Occurrence of Pharmaceuticals and Personal Care Products in the Water Environment of Poland: A Review
Abstract
:1. Introduction
2. Sources and Fate of PPCPs in the Water Environment
3. Selection of Materials for the Review
4. Short Overview of PPCP Groups
5. PPCPs in the Water Environment of Poland
5.1. Raw Wastewater
5.2. Treated Wastewater
5.3. Landfill Leachate
5.4. Surface Water
5.5. Seawater
5.6. Groundwater
5.7. Drinking Water
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, H.; Cheng, X.; Wu, Q.; Mu, R.; Ma, Y. Assessment and Removal of Emerging Water Contaminants. J. Environ. Anal. Toxicol. 2012, S2, 003. [Google Scholar]
- Petrović, M.; Hernando, M.D.; Diaz-Cruz, M.S.; Barceló, D. Liquid chromatography–tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: A review. J. Chromatogr. A 2005, 1067, 1–14. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.A.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef]
- Tang, Y.; Yin, M.; Yang, W.; Li, H.; Zhong, Y.; Mo, L.; Liang, Y.; Ma, X.; Sun, X. Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment. Water Environ. Res. 2019, 91, 984–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrović, M.; Gonzalez, S.; Barceló, D. Analysis and removal of emerging contaminants in wastewater and drinking water. Trends Anal. Chem. 2003, 22, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef]
- Loos, R.; Gawlik, B.M.; Locoro, G.; Rimaviciute, E.; Contini, S.; Bidoglio, G. EU-wide survey of polar organic persistent pollutants in European river waters. Environ. Pollut. 2009, 157, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [Green Version]
- Zabłotni, A.; Jaworski, A. Sources of antibiotics in natural environments and their biological role. Postępy Hig. Med. Dośw. 2014, 68, 1040–1049. [Google Scholar] [CrossRef]
- Dudziak, M.; Bodzek, M. Factors driving rejection of micropollutants (xenoestrogens and phytoestrogens) during reverse osmosis/nanofiltration treatment. Archit. Civ. Eng. Environ. 2010, 1, 95–102. [Google Scholar]
- Budzik-Niemiec, E.; Dudziak, M. Decomposition of selected estrogens and xenoestrogens in the processes of UV, O3 and UV/O3. Inżynieria Środowiska Młodym Okiem 2015, 11, 9–40. (In Polish) [Google Scholar]
- Huber, M.M.; Canonica, S.; Park, G.Y.; Von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 2003, 37, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ok, Y.S.; Kim, K.-H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total. Environ. 2017, 596–597, 303–320. [Google Scholar] [CrossRef]
- Czech, B. Removal of pharmaceuticals from water and wastewater using adsorption and photocatalytic methods. Adsorbenty i Katal. Wybr. Technol. Śr. 2012, 2, 453–466. (In Polish) [Google Scholar]
- Cecconet, D.; Molognoni, D.; Callegari, A.; Capodaglio, A.G. Biological combination processes for efficient removal of pharmaceutically active compounds from wastewater: A review and future perspectives. J. Environ. Chem. Eng. 2017, 5, 3590–3603. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Bojanowska-Czajka, A.; Trojanowicz, M. Comparison of different advanced degradation processes for the removal of the pharmaceutical compounds diclofenac and carbamazepine from liquid solutions. Environ. Sci. Pollut. Res. Int. 2018, 25, 27704–27723. [Google Scholar] [CrossRef]
- Czerwiński, J.; Kłonica, A.; Ozonek, J. Endocrine disrupting compounds (EDCs) in the aquatic environment and methods of their removal. Czas. Inż. Ląd. Śr. Architekt. 2015, 32, 27–42. (In Polish) [Google Scholar]
- Boroń, M.; Pawlas, K. Pharmaceuticals in aquatic environment—Literature review. Probl. Hig. Epidemiol. 2015, 96, 357–363. [Google Scholar]
- Harada, A.; Komori, K.; Nakada, N.; Kitamura, K.; Suzuki, Y. Biological effects of PPCPs on aquatic lives and evaluation of river waters affected by different wastewater treatment levels. Water Sci. Technol. 2008, 58, 1541–1546. [Google Scholar] [CrossRef] [PubMed]
- Regulation of the Minister of Marine Economy and Inland Navigation of 9 October 2019 on the Forms and Methods of Surface Water and Groundwater Bodies Monitoring. 2019. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190002147/O/D20192147.pdf (accessed on 12 April 2021).
