Integrated Framework for Detecting the Areas Prone to Flooding Generated by Flash-Floods in Small River Catchments
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Background of the Models
3.1.1. Statistical Index
3.1.2. Frequency Ratio
3.1.3. Weights of Evidence
3.1.4. Fuzzy Analytical Hierarchy Process
3.2. Data Used
3.2.1. Torrential Areas Inventory
3.2.2. Flash-Flood and Flood Predictors
3.3. Methodological Steps Implemented in the Present Study
3.3.1. Step 1: Flash-Flood Database Preparation
3.3.2. Step 2: Computation of Flash-Flood Potential Index (FFPI)
3.3.3. Step 3: Evaluation of Results Accuracy Using Receiver Operating Characteristic (ROC) Curve
3.3.4. Step 4: Computation the Flood Potential Index (FPI) Based on the Most Performant FFPI Result
4. Results
4.1. Bivariate Statistics Coefficients
4.2. Flash-Flood Potential Index Computation Using Fuzzy Analytical Hierarchy Process Based Ensembles
4.3. Flash-Flood Potential Index Results Validation
4.4. Flood Potential Index Computation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hu, P.; Zhang, Q.; Shi, P.; Chen, B.; Fang, J. Flood-Induced Mortality across the Globe: Spatiotemporal Pattern and Influencing Factors. Sci. Total Environ. 2018, 643, 171–182. [Google Scholar] [CrossRef]
- Lee, B.-J.; Kim, S. Gridded Flash Flood Risk Index Coupling Statistical Approaches and TOPLATS Land Surface Model for Mountainous Areas. Water 2019, 11, 504. [Google Scholar] [CrossRef] [Green Version]
- Sattar, A.; Bonakdari, H.; Gharabaghi, B.; Radecki-Pawlik, A. Hydraulic Modeling and Evaluation Equations for the Incipient Motion of Sandbags for Levee Breach Closure Operations. Water 2019, 11, 279. [Google Scholar] [CrossRef] [Green Version]
- Sattar, A.M.A.; Gharabaghi, B. Gene Expression Programming in Open Channel Hydraulics. Open Channel Hydraul. River Hydraul. Struct. Fluv. Geomorphol. Eng. Geomorphol. Phys. Geogr. 2017, 196, 196–211. [Google Scholar]
- Bakuła, K.; StĘpnik, M.; Kurczyński, Z. Influence of Elevation Data Source on 2D Hydraulic Modelling. Acta Geophys. 2016, 64, 1176–1192. [Google Scholar] [CrossRef] [Green Version]
- Bonakdari, H.; Moradi, F.; Ebtehaj, I.; Gharabaghi, B.; Sattar, A.A.; Azimi, A.H.; Radecki-Pawlik, A. A Non-Tuned Machine Learning Technique for Abutment Scour Depth in Clear Water Condition. Water 2020, 12, 301. [Google Scholar] [CrossRef] [Green Version]
- Nhu, V.-H.; Thi Ngo, P.-T.; Pham, T.D.; Dou, J.; Song, X.; Hoang, N.-D.; Tran, D.A.; Cao, D.P.; Aydilek, İ.B.; Amiri, M. A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping. Remote Sens. 2020, 12, 2688. [Google Scholar] [CrossRef]
- Khosravi, K.; Shahabi, H.; Pham, B.T.; Adamowski, J.; Shirzadi, A.; Pradhan, B.; Dou, J.; Ly, H.-B.; Gróf, G.; Ho, H.L. A Comparative Assessment of Flood Susceptibility Modeling Using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J. Hydrol. 2019, 573, 311–323. [Google Scholar] [CrossRef]
- Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H.R. A GIS-Based Flood Susceptibility Assessment and Its Mapping in Iran: A Comparison between Frequency Ratio and Weights-of-Evidence Bivariate Statistical Models with Multi-Criteria Decision-Making Technique. Nat. Hazards 2016, 83, 947–987. [Google Scholar] [CrossRef]
- Cao, C.; Xu, P.; Wang, Y.; Chen, J.; Zheng, L.; Niu, C. Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas. Sustainability 2016, 8, 948. [Google Scholar] [CrossRef] [Green Version]
