Multivariate Analysis for Assessing Irrigation Water Quality: A Case Study of the Bahr Mouise Canal, Eastern Nile Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Remote Sensing Data and Analysis
2.3. Traditional Irrigation Water Quality Criteria
2.4. Irrigation Water Quality Index
2.5. Principal Component Analysis
Classification Method
3. Results
3.1. Land Use/Cover (LCLU)
3.2. Climate and Water Use
3.3. Validity of Bahr Mouise Water based on Traditional Criteria Analysis
3.4. Irrigation Water Quality Index (IWQI)
3.5. Principal Component Analysis (PCA)
3.5.1. Correlation Between the Chemical Constituents of Irrigation Water
3.5.2. Validity of Water for Agricultural Irrigation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nagy-Kovács, Z.; Davidesz, J.; Czihat-Mártonné, K.; Grischek, T. Water quality changes during riverbank filtrationin Budapest, Hungary. Water 2019, 11, 302. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, C.; Grischek, T.; Börnick, H.; Feller, J.; Sharma, S.K. A water quality appraisal of some existing and potential riverbank filtration sites in India. Water 2019, 11, 215. [Google Scholar] [CrossRef] [Green Version]
- El-Zeiny, A.M.; Abd El-Hamid, H.T.; El-Alfy, M.A. Anthropogenic impacts on water quality of river nile and marine environment, Rosetta branch using geospatial analyses. J. Environ. Sci. 2018, 47, 89–101. [Google Scholar]
- Shirmohammadi, B.; Malekian, A.; Salajegheh, A.; Taheri, B.; Azarnivand, H.; Malek, Z.; Verburg, P.H. Scenario analysis for integrated water resources management under future land use change in the Urmia Lake region, Iran. Land Use Policy 2020, 90, 104299. [Google Scholar] [CrossRef]
- El-Alfy, M.A.; Hasballah, A.F.; Abd El-Hamid, H.T.; El-Zeiny, A.M. Toxicity assessment of heavy metals and organochlorine pesticides in freshwater and marine environments, Rosetta area, Egypt using multiple approaches. Sustain. Environ. Res. 2019, 29, 19. [Google Scholar] [CrossRef] [Green Version]
- Osman, R.; Ferrari, E.; McDonald, S. Water scarcity and irrigation efficiency in Egypt. Water Econ. Policy 2016, 2, 1650009. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Zhao, Y.; Yang, Z.F. Long-term water quality variations and chlorophyll a simulation with an emphasis on different hydrological periods in Lake Baiyangdian, northern China. J. Environ. Inform. 2012, 20, 90–102. [Google Scholar] [CrossRef]
- Wallace, J.S. Increasing agricultural water use efficiency to meet future food production. Agr. Ecosyst. Environ. 2000, 82, 105–119. [Google Scholar] [CrossRef]
- Molden, D. (Ed.) Water for Food Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Movilla-Pateiro, L.; Mahou-Lago, X.M.; Doval, M.I.; Simal-Gandara, J. Toward a sustainable metric and indicators for the goal of sustainability in agricultural and food production. Crit. Rev. Food Sci. 2020, 20, 1–22. [Google Scholar] [CrossRef]
- CAPMAS. Statistical Year Book" Central Agency for Public Mobilization and Statistics (CAPMAS), Annual Report 2017, Cairo, Egypt. Available online: http://www.capmas.gov.eg (accessed on 19 May 2020).
- Abd-Elmabod, S.K.; Fitch, A.C.; Zhang, Z.; Ali, R.R.; Jones, L. Rapid urbanisation threatens fertile agricultural land and soil carbon in the Nile delta. J. Environ. Manag. 2019, 252, 109668. [Google Scholar] [CrossRef]
- El-Rawy, M.; Abdalla, F.; El Alfy, M. Water resources in Egypt. In the Geology of Egypt; Springer: Berlin, Germany, 2020; pp. 687–711. [Google Scholar]
- El Nahry, A.H.; Mohamed, E.S. Potentiality of land and water resources in African Sahara: A case study of south Egypt. Environ. Earth Sci. 2011, 63, 1263–1275. [Google Scholar] [CrossRef]
- Water, U.N. Coping with Water Scarcity: Challenge of the Twenty-first Century; Report for World Water Day 2007; World Water Day; United Nations: Rome, Italy, 2007; pp. 1–29. [Google Scholar]
- Water for the Future, National Water Resources Plan 2017; Ministry of Water Resources and Irrigation of the Arab Republic of Egypt: Cairo, Egypt, 2017.
