-to-station comparison.
- (4)
- The flood events can be simulated using either satellite or rain-gauge precipitation with NS criterions of 0.58 and 0.71, respectively.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Llasat, M.C.; Llasat-Botija, M.; Prat, M.A.; PorcúPorc, F.; Price, C.; Mugnai, A.; Lagouvardos, K.; Kotroni, V.; Katsanos, D.; Michaelides, S.; et al. High-impact floods and flash floods in Mediterranean countries: The FLASH preliminary database. Adv. Geosci. 2010, 23, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Pal, J.S.; Giorgi, F. Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Merheb, M.; Moussa, R.; Abdallah, C.; Colin, F.; Perrin, C.; Baghdadi, N. Hydrological response characteristics of Mediterranean catchments at different time scales: A meta-analysis. Hydrol. Sci. J. 2016, 61, 2520–2539. [Google Scholar] [CrossRef] [Green Version]
- Douglas, I.; Alam, K.; Maghenda, M.; Mcdonnell, Y.; Mclean, L.; Campbell, J. Unjust waters: Climate change, fl ooding and the urban poor in Africa. Environ. Urban. 2008, 20, 187–205. [Google Scholar] [CrossRef] [Green Version]
- Di Baldassarre, G.; Montanari, A.; Lins, H.; Koutsoyiannis, D.; Brandimarte, L.; Blschl, G. Flood fatalities in Africa: From diagnosis to mitigation. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Saidi, M.; Daoudi, L.; Aresmouk, M.; Blali, A. Rôle du milieu physique dans l’amplification des crues en milieu montagnard: Exemple de la crue du 17 août 1995 dans la vallée de l’Ourika (Haut-Atlas, Maroc). Rev. Sécheresse Paris 2003, 14, 107–114. [Google Scholar]
- Chaponnière, A.; Boulet, G.; Chehbouni, A.; Aresmouk, M. Understanding hydrological processes with scarce data in a mountain environment. Hydrol. Process. Int. J. 2008, 22, 1908–1921. [Google Scholar] [CrossRef] [Green Version]
- Vinet, F.; El Mehdi Saidi, M.; Douvinet, J.; Fehri, N.; Nasrallah, W.; Menad, W.; Mellas, S. Urbanization and land use as a driver of flood risk. In The Mediterranean Region under Climate Change; IRD Éditions: Marseille, France, 2016; Sub-chapter 3.4.1; pp. 563–575. [Google Scholar]
- Aide, T.; Szönyi, M.; Saidi, A.D. Morocco Floods of 2014: What We Can Learn from Guelmim and Sidi Ifni; Zurich Insurance Group Ltd.: Zurichh, Switzerland, 2015. [Google Scholar]
- Saidi, M.E.M.; Saouabe, T.; El Alaoui El Fels, A.; El Khalki, E.M.; Hadri, A. Hydro-meteorological characteristics and occurrence probability of extreme flood events in Moroccan High Atlas. J. Water Clim. Chang. 2020. [Google Scholar] [CrossRef]
- Gilles, D. Aménager, canaliser, encadrer juridiquement les rivières du Québec: Le poids de l’histoire? Les Cahiers de Droit 2011, 51, 923–945. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Thomas, G.A. Restoring environmental flows by modifying dam operations. Ecol. Soc. 2007, 12. [Google Scholar] [CrossRef]
- Halwatura, D.; Najim, M.M.M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ. Model. Softw. 2013, 46, 155–162. [Google Scholar] [CrossRef]
- Butts, M.B.; Payne, J.T.; Kristensen, M.; Madsen, H. An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. J. Hydrol. 2004, 298, 242–266. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, R.; May, I.; Turcotte, R.; Vescovi, L.; Braun, M.; Cyr, J.-F.; Fortin, L.-G.; Chaumont, D.; Biner, S.; Chartier, I.; et al. The role of hydrological model complexity and uncertainty in climate change impact assessment. Adv. Geosci. 2009, 21, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Wagener, T.; McIntyre, N. Identification of rainfall-runoff models for operational applications. Hydrol. Sci. J. 2005, 50, 735–751. [Google Scholar] [CrossRef]
- El Khalki, E.M.; Tramblay, Y.; Saidi, M.E.M.; Bouvier, C.; Hanich, L.; Benrhanem, M.; Alaouri, M. Comparison of modeling approaches for flood forecasting in the High Atlas Mountains of Morocco. Arab. J. Geosci. 2018, 11, 410. [Google Scholar] [CrossRef]