- Althuwaynee, O.F.; Pradhan, B.; Park, H.-J.; Lee, J.H. A Novel Ensemble Bivariate Statistical Evidential Belief Function with Knowledge-Based Analytical Hierarchy Process and Multivariate Statistical Logistic Regression for Landslide Susceptibility Mapping. Catena 2014, 114, 21–36. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, S.; Ke, Y.; Yang, Z.; Zhao, H. Landslide Susceptibility Assessment Using Evidential Belief Function, Certainty Factor and Frequency Ratio Model at Baxie River Basin, NW China. Geocarto Int. 2019, 34, 348–367. [Google Scholar] [CrossRef]
- Chen, W.; Li, W.; Hou, E.; Bai, H.; Chai, H.; Wang, D.; Cui, X.; Wang, Q. Application of Frequency Ratio, Statistical Index, and Index of Entropy Models and Their Comparison in Landslide Susceptibility Mapping for the Baozhong Region of Baoji, China. Arab. J. Geosci. 2015, 8, 1829–1841. [Google Scholar] [CrossRef]
- Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide Susceptibility Mapping Using Certainty Factor, Index of Entropy and Logistic Regression Models in GIS and Their Comparison at Mugling–Narayanghat Road Section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [Google Scholar] [CrossRef]
- Yariyan, P.; Janizadeh, S.; Phong, T.V.; Nguyen, H.D.; Costache, R.; Le, H.V.; Pham, B.T.; Pradhan, B.; Tiefenbacher, J.P. Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood-Risk Mapping. Water Resour. Manag. 2020. [Google Scholar] [CrossRef]
- Pham, B.T.; Bui, D.T.; Prakash, I.; Dholakia, M. Hybrid Integration of Multilayer Perceptron Neural Networks and Machine Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS. Catena 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Debella-Gilo, M.; Etzelmüller, B. Spatial Prediction of Soil Classes Using Digital Terrain Analysis and Multinomial Logistic Regression Modeling Integrated in GIS: Examples from Vestfold County, Norway. Catena 2009, 77, 8–18. [Google Scholar] [CrossRef]
- Kalantar, B.; Pradhan, B.; Naghibi, S.A.; Motevalli, A.; Mansor, S. Assessment of the Effects of Training Data Selection on the Landslide Susceptibility Mapping: A Comparison between Support Vector Machine (SVM), Logistic Regression (LR) and Artificial Neural Networks (ANN). Geomat. Nat. Hazards Risk 2018, 9, 49–69. [Google Scholar] [CrossRef]
- Chen, W.; Shahabi, H.; Zhang, S.; Khosravi, K.; Shirzadi, A.; Chapi, K.; Pham, B.T.; Zhang, T.; Zhang, L.; Chai, H. Landslide Susceptibility Modeling Based on Gis and Novel Bagging-Based Kernel Logistic Regression. Appl. Sci. 2018, 8, 2540. [Google Scholar] [CrossRef] [Green Version]
- Mansuy, N.; Thiffault, E.; Paré, D.; Bernier, P.; Guindon, L.; Villemaire, P.; Poirier, V.; Beaudoin, A. Digital Mapping of Soil Properties in Canadian Managed Forests at 250 m of Resolution Using the K-Nearest Neighbor Method. Geoderma 2014, 235, 59–73. [Google Scholar] [CrossRef]
- Hosseini, F.S.; Choubin, B.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Darabi, H.; Haghighi, A.T. Flash-Flood Hazard Assessment Using Ensembles and Bayesian-Based Machine Learning Models: Application of the Simulated Annealing Feature Selection Method. Sci. Total Environ. 2020, 711, 135161. [Google Scholar] [CrossRef]
- Zhang, C.-X.; Wang, G.-W.; Zhang, J.-S. An Empirical Bias–Variance Analysis of DECORATE Ensemble Method at Different Training Sample Sizes. J. Appl. Stat. 2012, 39, 829–850. [Google Scholar] [CrossRef]