- Machael, A.M. Irrigation Principles and Practice; Vikas publishing house ltd.: New Delhi, India, 1985; pp. 702–720. [Google Scholar]
- Allen, L.N.; MacAdam, J.W. Irrigation and Water Management. Forages Sci. Grassl. Agric. 2020, 2, 497–513. [Google Scholar]
- Kurunc, A.; Aslan, G.E.; Karaca, C.; Tezcan, A.; Turgut, K.; Karhan, M.; Kaplan, B. Effects of salt source and irrigation water salinity on growth, yield and quality parameters of Stevia rebaudiana Bertoni. Sci. Hortic. 2020, 270, 109458. [Google Scholar] [CrossRef]
- Ajayi, F.; Nduru, M.; Oningue, A. Halting the salt that kills crops. Afr. Farmer 1990, 4, 10–12. [Google Scholar]
- Perez, A.R.S. Characterizing Salinity Tolerance in Greenhouse Roses. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, August 2011. Available online: https://oaktrust.library.tamu.edu/handle/1969.1/ETD-TAMU-2009-05-725 (accessed on 15 March 2020).
- Sarkar, B.; Islam, A. Assessing the suitability of water for irrigation using major physical parameters and ion chemistry: A study of the Churni River, India. Arab. J. Geosci. 2019, 12, 637. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Soil Survey Investigation for Irrigation. Soil Bulletin 42; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985. [Google Scholar]
- US Salinity Laboratory Staff. Diagnosis and Improvement of Saline and Alkali Soils; Agriculture Handbook No. 60; Richards, L.A., Ed.; United States Department of Agriculture: Washington, DC, USA, 1954.
- Wahaab, R.A.; Salah, A.; Grischek, T. Water Quality Changes during the Initial Operating Phase of Riverbank Filtration Sites in Upper Egypt. Water 2019, 11, 1258. [Google Scholar] [CrossRef] [Green Version]
- Nile Basin Initiative. State of the River Nile Basin; Nile Basin Initiative Secretariat: Entebbe, Uganda, 2012. [Google Scholar]
- Ramadan, E.M.; Fahmy, M.R.; Nosair, A.M.; Badr, A.M. Using geographic information system (GIS) modeling in evaluation of canals water quality in Sharkia Governorate, East Nile Delta, Egypt. Model. Earth Syst. Environ. 2019, 5, 1925–1939. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- El-Hassanin, A.S.; Samak, M.R.; Abdel-Rahman, G.N.; Abu-Sree, Y.H.; Saleh, E.M. Risk assessment of human exposure to lead and cadmium in maize grains cultivated in soils irrigated either with low-quality water or freshwater. Toxicol. Rep. 2020, 7, 10–15. [Google Scholar] [CrossRef]
- Qadri, R.; Faiq, M.A. Freshwater Pollution: Effects on Aquatic Life and Human Health. In Fresh Water Pollution Dynamics and Remediation; Springer: Berlin, Germany, 2020; pp. 15–26. [Google Scholar]
- Al Hadrami, S.N. Preparation, Characterization and Catalytic Activity Study of Transition Metal Doped Porous γ-Alumina. Master Thesis, United Arab Emirates University, Abu Dhabi, United Arab Emirates, January 2013. Available online: https://core.ac.uk/download/pdf/230628289.pdf (accessed on 12 June 2020).