- Berthet, L.; Andréassian, V.; Perrin, C.; Javelle, P. How Crucial Is It to Account for the Antecedent Moisture Conditions in Flood Forecasting? Comparison of Event-Based and Continuous Approaches on 178 Catchments; European Geosciences Union: Munich, Germany, 2009; Volume 13, pp. 819–831. [Google Scholar]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.-P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.L.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 2004, 43, 1834–1852. [Google Scholar] [CrossRef] [Green Version]
- Tramblay, Y.; Thiemig, V.; Dezetter, A.; Hanich, L. Evaluation of satellite-based rainfall products for hydrological modelling in Morocco. Hydrol. Sci. J. 2016, 61, 2509–2519. [Google Scholar] [CrossRef] [Green Version]
- Kidd, C.; Kniveton, D.R.; Todd, M.C.; Bellerby, T.J. Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeorol. 2003, 4, 1088–1104. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.-L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D.; Sorooshian, S.; Hsu, K.-L.; Gao, X.; Gupta, H.V.; et al. Evaluation of PERSIANN System Satellite-Based Estimates of Tropical Rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Hughes, D.A. Comparison of satellite rainfall data with observations from gauging station networks. J. Hydrol. 2006, 327, 399–410. [Google Scholar] [CrossRef]
- Ward, E.; Buytaert, W.; Peaver, L.; Wheater, H. Evaluation of precipitation products over complex mountainous terrain: A water resources perspective. Adv. Water Resour. 2011, 34, 1222–1231. [Google Scholar] [CrossRef]
- Bastola, S.; François, D. Temporal extension of meteorological records for hydrological modelling of Lake Chad Basin (Africa) using satellite rainfall data and reanalysis datasets. Meteorol. Appl. 2012, 19, 54–70. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; De Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; De Roo, A. Validation of Satellite-Based Precipitation Products over Sparsely Gauged African River Basins. J. Hydrometeorol. 2012, 13, 1760–1783. [Google Scholar] [CrossRef]
- Gosset, M.; Viarre, J.; Quantin, G.; Alcoba, M. Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks. Q. J. R. Meteorol. Soc. 2013, 139, 923–940. [Google Scholar] [CrossRef]
- Xue, X.; Hong, Y.; Limaye, A.S.; Gourley, J.J.; Huffman, G.J.; Khan, S.I.; Dorji, C.; Chen, S. Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol. 2013, 499, 91–99. [Google Scholar] [CrossRef]
- Panegrossi, G.; Casella, D.; Dietrich, S.; Marra, A.C.; Sano, P.; Mugnai, A.; Baldini, L.; Roberto, N.; Adirosi, E.; Cremonini, R.; et al. Use of the GPM Constellation for Monitoring Heavy Precipitation Events over the Mediterranean Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2733–2753. [Google Scholar] [CrossRef]
- Chiaravalloti, F.; Brocca, L.; Procopio, A.; Massari, C.; Gabriele, S. Assessment of GPM and SM2RAIN-ASCAT rainfall products over complex terrain in southern Italy. Atmos. Res. 2018, 206, 64–74. [Google Scholar] [CrossRef]
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Wei, M.; Tang, G.; Zhang, Y. Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground-based data over Xinjiang, China. Environ. Earth Sci. 2018, 77. [Google Scholar] [CrossRef]
- Milewski, A.; Elkadiri, R.; Durham, M. Assessment and Comparison of TMPA Satellite Precipitation Products in Varying Climatic and Topographic Regimes in Morocco. Remote Sens. 2015, 7, 5697–5717. [Google Scholar] [CrossRef] [Green Version]
- Ouatiki, H.; Boudhar, A.; Tramblay, Y.; Jarlan, L.; Benabdelouhab, T.; Hanich, L.; El Meslouhi, M.R.; Chehbouni, A. Evaluation of TRMM 3B42 V7 rainfall product over the Oum Er Rbia watershed in Morocco. Climate 2017, 5, 1. [Google Scholar] [CrossRef]
- Siccardi, F. Rainstorm Hazards and Related Disasters in the North-West Mediterranean Region. Remote Sens. Rev. 1996, 14, 5–21. [Google Scholar] [CrossRef]
- Moret, L. Carte Géologique Provisoire de l’Atlas de Marrakech [Document Cartographique]; Ministry of Energy and Mines: Rabat, Morocco, 1930.