- Ahmadlou, M.; Karimi, M.; Alizadeh, S.; Shirzadi, A.; Parvinnejhad, D.; Shahabi, H.; Panahi, M. Flood Susceptibility Assessment Using Integration of Adaptive Network-Based Fuzzy Inference System (ANFIS) and Biogeography-Based Optimization (BBO) and BAT Algorithms (BA). Geocarto Int. 2019, 34, 1252–1272. [Google Scholar] [CrossRef]
- Antonetti, M.; Horat, C.; Sideris, I.V.; Zappa, M. Ensemble Flood Forecasting Considering Dominant Runoff Processes–Part 1: Set-up and Application to Nested Basins (Emme, Switzerland). Nat. Hazards Earth Syst. Sci. 2019, 19, 19–40. [Google Scholar] [CrossRef] [Green Version]
- Costache, R.; Hong, H.; Wang, Y. Identification of Torrential Valleys Using GIS and a Novel Hybrid Integration of Artificial Intelligence, Machine Learning and Bivariate Statistics. Catena 2019, 183, 104179. [Google Scholar] [CrossRef]
- van Westen, C. Statistical Landslide Hazards Analysis, ILWIS 2.1 for Windows Application Guide; ITC Publication: Enschede, The Netherlands, 1997. [Google Scholar]
- Khosravi, K.; Pourghasemi, H.R.; Chapi, K.; Bahri, M. Flash Flood Susceptibility Analysis and Its Mapping Using Different Bivariate Models in Iran: A Comparison between Shannon’s Entropy, Statistical Index, and Weighting Factor Models. Environ. Monit. Assess. 2016, 188, 656. [Google Scholar] [CrossRef] [PubMed]
- Rautela, P.; Lakhera, R.C. Landslide Risk Analysis between Giri and Tons Rivers in Himachal Himalaya (India). Int. J. Appl. Earth Obs. Geoinf. 2000, 2, 153–160. [Google Scholar] [CrossRef]
- Ali, S.A.; Parvin, F.; Pham, Q.B.; Vojtek, M.; Vojteková, J.; Costache, R.; Linh, N.T.T.; Nguyen, H.Q.; Ahmad, A.; Ghorbani, M.A. GIS-Based Comparative Assessment of Flood Susceptibility Mapping Using Hybrid Multi-Criteria Decision-Making Approach, Naïve Bayes Tree, Bivariate Statistics and Logistic Regression: A Case of Topľa Basin, Slovakia. Ecol. Indic. 2020, 117, 106620. [Google Scholar] [CrossRef]
- Chen, W.; Li, H.; Hou, E.; Wang, S.; Wang, G.; Panahi, M.; Li, T.; Peng, T.; Guo, C.; Niu, C. GIS-Based Groundwater Potential Analysis Using Novel Ensemble Weights-of-Evidence with Logistic Regression and Functional Tree Models. Sci. Total Environ. 2018, 634, 853–867. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, Y.-S.; Oh, H.-J. Application of a Weights-of-Evidence Method and GIS to Regional Groundwater Productivity Potential Mapping. J. Environ. Manag. 2012, 96, 91–105. [Google Scholar] [CrossRef]
- Roodposhti, M.S.; Rahimi, S.; Beglou, M.J. PROMETHEE II and Fuzzy AHP: An Enhanced GIS-Based Landslide Susceptibility Mapping. Nat. Hazards 2014, 73, 77–95. [Google Scholar] [CrossRef]
- Eskandari, S. A New Approach for Forest Fire Risk Modeling Using Fuzzy AHP and GIS in Hyrcanian Forests of Iran. Arab. J. Geosci. 2017, 10, 190. [Google Scholar] [CrossRef]
- Hategekimana, Y.; Yu, L.; Nie, Y.; Zhu, J.; Liu, F.; Guo, F. Integration of Multi-Parametric Fuzzy Analytic Hierarchy Process and GIS along the UNESCO World Heritage: A Flood Hazard Index, Mombasa County, Kenya. Nat. Hazards 2018, 92, 1137–1153. [Google Scholar] [CrossRef]
- Kahraman, C.; Cebeci, U.; Ulukan, Z. Multi-Criteria Supplier Selection Using Fuzzy AHP. Logist. Inf. Manag. 2003, 16, 382–394. [Google Scholar] [CrossRef]