- Noori, R.; Berndtsson, R.; Hosseinzadeh, M.; Adamowski, J.F.; Abyaneh, M.R. A critical review on the application of the National Sanitation Foundation Water Quality Index. Environ. Pollut. 2019, 244, 575–587. [Google Scholar] [CrossRef]
- Ziada, M.A.; Mashaly, I.A.; Torky, M. Ecological studies on the aquatic vegetation in North East Nile Delta, Egypt. Int. J. Bot. 2008, 4, 151–163. [Google Scholar] [CrossRef]
- Hassan, A.M.; Belal, A.A.; Hassan, M.A.; Farag, F.M.; Mohamed, E.S. Potential of thermal remote sensing techniques in monitoring waterlogged area based on surface soil moisture retrieval. J. Afr. Earth Sci. 2019, 155, 64–74. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, L.; Song, D. Environmental effect of decentralization on water quality near the border of cities: Evidence from China’s Province-managing-county reform. Sci. Total Environ. 2020, 708, 135154. [Google Scholar] [CrossRef] [PubMed]
- AbdelRahman, M.A.; Shalaby, A.; Mohamed, E.S. Comparison of two soil quality indices using two methods based on geographic information system. Egypt. J. Remote Sens. Space Sci. 2019, 22, 127–136. [Google Scholar] [CrossRef]
- Abd-Elmabod, S.K.; Mansour, H.; Hussein, A.A.; Mohamed, E.S.; Zhang, Z.; Anaya-Romero, M.; Jordán, A. Influence of Irrigation Water Quantity on The Land Capability Classification. Plant Arch. 2019, 19, 2253–2261. [Google Scholar]
- Mohamed, E.S.; Abdellatif, M.A.; Abd-Elmabod, S.K.; Khalil, M.M. Estimation of surface runoff using NRCS curve number in some areas in northwest coast, Egypt. In Proceedings of the E3S Web of Conferences, Barcelona, Spain, 10–12 February 2020; Volume 167, p. 02002. [Google Scholar]
- Mohamed, E.S. Spatial assessment of desertification in north Sinai using modified MEDLAUS model. Arab. J. Geosci. 2013, 6, 4647–4659. [Google Scholar] [CrossRef]
- Abdulaziz, A.M.; Hurtado, J.J.M.; Al-Douri, R. Application of multitemporal Landsat data to monitor land cover changes in the Eastern Nile Delta region, Egypt. Int. J. Remote Sens. 2009, 30, 2977–2996. [Google Scholar] [CrossRef]
- Abu-hashim, M.; Elsayed, M.; Belal, A.E. Effect of land-use changes and site variables on surface soil organic carbon pool at Mediterranean Region. J. Afr. Earth Sci. 2016, 114, 78–84. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Abu-hashim, M.; AbdelRahman, M.A.; Schütt, B.; Lasaponara, R. Evaluating the effects of human activity over the last decades on the soil organic carbon pool using satellite imagery and GIS techniques in the Nile Delta Area, Egypt. Sustainability 2019, 11, 2644. [Google Scholar] [CrossRef] [Green Version]
- Grădinaru, S.R.; Kienast, F.; Psomas, A. Using multi-seasonal landsat imagery for rapid identification of abandoned land in areas affected by urban sprawl. Ecol. Indic. 2019, 96, 79–86. [Google Scholar] [CrossRef]
- Nageswara Rao, P.P.; Shobha, S.V.; Ramesh, K.S.; Somashekhar, R.K. Satellite-based assessment of agricultural drought in karnataka state. J. Indian Soc. Remote 2005, 33, 429–434. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, J.; Zhao, C.; Liu, S.; Tong, X. The spatial continuity study of NDVI based on kriging and BPNN algorithm. Math. Comput. Model. 2011, 54, 1138–1144. [Google Scholar] [CrossRef]
- Han, J.; Huang, Y.; Zhang, H.; Wu, X. Characterization of elevation and land cover dependent trends of NDVI variations in the hexi region, northwest china. J. Environ. Manag. 2019, 232, 1037–1048. [Google Scholar] [CrossRef]
- Park, T.; Ganguly, S.; TØmmervik, H.; Euskirchen, E.S.; Hogda, K.; Karlsen, S.R.; Myneni, R.B. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 2016, 11, 084001. [Google Scholar] [CrossRef]
- Kim, H.M.; Kwak, H.S.; Yoo, J.S. Improved clustering algorithm for change detection in remote sensing. Int. J. Digit. Content Technol. Its Appl. 2008, 2, 55–59. [Google Scholar]
- Wang, J.; Zhou, W.; Pickett, S.T.; Yu, W.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, in press. [Google Scholar] [CrossRef]