- Proust, F. Tectonique de socle par failles inverses, en liaison avec d’anciennes failles normales dans le Haut Atlas (Maroc). C.R. Somm. Soc. géol. Fr. 1962, 1, 9–11. [Google Scholar]
- Petit, J.P. La Zone de Décrochement du Tizi n’Test (Maroc) et Son Fonctionnement Depuis le Carbonifère. Ph.D. Thesis, University of Montpellier, Montpellier, France, 1976. [Google Scholar]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Gruber Leuven, A.K.; Gruber, A.; Arnoud Dorigo, W.; Crow, W.; Wagner, W.; Member, S. Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals Integrating microwave and thermal remote sensing for continuous dual source surface energy balance modeling View project AirMOSS View project Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Trans. Geosci. Remote Sens. 2017, 55. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Gruber, A.; de Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- El Khalki, E.M.; Tramblay, Y.; Amengual, A.; Homar, V.; Romero, R.; Saidi, M.E.M.; Alaouri, M. Validation of the AROME, ALADIN and WRF Meteorological Models for Flood Forecasting in Morocco. Water 2020, 12, 437. [Google Scholar] [CrossRef] [Green Version]
- El Khalki, E.M.M.; Tramblay, Y.; Massari, C.; Brocca, L.; Simonneaux, V.; Gascoin, S.; Saidi, M.E.M. Challenges in flood modelling over data scarce regions: How to exploit globally available soil moisture products to estimate antecedent soil wetness conditions in Morocco. Nat. Hazards Earth Syst. Sci. Discuss. 2020. [Google Scholar] [CrossRef]
- US Army Corps of Engineers Hydrologic Engineering Center. Technical Reference Manual Version 3.5; US Army Corps of Engineers Hydrologic Engineering Center: Davis, CA, USA, 2010.