- Costache, R.; Popa, M.C.; Bui, D.T.; Diaconu, D.C.; Ciubotaru, N.; Minea, G.; Pham, Q.B. Spatial Predicting of Flood Potential Areas Using Novel Hybridizations of Fuzzy Decision-Making, Bivariate Statistics, and Machine Learning. J. Hydrol. 2020, 585, 124808. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Shadman Roodposhti, M.; Jankowski, P.; Blaschke, T. A GIS-Based Extended Fuzzy Multi-Criteria Evaluation for Landslide Susceptibility Mapping. Comput. Geosci. 2014, 73, 208–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, J.J. Fuzzy Hierarchical Analysis. Fuzzy Sets Syst. 1985, 17, 233–247. [Google Scholar] [CrossRef]
- Sun, C.-C. A Performance Evaluation Model by Integrating Fuzzy AHP and Fuzzy TOPSIS Methods. Expert Syst. Appl. 2010, 37, 7745–7754. [Google Scholar] [CrossRef]
- Wang, T.-C.; Chen, Y.-H. Applying Fuzzy Linguistic Preference Relations to the Improvement of Consistency of Fuzzy AHP. Inf. Sci. 2008, 178, 3755–3765. [Google Scholar] [CrossRef]
- Zaharia, L.; Costache, R.; Prăvălie, R.; Ioana-Toroimac, G. Mapping Flood and Flooding Potential Indices: A Methodological Approach to Identifying Areas Susceptible to Flood and Flooding Risk. Case Study: The Prahova Catchment (Romania). Front. Earth Sci. 2017, 11, 229–247. [Google Scholar] [CrossRef]
- Gioia, A.; Totaro, V.; Bonelli, R.; Esposito, A.A.; Balacco, G.; Iacobellis, V. Flood Susceptibility Evaluation on Ephemeral Streams of Southern Italy: A Case Study of Lama Balice; Springer: Berlin/Heidelberg, Germany, 2018; pp. 334–348. [Google Scholar]
- Costache, R. Flash-Flood Potential Index Mapping Using Weights of Evidence, Decision Trees Models and Their Novel Hybrid Integration. Stoch. Environ. Res. Risk Assess. 2019, 33, 1375–1402. [Google Scholar] [CrossRef]
- Hapciuc, O.-E.; Romanescu, G.; Minea, I.; Iosub, M.; Enea, A.; Sandu, I. Flood Susceptibility Analysis of the Cultural Heritage in the Sucevita Catchment (Romania). Int. J. Conserv. Sci. 2016, 7, 501–510. [Google Scholar]
- Zhao, G.; Pang, B.; Xu, Z.; Peng, D.; Xu, L. Assessment of Urban Flood Susceptibility Using Semi-Supervised Machine Learning Model. Sci. Total Environ. 2019, 659, 940–949. [Google Scholar] [CrossRef]
- Costache, R.; Bui, D.T. Identification of Areas Prone to Flash-Flood Phenomena Using Multiple-Criteria Decision-Making, Bivariate Statistics, Machine Learning and Their Ensembles. Sci. Total Environ. 2020, 712, 136492. [Google Scholar] [CrossRef]
- Gessesse, B.; Bewket, W.; Bräuning, A. Model-based Characterization and Monitoring of Runoff and Soil Erosion in Response to Land Use/Land Cover Changes in the Modjo Watershed, Ethiopia. Land Degrad. Dev. 2015, 26, 711–724. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Maftei, C.; Dumitriu, C.S. The Modelling of the Climateric Process That Participates at the Sizing of an Irrigation System. Bull. Appl. Comput. Math. 2002, 2048, 11–20. [Google Scholar]
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A Novel Hybrid Artificial Intelligence Approach for Flood Susceptibility Assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Skentos, A. Topographic Position Index Based Landform Analysis of Messaria (Ikaria Island, Greece). Acta Geobalcanica 2018, 4, 7–15. [Google Scholar] [CrossRef]
- Arabameri, A.; Rezaei, K.; Cerdà, A.; Conoscenti, C.; Kalantari, Z. A Comparison of Statistical Methods and Multi-Criteria Decision Making to Map Flood Hazard Susceptibility in Northern Iran. Sci. Total Environ. 2019, 660, 443–458. [Google Scholar] [CrossRef]