- Kemsley, E.K. Discriminant analysis of high-dimensional data: A comparison of principal components analysis and partial least squares data reduction methods. Chemom. Intell. Lab. Syst. 1996, 33, 47–61. [Google Scholar] [CrossRef]
- Campbell, B.; Sayer, J.A.; Frost, P.; Vermeulen, S.; Pérez, M.R.; Cunningham, A.; Prabhu, R. Assessing the performance of natural resource systems. Conserv. Ecol. 2002, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Dong, Y.; Kong, M.; Zhou, J.; Zhao, H.; Tang, Z.; Wang, Z. Insights into the long-term pollution trends and sources contributions in Lake Taihu, China using multi-statistic analyses models. Chemosphere 2020, 242, 125272. [Google Scholar] [CrossRef]
- Beiragh, R.G.; Alizadeh, R.; Kaleibari, S.S.; Cavallaro, F.; Zolfani, S.H.; Bausys, R.; Mardani, A. An integrated multi-criteria decision making model for sustainability performance assessment for insurance companies. Sustainability 2020, 12, 789. [Google Scholar] [CrossRef] [Green Version]
- Tung, T.M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol. 2020, 585, 124670. [Google Scholar]
- Zhang, Y.; Guo, F.; Meng, W.; Wang, X.Q. Water quality assessment and source identification of Daliao river basin using multivariate statistical methods. Environ. Monit. Assess. 2009, 152, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Kazi, T.G.; Arain, M.B.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Sarfraz, R.A.; Baig, J.A.; Shah, A.Q. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotox. Environ. Safe. 2009, 72, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Peldszus, S.; Hallé, C.; Peiris, R.H.; Hamouda, M.; Jin, X.; Legge, R.L.; Budman, H.; Moresoli, C.; Huck, P.M. Reversible and irreversible low-pressure membrane foulants in drinking water treatment: Identification by principal component analysis of fluorescence EEM and mitigation by biofiltration pretreatment. Water Res. 2011, 45, 5161–5170. [Google Scholar] [CrossRef]
- Mandal, U.K.; Warrington, D.N.; Bhardwaj, A.K.; Bar-Tal, A.; Kautsky, L.; Minz, D.; Levy, G.J. Evaluating impact of irrigation water quality on a calcareous clay soil using principal component analysis. Geoderma 2008, 144, 189–197. [Google Scholar] [CrossRef]
- Guimet, F.; Ferré, J.; Boqué, R.; Rius, F.X. Application of unfold principal component analysis and parallel factor analysis to the exploratory analysis of olive oils by means of excitation emission matrix fluorescence spectroscopy. Anal. Chim. Acta 2004, 515, 75–85. [Google Scholar] [CrossRef]
- Primpas, I.; Tsirtsis, G.; Karydis, M.; Kokkoris, G.D. Principal component analysis: Development of a multivariate index for assessing eutrophication according to the European water framework directive. Ecol. Indi. 2010, 10, 178–183. [Google Scholar] [CrossRef]
- APHA. Standard Methods of Analysis of Water and Wastewater, 19th ed.; American Public Health Association (APHA): Washington, DC, USA, 1995. [Google Scholar]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation; John Willey & Sons: New York, NY, USA, 2000; p. 724. [Google Scholar]
- El-Sonbati, M.; El-Zeiny, A.; El-Gammal, M.; Ibrahim, M. Assessment of some water pollutants at New Damietta city-Egypt. J. Environ. Sci. 2012, 41, 267–282. [Google Scholar]
- Meera, G.G.; Parthiban, S.; Thummalu, N.; Christy, A. NDVI: Vegetation change detection using remote sensing and GIS—A case study of Vellore District. Procedia Comput. Sci. 2015, 57, 1199–1210. [Google Scholar]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017. [Google Scholar] [CrossRef] [Green Version]
- Burgan, R.E.; Hartford, R.A. Monitoring Vegetation Greenness with Satellite Data; Gen. Tech. Rep. INT-GTR-297; Intermountain Research Station. 13; US Department of Agriculture, Forest Service: Ogden, UT, USA, 1993; p. 297.
- USDA. Diagnosis and Improvement of Saline and Alkali Soils. United States Department of Agriculture (USDA) Handbook; US Gov. Printing Office: Washington, DC, USA, 1954; Volume 60.