- Tramblay, Y.; Bouaicha, R.; Brocca, L.; Dorigo, W.; Bouvier, C.; Camici, S.; Servat, E. Antecedent wetness conditions for flood modelling in Northern Morocco Hydrology and Earth System Sciences Discussions Estimation of antecedent wetness conditions for flood modelling in Northern Morocco Antecedent wetness conditions for flood modelling in Northern Morocco. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 9361–9390. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models Part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Huang, M.; Gallichand, J.; Dong, C.; Wang, Z.; Shao, M. Use of soil moisture data and curve number method for estimating runoff in the Loess Plateau of China. Hydrol. Process. 2007, 21, 1471–1481. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Singh, V.P. Assimilation of observed soil moisture data in storm rainfall-runoff modeling. J. Hydrol. Eng. 2009, 14, 153–165. [Google Scholar] [CrossRef]
- Tramblay, Y.; Bouvier, C.; Martin, C.; Didon-Lescot, J.F.; Todorovik, D.; Domergue, J.M. Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling. J. Hydrol. 2010, 387, 176–187. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Wagner, W.; Hasenauer, S. ASCAT soil wetness index validation through in situ and modeled soil moisture data in central Italy. Remote Sens. Environ. 2010, 114, 2745–2755. [Google Scholar] [CrossRef]
- Caracciolo, D.; Francipane, A.; Viola, F.; Noto, L.V.; Deidda, R. Performances of GPM satellite precipitation over the two major Mediterranean islands. Atmos. Res. 2018, 213, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Zubieta, R.; Getirana, A.; Espinoza, J.C.; Lavado-Casimiro, W.; Aragon, L. Hydrological modeling of the Peruvian-Ecuadorian Amazon basin using GPM-IMERG satellite-based precipitation dataset. Hydrol. Earth Syst. Sci. 2016, 3543–3555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini-Moghari, S.M.; Tang, Q. Validation of gpm imerg v05 and v06 precipitation products over iran. J. Hydrometeorol. 2020, 21, 1011–1037. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; García-ortega, E.; Merino, A.; Sánchez, L.; Tapiador, F.J. Orographic biases in IMERG precipitation estimates in the Ebro River basin (Spain): The effects of rain gauge density and altitude. Atmos. Res. 2020, 105068. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L.; Marcos, C.; Kummerow, C. The contribution of rain gauges in the calibration of the IMERG product: Results from the first validation over Spain. J. Hydrometeorol. 2020, 21, 161–182. [Google Scholar] [CrossRef]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Gilewski, P.; Nawalany, M. Inter-comparison of Rain-Gauge, Radar, and Satellite (IMERG GPM) precipitation estimates performance for rainfall-runoff modeling in a mountainous catchment in Poland. Water 2018, 10, 1665. [Google Scholar] [CrossRef] [Green Version]