- Brewster, J. Development of the Flash Flood Potential Index (FFPI) for Central NY & Northeast PA; WFO: Binghamton, NY, USA, 2010; pp. 2–4. [Google Scholar]
- Campbell, G.; Ratnaparkhi, M.V. An Application of Lomax Distributions in Receiver Operating Characteristic (ROC) Curve Analysis. Commun. Stat. Theory Methods 1993, 22, 1681–1687. [Google Scholar] [CrossRef]
- Hong, H.; Tsangaratos, P.; Ilia, I.; Liu, J.; Zhu, A.-X.; Chen, W. Application of Fuzzy Weight of Evidence and Data Mining Techniques in Construction of Flood Susceptibility Map of Poyang County, China. Sci. Total Environ. 2018, 625, 575–588. [Google Scholar] [CrossRef]
- Samela, C.; Troy, T.J.; Manfreda, S. Geomorphic Classifiers for Flood-Prone Areas Delineation for Data-Scarce Environments. Adv. Water Resour. 2017, 102, 13–28. [Google Scholar] [CrossRef]
- Popa, M.C.; Peptenatu, D.; Drăghici, C.C.; Diaconu, D.C. Flood Hazard Mapping Using the Flood and Flash-Flood Potential Index in the Buzău River Catchment, Romania. Water 2019, 11, 2116. [Google Scholar] [CrossRef] [Green Version]
- Krein, A.; Schorer, M. Road Runoff Pollution by Polycyclic Aromatic Hydrocarbons and Its Contribution to River Sediments. Water Res. 2000, 34, 4110–4115. [Google Scholar] [CrossRef]
- Costache, R.; Țîncu, R.; Elkhrachy, I.; Pham, Q.B.; Popa, M.C.; Diaconu, D.C.; Avand, M.; Costache, I.; Arabameri, A.; Bui, D.T. New Neural Fuzzy-Based Machine Learning Ensemble for Enhancing the Prediction Accuracy of Flood Susceptibility Mapping. Hydrol. Sci. J. 2020, 65, 2816–2837. [Google Scholar] [CrossRef]
- Azareh, A.; Rafiei Sardooi, E.; Choubin, B.; Barkhori, S.; Shahdadi, A.; Adamowski, J.; Shamshirband, S. Incorporating Multi-Criteria Decision-Making and Fuzzy-Value Functions for Flood Susceptibility Assessment. Geocarto Int. 2019, 1–21. [Google Scholar] [CrossRef]
Factor | Class | Class Pixels | Torrential Points | WOE | FR | SI |
---|---|---|---|---|---|---|
Slope | 0–3° | 1065 | 0 | −6.05 | 0.00 | −5.99 |
3.1–7° | 5008 | 230 | 0.26 | 1.22 | 0.20 | |
7.1–15° | 15,098 | 299 | −0.94 | 0.53 | −0.64 | |
15.1–25° | 9937 | 677 | 1.01 | 1.82 | 0.60 | |
25.1–45° | 5407 | 93 | −0.88 | 0.46 | −0.78 | |
45.1–54° | 152 | 77 | 3.34 | 13.50 | 2.60 | |
Land use | Built-up areas | 374 | 0 | −6.78 | 0 | −4.94 |
Grassland | 16,949 | 1316 | 1.52 | 2.07 | 0.73 | |
Agriculture areas | 15 | 0 | −3.55 | 0 | −1.73 | |
Forest | 19,218 | 60 | −5.05 | 0.08 | −2.49 | |
Bare rocks | 111 | 0 | −5.56 | 0 | −3.73 | |
Convergence index | −86–−3 | 7514 | 502 | 0.93 | 1.78 | 0.58 |
−2.9–−2 | 2085 | 114 | 0.51 | 1.46 | 0.38 | |
−1.9–−1 | 2750 | 107 | 0.13 | 1.04 | 0.04 | |
−0.9–0 | 3939 | 101 | −0.35 | 0.68 | −0.38 | |
0.1–84.9 | 20,379 | 552 | −0.56 | 0.72 | −0.33 | |
Lithology | Sandy flysch, marls shale | 17,891 | 4 | −10.30 | 0.01 | −5.12 |
Conglomerates, breccias | 17,948 | 1372 | 1.48 | 2.04 | 0.71 | |
Clays, limestone | 321 | 0 | −9.27 | 0 | −4.79 | |
Sandstone, gravels | 507 | 0 | −4.44 | 0 | −5.25 | |
Plan curvature | −3–−0.1 | 7202 | 345 | 0.29 | 1.28 | 0.244 |
0–0.1 | 20,963 | 821 | 0.07 | 1.04 | 0.043 | |
0.2–1.9 | 8502 | 210 | −0.57 | 0.66 | −0.418 | |
HSG | A | 29,965 | 1376 | 0.42 | 1.22 | 0.20 |
C | 18 | 0 | −8.91 | 0 | −1.91 | |
D | 6684 | 0 | −15.04 | 0 | −7.83 | |
Aspect | Flat surfaces | 93 | 2 | −0.31 | 0.57 | −0.56 |
North | 3306 | 97 | −0.01 | 0.78 | −0.25 | |
Northeast | 4440 | 27 | −1.70 | 0.16 | −1.82 | |