- Szabolcs, I.; Darab, C. The infuence of irrigation water of high sodium carbonate content of soils. Agrokémia és talajtan 1964, 13, 237–246. [Google Scholar]
- Gupta, I.C. Use of Saline Water in Agriculture: A Study of Arid and Semi-arid Zones of India; Oxford and IBH Publications: New Delhi, India, 1990. [Google Scholar]
- Doneen, L.D. Notes on Water Quality in Agriculture; University of California: Oakland, CA, USA, 1964. [Google Scholar]
- Kelly, W.P. Permissible Composition and Concentration of Irrigated Waters. Proc. Am. Soc. Civil Eng. 1940, 66, 607–613. [Google Scholar]
- Meireles, A.C.; Andrade, E.M.; Chaves, L.C.; Frischkorn, H.; Crisostomo, L.A. A new proposal of the classification of irrigation water. Rev. Cienc. Agron. 2010, 41, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Hutcheson, G.D.; Nick, S. The Multivariate Social Scientist: Introductory Statistics Using Generalized Linear Models; SAGE: Oaks, CA, USA, 1999. [Google Scholar]
- Ted, A. Baumgartner. Reading Statistics and Research (5th ed.). Meas. Phys Educ Exercise Sci. 2008, 12, 52–54. [Google Scholar]
- Pallant, J.; Manual, S.S. A step by step guide to data analysis using SPSS for windows. In SPSS Survival Manual; SPSS Inc.: Chicago, IL, USA, 2007. [Google Scholar]
- Tao, X.F.; Huang, T.; Li, X.F.; Peng, D.P. Application of a PCA based water quality classification method in water quality assessment in the Tongjiyan Irrigation Area, China. In Proceedings of the 2016 5th International Conference on Energy and Environmental Protection, Shenzhen, China, 17–18 September 2016; Atlantis Press: Paris, France. [Google Scholar]
- Lawley, D.N.; Maxwell, A. Factor Analysis as a Statistical Method. J. R. Stat. Soc. 1962, 3, 209–229. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Belal, A.; Saleh, A. Assessment of land degradation east of the Nile Delta, Egypt using remote sensing and GIS techniques. Arab. J. Geosci. 2013, 6, 2843–2853. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Ali, A.; El-Shirbeny, M.; Abutaleb, K.; Shaddad, S.M. Mapping soil moisture and their correlation with crop pattern using remotely sensed data in arid region. Egypt. J. Remote Sens. Space Sci. 2019, in press. [Google Scholar] [CrossRef]
- FAO. Guidelines: Land Evaluation for Irrigated Agriculture-Soils Bul. 55; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 1985. [Google Scholar]
- Todd, D.K. Groundwater Hydrology; Wiley: Hoboken, NJ, USA, 1980. [Google Scholar]
- Kumar, P.M.; Kumar, S.A.; Pradeep, T.; Suresh, M.; Ramesh, S. Assessment of the Groundwater Quality for Irrigation Purposes in Rasipuram Taluk, Tamilnadu, India. Asian J. Res. Soc. Sci. Humanit. 2016, 6, 547–553. [Google Scholar] [CrossRef]
- Gupta, S.K.; Gupta, I.C. Management of Saline Soils and Waters, 2nd ed.; Scientific Pub: Jodhpur, India, 1997. [Google Scholar]
- Al-Amry, A.S. Hydrogeochemistry and groundwater quality assessment in an arid region: A case study from Al Salameh Area, Shabwah, Yemen. In Proceedings of the 3rd International Conference on Water Resources and Arid Environments, Riyadh, Saudi Arabia, 16–19 November 2008. [Google Scholar]
- Paliwal, K.V. Irrigation with saline water, Monogram No. 2 (Newseries). New Delhi India 1972, 198. [Google Scholar] [CrossRef] [Green Version]
- Sundaray, S.K.; Nayak, B.B.; Bhatta, D. Environmental studies on river water quality with reference to suitability for agricultural purposes: Mahanadi river estuarine system, India- a case study. Environ. Monitor. Assess. 2009, 155, 227–243. [Google Scholar] [CrossRef]
- Allison, L.E.; Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; Soil and Water Conservative Research Branch, Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Rashash, A.A.; Mohamed, E.S.; Belal, A.; El-Shirbeny, M. GIS spatial model based for DAM reservoir on dry Wadis. In Proceedings of the ACRS 2015-36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia, Proceedings (Asian Association on Remote Sensing, 2015), Quezon City, Philippines, 24–28 October 2015. [Google Scholar]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water; Department of the Interior, US Geological Survey: Reston, VA, USA, 1985; Volume 2254.