- Massari, C.; Brocca, L.; Barbetta, S.; Papathanasiou, C.; Mimikou, M.; Moramarco, T. Using globally available soil moisture indicators for flood modelling in Mediterranean catchments. Hydrol. Earth Syst. Sci 2014, 18, 839–853. [Google Scholar] [CrossRef] [Green Version]
- Norbiato, D.; Borga, M.; Degli Esposti, S.; Gaume, E.; Anquetin, S. Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins. J. Hydrol. 2008, 362, 274–290. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef] [Green Version]
Station | Type | Longitude | Latitude | Altitude (m) |
---|---|---|---|---|
Sidi Rahal | Rain and river discharge | −7.47 | 31.64 | 687 |
Adrar Gardouz | Rain | −7.44 | 31.46 | 2285 |
Tijdante | Rain | −7.39 | 31.46 | 1122 |
Observation | ||||
---|---|---|---|---|
Yes | No | |||
GPM IMERG-E | Yes | A: Hits | B: False | A + B: Observed by satellites |
No | C: Misses | D: Rejection | C + D: Not observed by satellites | |
A + C; Observed by rain gauges | B + D: Not observed by rain gauges | N: Total of events |
Time Scale | CC | ME (mm) | RMSE (mm) | BIAS (%) | POD | FAR |
---|---|---|---|---|---|---|
Hourly | 0.10 | 0.02 | 0.84 | 35.61 | 0.36 | 0.86 |
Daily | 0.14 | 0.44 | 9.88 | 0.68 | 0.63 |
Pixel | Time Scale | CC | ME (mm) | RMSE (mm) | BIAS (%) | POD | FAR |
---|---|---|---|---|---|---|---|
GPM-Adrar | Hourly | 0.03 | 0.00 | 2.05 | 95.67 | 0.24 | 0.91 |
Daily | 0.08 | 0.07 | 24.15 | 0.57 | 0.72 | ||
GPM-Sidi Rahal | Hourly | 0.26 | 0.03 | 0.61 | 3.99 | 0.25 | 0.90 |
Daily | 0.37 | 0.63 | 5.73 | 0.47 | 0.76 | ||
GPM-Tijdante | Hourly | 0.00 | 0.02 | 0.84 | 143.29 | 0.11 | 0.97 |
Daily | −0.02 | 0.51 | 9.32 | 0.40 | 0.83 |
Event | CN | Time of Concentration | Storage Coefficient | |||
---|---|---|---|---|---|---|
Observed | GPM | Observed | GPM | Observed | GPM | |
01/05/2011 | 93.4 | 98.1 | 5.5 | 2.5 | 1.4 | 1.2 |
02/05/2011 | 94.3 | 97.1 | 4.3 | 7.5 | 0.7 | 5.0 |
29/03/2012 | 88.3 | 88.0 | 4.8 | 6.5 | 4.8 | 5.0 |
01/12/2012 | 86.7 | 86.0 | 1.2 | 1.5 | 5.8 | 4.4 |
17/09/2013 | 86.1 | 90.0 | 0.2 | 0.9 | 0.4 | 0.1 |
21/09/2014 | 86.9 | 84.0 | 1.8 | 9.3 | 1.5 | 1.7 |
05/11/2014 | 63.8 | 60.0 | 9.5 | 8.2 | 2.5 | 12.9 |
09/11/2014 | 80.1 | 81.0 | 0.1 | 4.5 | 2.0 | 0.8 |
22/11/2014 | 84.5 | 83.0 | 0.1 | 0.0 | 15.0 | 3.2 |
28/11/2014 | 90.2 | 90.0 | 0.1 | 4.5 | 5.0 | 1.0 |
19/01/2015 | 77.8 | 72.0 | 2.6 | 9.0 | 1.8 | 2.0 |
22/03/2016 | 98.9 | 99.0 | 5.8 | 9.0 | 3.0 | 2.0 |
27/11/2016 | 96.3 | 98.0 | 5.4 | 1.0 | 2.0 | 1.7 |
16/12/2016 | 82.7 | 80.0 | 0.1 | 6.0 | 1.2 | 1.0 |
23/04/2018 | 71.7 | 70.0 | 2.0 | 1.6 | 0.7 | 0.1 |
25/04/2018 | 86.7 | 85.0 | 5.7 | 5.1 | 0.5 | 2.2 |
31/10/2018 | 77.8 | 76.0 | 0.1 | 8.0 | 2.1 | 2.0 |
Events | Calibration | Validation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nash | BiasQ (%) | BiasV (%) | Nash | BiasQ (%) | BiasV (%) | |||||||
Observed | GPM | Observed | GPM | Observed | GPM | Observed | GPM | Observed | GPM | Observed | GPM | |