- Regulation of the Minister of Health of 7 December 2017 on Water Quality Intended for Human Consumption. 2017. Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20170002294/O/D20172294.pdf (accessed on 12 April 2021).
- Regulation of the Minister of Marine Economy and Inland Navigation of 9 March 2019 on the List of Priority Substances. 2019. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190000528/O/D20190528.pdf (accessed on 12 April 2021).
- Baquero, F.; Martinez, J.L.; Canton, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Kempa, E.S. EDCs in the water environment. Inż. Ochr. Śr. 2012, 3, 58–61. (In Polish) [Google Scholar]
- Kot-Wasik, A.; Dębska, J.; Namieśnik, J. Transformations, concentrations and determination of pharmaceutical residues in the environment. In Nowe Horyzonty i Wyzwania w Analityce i Monitoringu Środowiskowym; Namieśnik, J., Chrzanowski, W., Szpinek, P., Eds.; Centrum Doskonałości Analityki i Monitoringu Środowiskowego: Gdańsk, Poland, 2003; Chapter 34; pp. 722–744. (In Polish) [Google Scholar]
- Lacey, C.; Basha, S.; Morrisey, A.; Tobin, J.M. Occurrence of pharmaceutical compounds in wastewater process stream in Dublin, Ireland. Environ. Monit. Assess. 2012, 184, 1049–1062. [Google Scholar] [CrossRef] [PubMed]
- Szymonik, A.; Lach, J. Pharmaceuticals—Potential Threats to Water Environment. Inż. Ochr. Śr. 2012, 15, 249–263. (In Polish) [Google Scholar]
- Kuczyńska, A. Results of a pilot study on the assessment of pharmaceuticals in groundwater samples collected from the national groundwater monitoring network). Prz. Geol. 2017, 65, 1096–1103. [Google Scholar]
- Barnes, K.K.; Kolpin, D.W.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.; Barber, L.B. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I Groundwater. Sci. Total Environ. 2008, 402, 192–200. [Google Scholar] [CrossRef]
- Focazio, M.J.; Kolpin, D.W.; Barnes, K.K.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Barber, L.B.; Thurman, M.E. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—II untreated drinking water. Sci. Total Environ. 2008, 402, 201–216. [Google Scholar] [CrossRef]
- Loos, R.; Locoro, G.; Comero, S.; Contini, S.; Schwesig, D.; Werres, F.; Balsaa, P.; Gans, O.; Weiss, S.; Blaha, L.; et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 2010, 44, 4115–4126. [Google Scholar] [CrossRef] [PubMed]
- Vulliet, E.; Cren-Olivé, C. Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environ. Pollut. 2011, 159, 2929–2934. [Google Scholar] [CrossRef]
- Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee: European Union Strategic Approach to Pharmaceuticals in the Environment. Brussels, 11.03.2019. COM(2019) 128 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0128 (accessed on 14 April 2021).
- Commission Implementing Decision (EU) 2020/1161 of 4 August 2020 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. C/2020/5205. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020D1161&from=EN (accessed on 14 April 2021).
- Torkar, A.; Brenčič, M.; Vidmar, I.; Jelovčan, M. State-of-the-Art of Current Practices in Relation to Emerging Contaminants in the water Environment; The Report of boDEREC-CE Workpackage T1 (O.T1.1); Interreg Central Europe boDEREC-CE. Available online: https://www.interreg-central.eu/Content.Node/BoderecCE/boDEREC-OT11-SOA-EC-Final.pdf (accessed on 5 May 2021).