- Kumar, M.; Kumari, K.; Ramanathan, A.L.; Saxena, R. A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environ. Geol. 2007, 53, 553–574. [Google Scholar] [CrossRef]
- Abdelhafez, A.A.; Metwalley, S.M.; Abbas, H.H. Irrigation: Water Resources, Types and Common Problems in Egypt. In Technological and Modern Irrigation Environment in Egypt; Springer: Berlin, Germany, 2020; pp. 15–34. [Google Scholar]
- Singh, A. Salinization and drainage problems of agricultural land. Irrig. Drain. 2020. [Google Scholar] [CrossRef]
- Hammam, A.A.; Mohamed, S.E. Mapping soil salinity in the East Nile Delta using several methodological approaches of salinity assessment. Egypt J. Remote Sens. Space Sci. 2020, 23, 125–131. [Google Scholar] [CrossRef]
- Phogat, V.; Mallants, D.; Cox, J.W.; Šimůnek, J.; Oliver, D.P.; Pitt, T.; Petrie, P.R. Impact of long-term recycled water irrigation on crop yield and soil chemical properties. Agric. Water Manag. 2020, 237, 106167. [Google Scholar] [CrossRef]
- Ullah, S.; Ai, C.; Huang, S.; Song, D.; Abbas, T.; Zhang, J.; He, P. Substituting ecological intensification of agriculture for conventional agricultural practices increased yield and decreased nitrogen losses in North China. Appl. Soil Ecol. 2020, 147, 103395. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Yakupoğlu, T.; Dindaroğlu, T.; Terol, E.; Mora-Navarro, G.; Arabameri, A.; Radziemska, M.; Novara, A.; Kavian, A.; et al. Tillage Versus No-Tillage. Soil Properties and Hydrology in an Organic Persimmon Farm in Eastern Iberian Peninsula. Water 2020, 12, 1539. [Google Scholar] [CrossRef]
- Abbas, A.M.; Abd-Elmabod, S.K.; El-Ashry, S.M.; Soliman, W.S.; El-Tayeh, N.; Castillo, J.M. Capability of the invasive tree Prosopis glandulosa Torr. to remediate soil treated with sewage sludge. Sustainability 2019, 11, 2711. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elmabod, S.K.; Muñoz-Rojas, M.; Jordán, A.; Anaya-Romero, M.; Phillips, J.D.; Laurence, J.; Zhang, Z.; Pereira, P.; Fleskens, L.; van der Ploeg, M.; et al. Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma 2020, 374, 114453. [Google Scholar] [CrossRef]
- Hendawy, E.A.; Belal, A.; Mohamed, E.S.; Elfadaly, A.; Murgante, B.; Aldosari, A.; Lasaponara, R. The prediction and assessment of the impacts of soil sealing on agricultural land in the North Nile Delta (Egypt) using satellite data and GIS modeling. Sustainability 2019, 11, 4662. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elmabod, S.K.; Ali, R.R.; Anaya-Romero, M.; de la Rosa, D. Evaluating soil contamination risks by using MicroLEIS DSS in El-Fayoum Province, Egypt. In Proceedings of the 2010 2nd International Conference on Chemical, Biological and Environmental Engineering, Cairo, Egypt, 2–4 November 2010; pp. 1–5. [Google Scholar]
- Muzammil, M.; Zahid, A.; Breuer, L. Water Resources Management Strategies for Irrigated Agriculture in the Indus Basin of Pakistan. Water 2020, 12, 1429. [Google Scholar] [CrossRef]
- Abd-Elmabod, S.K.; Jordán, A.; Fleskens, L.; Phillips, J.D.; Muñoz-Rojas, M.; Van der Ploeg, M.; Anaya-Romero, M.; De la Rosa, D. Modelling agricultural suitability along soil transects under current conditions and improved scenario of soil factors. In Soil Mapping and Process Modeling for Sustainable Land Use Management; Elsevier: Amsterdam, The Netherland, 2017; pp. 193–219. ISBN 9780128052006. [Google Scholar]