East | 5064 | 104 | −0.43 | 0.55 | −0.60 | |
Southeast | 6455 | 181 | −0.09 | 0.75 | −0.29 | |
South | 5225 | 334 | 0.95 | 1.70 | 0.53 | |
Southwest | 5434 | 286 | 0.69 | 1.40 | 0.34 | |
West | 3829 | 211 | 0.73 | 1.47 | 0.38 | |
Northwest | 2821 | 134 | 0.53 | 1.27 | 0.24 | |
TPI | −7.8–−1.8 | 2063 | 27 | −1.21 | 0.35 | −1.05 |
−1.7–−0.5 | 8121 | 380 | 0.22 | 1.25 | 0.22 | |
−0.4–0.5 | 16,532 | 744 | 0.29 | 1.20 | 0.18 | |
0.6–1.9 | 8181 | 192 | −0.68 | 0.63 | −0.47 | |
2–8.6 | 1770 | 33 | −0.83 | 0.50 | −0.70 | |
TWI | −4.4–4.7 | 7477 | 277 | −0.03 | 0.99 | −0.01 |
4.8–8.4 | 9509 | 376 | 0.06 | 1.05 | 0.05 | |
8.5–11.8 | 9180 | 307 | −0.17 | 0.89 | −0.12 | |
11.9–15 | 9414 | 404 | 0.18 | 1.14 | 0.13 | |
15.1–23.1 | 1083 | 12 | −1.28 | 0.30 | −1.22 | |
Profile curvature | −3–−0.1 | 7255 | 185 | −0.65 | 0.68 | −0.39 |
0–0.1 | 21,678 | 957 | 0.30 | 1.18 | 0.16 | |
0.2–1.9 | 7734 | 234 | −0.45 | 0.81 | −0.22 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
Slope (1) | ||||||||||
l1 | 1 | 1 | 2 | 1 | 1 | 2 | 3 | 3 | 2 | 1 |
m1 | 1 | 2 | 3 | 2 | 2 | 3 | 4 | 4 | 3 | 2 |
u1 | 1 | 3 | 4 | 3 | 3 | 4 | 5 | 5 | 4 | 3 |
Land use (2) | ||||||||||
l2 | 0.33 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 |
m2 | 0.5 | 1 | 2 | 1 | 2 | 2 | 3 | 2 | 2 | 1 |
u2 | 1 | 1 | 3 | 1 | 3 | 3 | 4 | 3 | 3 | 1 |
Convergence index (3) | ||||||||||
l3 | 0.25 | 0.33 | 1 | 0.33 | 0.33 | 1 | 1 | 1 | 1 | 0.33 |
m3 | 0.33 | 0.5 | 1 | 0.5 | 0.5 | 1 | 2 | 2 | 1 | 0.5 |
u3 | 0.5 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 1 |
Lithology (4) | ||||||||||
l4 | 0.33 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 |
m4 | 0.5 | 1 | 2 | 1 | 1 | 2 | 3 | 3 | 2 | 1 |
u4 | 1 | 1 | 3 | 1 | 1 | 3 | 4 | 4 | 3 | 1 |
Plan curvature (5) | ||||||||||
l5 | 0.33 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 |
m5 | 0.5 | 1 | 2 | 1 | 1 | 2 | 3 | 3 | 2 | 1 |
u5 | 1 | 1 | 3 | 1 | 1 | 3 | 4 | 4 | 3 | 1 |
HGS (6) | ||||||||||
l6 | 0.25 | 0.33 | 1 | 0.33 | 0.33 | 1 | 1 | 1 | 1 | 0.33 |
m6 | 0.33 | 0.5 | 1 | 0.5 | 0.5 | 1 | 2 | 2 | 1 | 0.5 |
u6 | 0.5 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 1 |
Aspect (7) | ||||||||||
l7 | 0.2 | 0.25 | 0.33 | 0.25 | 0.25 | 0.33 | 1 | 1 | 1 | 0.33 |
m7 | 0.25 | 0.33 | 0.5 | 0.33 | 0.33 | 0.5 | 1 | 1 | 1 | 0.5 |
u7 | 0.33 | 0.5 | 1 | 0.5 | 0.5 | 1 | 1 | 1 | 1 | 1 |
TPI (8) | ||||||||||
l8 | 0.2 | 0.25 | 0.33 | 0.25 | 0.25 | 0.33 | 1 | 1 | 1 | 0.33 |
m8 | 0.25 | 0.33 | 0.5 | 0.33 | 0.33 | 0.5 | 1 | 1 | 1 | 0.5 |
u8 | 0.33 | 0.5 | 1 | 0.5 | 0.5 | 1 | 1 | 1 | 1 | 1 |
TWI (9) | ||||||||||
l9 | 0.25 | 0.33 | 1 | 0.33 | 0.33 | 1 | 1 | 1 | 1 | 0.33 |
m9 | 0.33 | 0.5 | 1 | 0.5 | 0.5 | 1 | 2 | 2 | 1 | 0.5 |
u9 | 0.5 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 1 |
Profile curvature (10) | ||||||||||
l10 | 0.33 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 |
m10 | 0.5 | 1 | 2 | 1 | 2 | 2 | 3 | 2 | 2 | 1 |
u10 | 1 | 1 | 3 | 1 | 3 | 3 | 4 | 3 | 3 | 1 |
Slope = 1 | Land Use = 2 | CI = 3 | Lithology = 4 | Plan Curvature = 5 |
V(S1 ≥ S2) = 1 | V(S2 ≥ S1) = 0.71 | V(S3 ≥ S1) = 0.32 | V(S4 ≥ S1) = 0.68 | V(S5 ≥ S1) = 0.68 |
V(S1 ≥ S3) = 1 | V(S2 ≥ S3) = 1 | V(S3 ≥ S2) = 0.65 | V(S4 ≥ S2) = 1 | V(S5 ≥ S2) = 1 |
V(S1 ≥ S4) = 1 | V(S2 ≥ S4) = 1 | V(S3 ≥ S4) = 0.62 | V(S4 ≥ S3) = 1 | V(S5 ≥ S3) = 1 |
V(S1 ≥ S5) = 1 | V(S2 ≥ S5) = 1 | V(S3 ≥ S5) = 0.62 | V(S4 ≥ S5) = 1 | V(S5 ≥ S4) = 1 |
V(S1 ≥ S6) = 1 | V(S2 ≥ S6) = 1 | V(S3 ≥ S6) = 1 | V(S4 ≥ S6) = 1 | V(S5 ≥ S6) = 1 |