- Hrkal, Z.; Eckhardt, P.; Hrabánková, A.; Novotná, E.; Rozman, D. PPCP Monitoring in Drinking Water Supply Systems: The Example of Káraný Waterworks in Central Bohemia. Water 2018, 10, 1852. [Google Scholar] [CrossRef] [Green Version]
- Proposal for a Directive of the European Parliament and of the Council on the Quality of Water Intended for Human Consumption. COM/2017/0753 Final—2017/0332 (COD). Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:8c5065b2-074f-11e8-b8f5-01aa75ed71a1.0016.02/DOC_1&format=PDF (accessed on 14 April 2021).
- Balakrishna, K.; Ratha, A.; Praveenkumarreddy, Y.; Guruge, K.S.; Subedi, B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol. Environ. Saf. 2017, 137, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Randhir, P.D. Pharmaceuticals in the Surface Water of the USA: A Review. Curr. Environ. Health Rep. 2014, 1, 113–122. [Google Scholar]
- Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem. 2015, 35, 823–835. [Google Scholar] [CrossRef]
- Ojemaye, C.Y.; Petrik, L. Pharmaceuticals in the marine environment: A review. Environ. Rev. 2019, 27, 151–165. [Google Scholar] [CrossRef]
- Guzik, U.; Hupert-Kocurek, K.; Mazur, A.; Wojcieszyńska, D. Biotransformation of non-steroidal anti-inflammatory drugs in environment. Bromatol. Chem. Toksykol. 2013, 66, 105–112. (In Polish) [Google Scholar]
- Rzepa, J. Determination of drugs and pesticides in surface water. Postępy Chromatogr. 2009, 111, 67–77. (In Polish) [Google Scholar]
- Kasprzyk-Hordern, B.; Dąbrowska, A.; Vieno, N.; Kronberg, L.; Nawrocki, J. Occurrence of Acidic Pharmaceuticals in the Warta River in Poland. Chem. Anal. 2008, 52, 289–303. [Google Scholar]
- Kudlek, E.; Brożek, A.; Dudziak, M. Photodegradation of selected pharmaceutical substances in the water environment. In Inżynieria Środowiska—Młodym Okiem. Wody Powierzchniowe i Podziemne; Skoczko, I., Piekutin, J., Szatyłowicz, E., Eds.; Politechnika Białostocka: Białystok, Poland, 2015; Volume 11, pp. 41–65. ISBN 978-83-62582-66-2. (In Polish) [Google Scholar]
- Kudlek, E.; Kamela, S.; Dudziak, M. Nanofiltration in the removal of selected pharmaceuticals from the water environment. In Inżynieria Środowiska—Młodym Okiem. Wody Powierzchniowe i Podziemne; Skoczko, I., Piekutin, J., Szatyłowicz, E., Eds.; Politechnika Białostocka: Białystok, Poland, 2015; Volume 11, pp. 66–91. ISBN 978-83-62582-66-2. (In Polish) [Google Scholar]
- Szymonik, A.; Lach, J. Pharmaceuticals in surface and drinking water. In Proceedings of the ECOpole’13, Jarnołtówek, Poland, 23–26 October 2013; Volume 7, pp. 735–743. [Google Scholar]
- Koszowska, A.; Ebisz, M.; Krzyśko-Łupicka, T. Pharmaceuticals and personal care products in the aquatic environment as a new issue of environmental health. Environ. Med. 2015, 18, 62–69. [Google Scholar]
- Kapelewska, J.; Kotowska, U.; Wiśniewska, K. Determination of personal care products and hormones in leachate and groundwater from Polish MSM landfills by ultrasound-assisted emulsification microextraction and GC-MS. Environ. Sci. Pollut. Res. 2016, 23, 1642–1652. [Google Scholar] [CrossRef] [Green Version]
- Kapelewska, J.; Kotowska, U.; Karpińska, J.; Kowalczuk, D.; Arciszewska, A.; Świryda, A. Occurrence, removal, mass loading and environmental risk assessment of emerging contaminants in leachates, groundwaters and wastewaters. Microchem. J. 2018, 137, 292–301. [Google Scholar] [CrossRef]