- Mohamed, E.S.; Belal, A.; Shalaby, A. Impacts of soil sealing on potential agriculture in Egypt using remote sensing and GIS techniques. Eurasian Soil Sci. 2015, 48, 1159–1169. [Google Scholar] [CrossRef]
- Saleh, A.M.; Belal, A.B.; Mohamed, E.S. Land resources assessment of El-Galaba basin, South Egypt for the potentiality of agriculture expansion using remote sensing and GIS techniques. Egypt. J. Remote Sens. Space Sci. 2015, 18, S19–S30. [Google Scholar] [CrossRef] [Green Version]
- Hogda, K.A.; Karlsen, S.R.; Solheim, I. Climatic change impact on growing season in Fennoscandia studied by a time series of NOAA AVHRR NDVI data. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001; IEEE: Sydney, Ausralia; Volume 3, pp. 1338–1340. [Google Scholar]
- El-Shirbeny, M.A.; Mohamed, E.S.; Negm, A. Estimation of Crops Water Consumptions Using Remote Sensing with Case Studies from Egypt. In Conventional Water Resources and Agriculture in Egypt; Springer: Cham, Switzerland, 2018; pp. 451–469. [Google Scholar]
- Mansour, H.A.; Abd-Elmabod, S.K.; AbdelGawad, S. The impact of sub-surface drip irrigation and different water deficit treatments on the spatial distribution of soil moisture and salinity. Plant. Arch. 2019, 2, 384–392. [Google Scholar]
- Dutta, S.; Dwivedi, A.; Kumar, M.S. Use of water quality index and multivariate statistical techniques for the assessment of spatial variations in water quality of a small river. Environ. Monito. Assess. 2018, 190, 718. [Google Scholar] [CrossRef]
- Elshemy, M.; Meon, G. Climate change impacts on water quality indices of the southern part of Aswan High Dam reservoir, Lake Nubia. In Proceedings of the Fifteenth International Water Technology Conference, Alexandria, Egypt, 31 March–2 April 2011; p. 17. [Google Scholar]
- MWRI. Water for the Future, National Water Resources Plan. for Egypt–2017; MWRI: Pittsburgh, PA, USA, 2005. [Google Scholar]
- Heikal, M.T.; El-Sherbini, A.T.; Salem, A.; Yousry, M.M. Temporal and spatial variation of water quality parameters along the River Nile. In Proceedings of the NAWQAM Final Conference on Egypt Paradigm in Integrated Water Resources Management, Sharm El Sheikh, Egypt, 17–19 February 2007; p. 21. [Google Scholar]
- Shi, R.; Zhao, J.; Shi, W.; Song, S.; Wang, C. Comprehensive Assessment of Water Quality and Pollution Source Apportionment in Wuliangsuhai Lake, Inner Mongolia, China. Int. J. Environ. Res. Public Health 2020, 17, 5054. [Google Scholar] [CrossRef]
- Yurtseven, I. Evaluation of some streamwater quality parameters using with Principal Component Analysis (PCA) in mature Pinus sylvestris L. forest ecosystems. Kast. Univ. J. For. Fac. 2017, 17, 238–246. [Google Scholar]
- Okonofua, E.S.; Nwadialo, I.B.; Ekun, M.O. Modeling Ikpoba River Water Quality Using Principal Component Analysis (Pca) Method and Water Quality Index. J. Civ. Eng. Sci. Technol. 2019, 10, 59–74. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.A.B.; Garcia, H.L.; Mendonça, M.C.S.; da Silva, A.F.; Alves, J.D.P.H.; da Costa, S.S.L.; Silva, I.S. Assessment of water quality using principal component analysis: A case study of the açude da Macela–Sergipe–Brazil. Water Resour. 2017, 7, 8. [Google Scholar]