V(S1 ≥ S7) = 1 | V(S2 ≥ S7) = 1 | V(S3 ≥ S7) = 1 | V(S4 ≥ S7) = 1 | V(S5 ≥ S7) = 1 |
V(S1 ≥ S8) = 1 | V(S2 ≥ S8) = 1 | V(S3 ≥ S8) = 1 | V(S4 ≥ S8) = 1 | V(S5 ≥ S8) = 1 |
V(S1 ≥ S9) = 1 | V(S2 ≥ S9) = 1 | V(S3 ≥ S9) = 1 | V(S4 ≥ S9) = 1 | V(S5 ≥ S9) = 1 |
V(S1 ≥ S10) = 1 | V(S2 ≥ S10) = 1 | V(S3 ≥ S10) = 0.65 | V(S4 ≥ S10) = 1 | V(S5 ≥ S10) = 1 |
min{V(S1 ≥ Sk)} = 1 | min{V(S2 ≥ Sk)} = 0.71 | min{V(S3 ≥ Sk)} = 0.32 | min{V(S4 ≥ Sk)} = 0.68 | min{V(S5 ≥ Sk)} = 0.68 |
Weight = 0.211 | Weight = 0.15 | Weight = 0.066 | Weight = 0.143 | Weight = 0.143 |
HSG = 6 | Aspect = 6 | TPI = 7 | TWI = 8 | Profile Curvature = 10 |
V(S6 ≥ S1) = 0.32 | V(S7 ≥ S1) = 0 | V(S8 ≥ S1) = 0 | V(S9 ≥ S1) = 0.32 | V(S10 ≥ S1) = 0.71 |
V(S6 ≥ S2) = 0.65 | V(S7 ≥ S2) = 0.23 | V(S8 ≥ S2) = 0.23 | V(S9 ≥ S2) = 0.65 | V(S10 ≥ S2) = 1 |
V(S6 ≥ S3) = 1 | V(S7 ≥ S3) = 0.59 | V(S8 ≥ S3) = 0.59 | V(S9 ≥ S3) = 1 | V(S10 ≥ S3) = 1 |
V(S6 ≥ S4) = 0.62 | V(S7 ≥ S4) = 0.19 | V(S8 ≥ S4) = 0.19 | V(S9 ≥ S4) = 0.62 | V(S10 ≥ S4) = 1 |
V(S6 ≥ S5) = 0.62 | V(S7 ≥ S5) = 0.19 | V(S8 ≥ S5) = 0.19 | V(S9 ≥ S5) = 0.62 | V(S10 ≥ S5) = 1 |
V(S6 ≥ S7) = 1 | V(S7 ≥ S6) = 0.59 | V(S8 ≥ S6) = 0.59 | V(S9 ≥ S6) = 1 | V(S10 ≥ S6) = 1 |
V(S6 ≥ S8) = 1 | V(S7 ≥ S8) = 1 | V(S8 ≥ S7) = 1 | V(S9 ≥ S7) = 1 | V(S10 ≥ S7) = 1 |
V(S6 ≥ S9) = 1 | V(S7 ≥ S9) = 0.59 | V(S8 ≥ S9) = 0.59 | V(S9 ≥ S8) = 1 | V(S10 ≥ S8) = 1 |
V(S6 ≥ S10) = 0.63 | V(S7 ≥ S10) = 0.23 | V(S8 ≥ S10) = 0.23 | V(S9 ≥ S10) = 0.63 | V(S10 ≥ S9) = 1 |
min{V(S6 ≥ Sk)} = 0.32 | min{V(S7 ≥ Sk)} = 0 | min{V(S8 ≥ Sk)} = 0 | min{V(S9 ≥ Sk)} = 0.32 | min{V(S10 ≥ Sk)} = 0.71 |
Weight = 0.066 | Weight = 0 | Weight = 0 | Weight = 0.066 | Weight = 0.15 |
Factor and Classes/Categories | Pair-Wise Comparison Matrix | AHP Weights | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Flood Predictors | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] | [10] | ||
[1] Slope | 1 | 0.224 | ||||||||||
[2] TPI | 1/4 | 1 | 0.046 | |||||||||
[3] TWI | 1/5 | 1/2 | 1 | 0.031 | ||||||||
[4] Land use | 1/2 | 3 | 4 | 1 | 0.137 | |||||||
[5] Lithology | 1/3 | 2 | 3 | 1/2 | 1 | 0.085 | ||||||
[6] Elevation | 1/2 | 3 | 4 | 1 | 2 | 1 | 0.137 | |||||
[7] Distance from river | 1/2 | 3 | 4 | 1 | 2 | 1 | 1 | 0.137 | ||||
[8] Plan curvature | 1/3 | 2 | 2 | 1/2 | 1 | 1/2 | 1/2 | 1 | 0.081 | |||
[9] CI | 1/4 | 1 | 2 | 1/3 | 1/2 | 1/3 | 1/3 | 1/2 | 1 | 0.055 | ||
[10] HSG | 1/3 | 2 | 3 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1 | 0.064 | |
Classes in each factor | ||||||||||||
Slope angle | ||||||||||||
[1] 0–3° | 1 | 0.379 | ||||||||||
[2] 3.1–7° | 1/2 | 1 | 0.249 | |||||||||
[3] 7.1–15° | 1/3 | 1/2 | 1 | 0.160 | ||||||||
[4] 15.1–25° | 1/4 | 1/3 | 1/2 | 1 | 0.102 | |||||||
[5] 25.1–45° | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 0.065 | ||||||
[6] 45.1–54° | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 0.043 | |||||
TPI | ||||||||||||
[1] −7.8–−1.8 | 1 | 0.439 | ||||||||||
[2] −1.7–−0.5 | 1/2 | 1 | 0.255 | |||||||||
[3] −0.4–0.5 | 1/3 | 1/2 | 1 | 0.156 | ||||||||
[4] 0.6–1.9 | 1/5 | 1/3 | 1/2 | 1 | 0.092 | |||||||
[5] 2–8.6 | 1/6 | 1/4 | 1/3 | 1/2 | 1 | 0.058 | ||||||
TWI | ||||||||||||
[1] −4.4–4.7 | 1 | 0.433 | ||||||||||
[2] 4.8–8.4 | 1/2 | 1 | 0.251 | |||||||||
[3] 8.5–11.8 | 1/3 | 1/2 | 1 | 0.164 | ||||||||
[4] 11.9–15 | 1/5 | 1/3 | 1/2 | 1 | 0.100 | |||||||
[5] 15.1–23.1 | 1/6 | 1/4 | 1/3 | 1/3 | 1 | 0.052 | ||||||