01/05/2011 | 0.7 | 0.9 | −31.3 | 0.0 | 2.7 | 2.9 | 0.4 | N.A. | −49.0 | −84.9 | −27.0 | −27.0 |
02/05/2011 | 1.0 | 0.7 | 0.0 | −11.6 | 1.0 | 11.4 | 0.2 | N.A. | −50.0 | −71.6 | −30.8 | −30.8 |
29/03/2012 | 0.7 | 0.7 | −4.8 | −28.6 | −11.0 | −3.2 | 0.6 | 0.7 | 13.2 | −28.2 | 4.5 | −1.9 |
01/12/2012 | 0.9 | 0.9 | 0.0 | −0.9 | −0.4 | −1.1 | 0.9 | 0.9 | −0.3 | −0.3 | −0.4 | −0.7 |
17/09/2013 | 0.9 | 0.7 | −1.3 | −15.3 | 0.0 | 22.2 | N.A. | 0.7 | 547.4 | −12.2 | 445.4 | 22.2 |
21/09/2014 | 0.7 | 0.7 | 1.0 | −19.6 | 0.0 | −4.7 | N.A. | 0.7 | −46.8 | −13.0 | −35.7 | 2.3 |
05/11/2014 | 0.9 | 0.8 | −9.9 | −4.0 | −2.2 | −2.2 | 0.9 | 0.8 | −9.9 | −6.1 | −2.2 | −4.3 |
09/11/2014 | 0.6 | 0.9 | 10.1 | −7.2 | 0.8 | 3.1 | N.A. | 0.8 | 86.7 | −3.4 | 54.1 | 5.4 |
22/11/2014 | 0.4 | 0.4 | −5.7 | −94.7 | 24.4 | 1.1 | 0.3 | 0.4 | −1.4 | −23.2 | 30.1 | 4.9 |
28/11/2014 | 0.4 | 0.8 | 6.6 | −8.9 | 32.7 | 14.3 | 0.5 | 0.8 | 1.0 | −5.0 | 25.1 | 21.1 |
19/01/2015 | 1.0 | 0.9 | −4.5 | −16.3 | −2.3 | 2.3 | 0.9 | 0.8 | −16.7 | −10.1 | −7.8 | 6.1 |
22/03/2016 | 1.0 | 0.7 | −8.6 | −23.8 | −2.1 | 2.1 | 0.9 | 0.7 | 1.0 | −23.8 | 6.3 | 2.1 |
27/11/2016 | 0.9 | 0.7 | −3.7 | −17.1 | −4.3 | −8.6 | N.A. | 0.6 | −78.3 | −17.1 | −71.2 | −16.1 |
16/12/2016 | 0.7 | 0.6 | 2.9 | −35.3 | −11.2 | 10.0 | 0.4 | 0.6 | −40.2 | −36.4 | −47.2 | 16.7 |
23/04/2018 | 0.6 | 0.7 | −40.0 | −14.0 | −38.3 | 8.1 | 0.6 | 0.7 | −40.0 | −14.0 | 8.1 | −2.7 |
25/04/2018 | 0.9 | 0.7 | −24.1 | −31.9 | −0.9 | 6.0 | 0.6 | 0.7 | −50.3 | −31.9 | −27.2 | 5.1 |
31/10/2018 | 0.8 | 0.9 | −3.2 | −24.7 | 0.7 | 1.8 | 0.4 | 0.9 | 19.6 | −31.0 | 22.5 | −6.0 |
Mean | 0.8 | 0.7 | −6.8 | −20.8 | −0.6 | 3.9 | 0.6 | 0.7 | 16.8 | −24.2 | 20.4 | −0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saouabe, T.; El Khalki, E.M.; Saidi, M.E.M.; Najmi, A.; Hadri, A.; Rachidi, S.; Jadoud, M.; Tramblay, Y. Evaluation of the GPM-IMERG Precipitation Product for Flood Modeling in a Semi-Arid Mountainous Basin in Morocco. Water 2020, 12, 2516. https://doi.org/10.3390/w12092516
Saouabe T, El Khalki EM, Saidi MEM, Najmi A, Hadri A, Rachidi S, Jadoud M, Tramblay Y. Evaluation of the GPM-IMERG Precipitation Product for Flood Modeling in a Semi-Arid Mountainous Basin in Morocco. Water. 2020; 12(9):2516. https://doi.org/10.3390/w12092516
Chicago/Turabian StyleSaouabe, Tarik, El Mahdi El Khalki, Mohamed El Mehdi Saidi, Adam Najmi, Abdessamad Hadri, Said Rachidi, Mourad Jadoud, and Yves Tramblay. 2020. "Evaluation of the GPM-IMERG Precipitation Product for Flood Modeling in a Semi-Arid Mountainous Basin in Morocco" Water 12, no. 9: 2516. https://doi.org/10.3390/w12092516
APA StyleSaouabe, T., El Khalki, E. M., Saidi, M. E. M., Najmi, A., Hadri, A., Rachidi, S., Jadoud, M., & Tramblay, Y. (2020). Evaluation of the GPM-IMERG Precipitation Product for Flood Modeling in a Semi-Arid Mountainous Basin in Morocco. Water, 12(9), 2516. https://doi.org/10.3390/w12092516