- Hao, R.X.; Li, S.M.; Li, J.B.; Zhang, Q.K.; Liu, F. Water Quality Assessment for Wastewater Reclamation Using Principal Component Analysis. J. Environ. Inform. 2013, 21, 45–54. [Google Scholar] [CrossRef]
- Ganiyu, S.A.; Badmus, B.S.; Olurin, O.T.; Ojekunle, Z.O. Evaluation of seasonal variation of water quality using multivariate statistical analysis and irrigation parameter indices in Ajakanga area, Ibadan, Nigeria. Appl. Water Sci. 2018, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Said, M.E.S.; Ali, A.M.; Borin, M.; Abd-Elmabod, S.K.; Aldosari, A.A.; Khalil, M.M.N.; Abdel-Fattah, M.K. On the Use of Multivariate Analysis and Land Evaluation for Potential Agricultural Development of the Northwestern Coast of Egypt. Agronomy 2020, 10, 1318. [Google Scholar]
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
---|---|---|---|---|---|---|
Eigenvalue | 4.99 | 1.84 | 1.30 | |||
Variability (%) | 55.42 | 20.49 | 14.49 | |||
Cumulative % | 55.42 | 75.91 | 90.39 | |||
Factor loadings | Component Score Coefficient | |||||
X1 (pH) | 0.46 | 0.01 | −0.70 | 0.092 | 0.017 | 0.539 |
X2 (ECiw) | 0.95 | 0.28 | 0.10 | 0.191 | 0.155 | −0.072 |
X3 (Ca2+) | 0.95 | −0.14 | 0.19 | 0.192 | −0.070 | −0.142 |
X4 (Mg2+) | 0.85 | −0.48 | −0.02 | 0.172 | −0.248 | 0.029 |
X5 (Na+) | 0.50 | 0.85 | 0.03 | 0.099 | 0.459 | −0.026 |
X6 (K+) | 0.89 | −0.22 | 0.02 | 0.178 | −0.139 | −0.021 |
X7 (HCO3−) | 0.76 | −0.57 | −0.13 | 0.156 | −0.298 | 0.103 |
X8 (Cl−) | 0.64 | 0.36 | 0.63 | 0.128 | 0.194 | −0.484 |
X9 (SO42−) | 0.45 | 0.54 | −0.59 | 0.087 | 0.297 | 0.449 |
Month | PC1 | PC2 | PC3 | PC Comprehensive Score |
---|---|---|---|---|
January | −2.97 | 0.17 | −0.06 | −1.62 |
February | −3.1 | 0.49 | 0.2 | −1.59 |
March | −0.96 | −0.37 | −0.42 | −0.67 |
April | 0.04 | −2.65 | −0.56 | −0.6 |
May | 3.3 | −2.77 | 0.96 | 1.4 |
June | 3.09 | 0.9 | −2.7 | 1.5 |
July | 1.4 | 1.42 | 0.54 | 1.15 |
August | 2.62 | 1.49 | 2.42 | 2.11 |
September | 0.25 | 1.02 | −0.57 | 0.27 |
October | 0.86 | 0.87 | −0.37 | 0.6 |
November | −2.59 | −0.26 | 0.54 | −1.41 |
December | −1.95 | −0.31 | 0.01 | −1.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Fattah, M.K.; Abd-Elmabod, S.K.; Aldosari, A.A.; Elrys, A.S.; Mohamed, E.S. Multivariate Analysis for Assessing Irrigation Water Quality: A Case Study of the Bahr Mouise Canal, Eastern Nile Delta. Water 2020, 12, 2537. https://doi.org/10.3390/w12092537
Abdel-Fattah MK, Abd-Elmabod SK, Aldosari AA, Elrys AS, Mohamed ES. Multivariate Analysis for Assessing Irrigation Water Quality: A Case Study of the Bahr Mouise Canal, Eastern Nile Delta. Water. 2020; 12(9):2537. https://doi.org/10.3390/w12092537
Chicago/Turabian StyleAbdel-Fattah, Mohamed K., Sameh Kotb Abd-Elmabod, Ali A. Aldosari, Ahmed S. Elrys, and Elsayed Said Mohamed. 2020. "Multivariate Analysis for Assessing Irrigation Water Quality: A Case Study of the Bahr Mouise Canal, Eastern Nile Delta" Water 12, no. 9: 2537. https://doi.org/10.3390/w12092537
APA StyleAbdel-Fattah, M. K., Abd-Elmabod, S. K., Aldosari, A. A., Elrys, A. S., & Mohamed, E. S. (2020). Multivariate Analysis for Assessing Irrigation Water Quality: A Case Study of the Bahr Mouise Canal, Eastern Nile Delta. Water, 12(9), 2537. https://doi.org/10.3390/w12092537