Land use | ||||||||||||
[1] Built-up areas | 1 | 0.328 | ||||||||||
[2] Grassland | 1/2 | 1 | 0.189 | |||||||||
[3] Agriculture areas | 1/3 | 1/2 | 1 | 0.120 | ||||||||
[4] Forest | 1/8 | 1/6 | 1/5 | 1 | 0.034 | |||||||
[5] Bare rocks | 1 | 2 | 3 | 8 | 1 | 0.328 | ||||||
Lithology | ||||||||||||
[1] Sandy flysch, marls shale | 1 | 0.227 | ||||||||||
[2] Conglomerates, breccias | 2 | 1 | 0.423 | |||||||||
[3] Clays, limestone | 1/2 | 1/3 | 1 | 0.123 | ||||||||
[4] Sandstone, gravels | 1 | 1/2 | 2 | 1 | 0.227 | |||||||
Plan curvature | ||||||||||||
[1] −3–−0.1 | 1 | 0.539 | ||||||||||
[2] 0–0.1 | 1/2 | 1 | 0.297 | |||||||||
[3] 0.2–1.9 | 1/3 | 1/2 | 1 | 0.164 | ||||||||
Elevation | ||||||||||||
[1] 763.1–1000 m | 1 | 0.350 | ||||||||||
[2] 1000.1–1200 m | 1/2 | 1 | 0.237 | |||||||||
[3] 1200.1–1400 m | 1/3 | 1/2 | 1 | 0.159 | ||||||||
[4] 1400.1–1600 m | 1/4 | 1/3 | 1/2 | 1 | 0.107 | |||||||
[5] 1600.1–1800 m | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 0.071 | ||||||
[6] 1800.1–2000 m | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 0.049 | |||||
[7] 2000.1–2202 m | 1/8 | 1/7 | 1/6 | 1/5 | 1/4 | 1/3 | 1 | 0.026 | ||||
Distance from river | ||||||||||||
[1] 0–50 m | 1 | 0.327 | ||||||||||
[2] 50.1–100 m | 1/2 | 1 | 0.227 | |||||||||
[3] 100.1–150 m | 1/3 | 1/2 | 1 | 0.157 | ||||||||
[4] 150.1–200 m | 1/4 | 1/3 | 1/2 | 1 | 0.108 | |||||||
[5] 200.1–400 m | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 0.073 | ||||||
[6] 400.1–700 m | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 0.050 | |||||
[7] 700.1–1000 m | 1/7 | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 0.034 | ||||
[8] >1000 m | 1/8 | 1/7 | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 0.024 | |||
Convergence index | ||||||||||||
[1] −86–−3 | 1 | 0.420 | ||||||||||
[2] −2.9–−2 | 1/2 | 1 | 0.299 | |||||||||
[3] −1.9–−1 | 1/3 | 1/3 | 1 | 0.141 | ||||||||
[4] −0.9–0 | 1/4 | 1/4 | 1/2 | 1 | 0.088 | |||||||
[5] 0.1–84.9 | 1/7 | 1/5 | 1/3 | 1/2 | 1 | 0.052 | ||||||
HSG | ||||||||||||
[1] A | 1 | 0.117 | ||||||||||
[2] C | 3 | 1 | 0.224 | |||||||||
[3] D | 4 | 5 | 1 | 0.660 |
Factors | N | λmax | CI | RI | CR |
---|---|---|---|---|---|
All | 10 | 10.32 | 0.036 | 1.49 | 0.024 |
Slope | 6 | 6.123 | 0.025 | 1.24 | 0.020 |
TPI | 5 | 5.046 | 0.012 | 1.12 | 0.010 |
TWI | 5 | 5.121 | 0.030 | 1.12 | 0.030 |
Land use | 5 | 5.063 | 0.016 | 1.12 | 0.010 |
Lithology | 4 | 4.010 | 0.003 | 0.90 | 0.004 |
Elevation | 7 | 7.248 | 0.041 | 1.32 | 0.030 |
Distance from river | 8 | 8.292 | 0.042 | 1.41 | 0.030 |
Plan curvature | 3 | 3.009 | 0.005 | 0.58 | 0.010 |
CI | 5 | 5.087 | 0.022 | 1.12 | 0.020 |
HSG | 3 | 3.203 | 0.102 | 0.58 | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costache, R.; Barbulescu, A.; Pham, Q.B. Integrated Framework for Detecting the Areas Prone to Flooding Generated by Flash-Floods in Small River Catchments. Water 2021, 13, 758. https://doi.org/10.3390/w13060758
Costache R, Barbulescu A, Pham QB. Integrated Framework for Detecting the Areas Prone to Flooding Generated by Flash-Floods in Small River Catchments. Water. 2021; 13(6):758. https://doi.org/10.3390/w13060758
Chicago/Turabian StyleCostache, Romulus, Alina Barbulescu, and Quoc Bao Pham. 2021. "Integrated Framework for Detecting the Areas Prone to Flooding Generated by Flash-Floods in Small River Catchments" Water 13, no. 6: 758. https://doi.org/10.3390/w13060758