- Dudziak, M.; Luks-Betlej, K. Occurrence of Estrogens-Steroid Sex Hormones—In the riverine water in Poland. Ochr. Śr. 2004, 26, 21–24. (In Polish) [Google Scholar]
- Dudziak, M. The Separation of Estrogenic Micropollutants Using High-Pressure Membrane Techniques; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2013; p. 143. (In Polish) [Google Scholar]
- Biłyk, A.; Nowak-Piechota, G. Environmental Pollution by Chemical Compounds Disturbing the Endocrinological Functions of Living Organisms. Ochr. Śr. 2004, 3, 29–35. (In Polish) [Google Scholar]
- Stefańska, J. Risks related to use triclosan as ingredient in cosmetics and cleaners. Farm. Polska 2009, 65, 255–258. (In Polish) [Google Scholar]
- Jagoda, A.; Żukowski, W.; Dąbrowska, B. Caffeine in Cracow Rivers. Czas. Techniczne Śr. 2011, 6, 99–108. [Google Scholar]
- Próba, M. Seasonal variations in the content of UV-filters, pharmaceutical substances and intoxicants in municipal sewage and surface waters. J. Ecol. Health 2013, 17, 115–120. [Google Scholar]
- Siedlewicz, G.; Borecka, M.; Białk-Bielińska, A.; Sikora, K.; Stepnowski, P.; Pazdro, K. Determination of antibiotic residues in southern Baltic Sea sediments using tandem solid-phase extraction and liquid chromatography coupled with tandem mass spectrometry. Oceanologia 2016, 58, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Rykowska, I.; Wasiak, W. Properties, threats, and methods of analysis of bisphenol A and its derivaties. Acta Chromatogr. 2006, 16, 7–24. [Google Scholar]
- Kotowska, U.; Jasińska, M. Qualitative Analysis of Trace Organic Pollutants in Municipal Wastewater from Cities of North-Eastern Poland. Inż. Ochr. Śr. 2011, 14, 223–232. (In Polish) [Google Scholar]
- Kamińska, G.; Bohdziewicz, J.; Widak, A. Hormone biomimetics in the water environment—Occurrence, threats and removal in the sorption process. In Inżynieria Środowiska—Młodym Okiem, Tom 4 Wody Powierzchniowe i Podziemne; Skoczko, I., Piekutin, J., Szatyłowicz, E., Eds.; Politechnika Białostocka: Białystok, Poland, 2014; pp. 31–63. (In Polish) [Google Scholar]
- Książek, S.; Kida, M.; Koszelnik, P. Benzotriazoles—Occurrence and persistence in the environment. Czas. Inż. Lądowej Śr. Architekt. 2016, 33, 121–128. (In Polish) [Google Scholar]
- Wydro, U.; Wołejko, E.; Struk-Sokołowska, J.; Puchlik, M. The residue pharmaceuticals in the environment and methods of their removal. Interdyscyp. Zag. Inż. Ochr. Śr. 2016, 7, 286–299. (In Polish) [Google Scholar]
- Dragon, K.; Górski, J.; Kruć, R.; Drożdżyński, D.; Grischek, T. Removal of Natural Organic Matter and Organic Micropollutants during Riverbank Filtration in Krajkowo, Poland. Water 2018, 10, 1457–1472. [Google Scholar] [CrossRef] [Green Version]
- Malina, G. Elimination of Threats to the Soil and Water Environment in Polluted Areas; Polskie Zrzeszenie Inżynierów i Techników Sanitarnych; Oddział Wielkopolski: Poznań, Poland, 2017; p. 318. (In Polish) [Google Scholar]
- Miksch, K.; Felis, E.; Kalka, J.; Sochacki, A.; Drzymała, J. Micropollutants in the Environment: Occurrence, Interactions and Elimination; Środkowo-Pomorskie Towarzystwo Naukowy Ochrony Środowiska: Koszalin, Poland, 2016; p. 84. (In Polish) [Google Scholar]
- Piekarzewska, M.; Wieczorkowski, R.; Zajenkowska-Kozłowska, A. Health Status of Population in Poland in 2014; Central Statistical Office: Warszaw, Poland, 2016; p. 184. [Google Scholar]
- Borek, D.; Głowacka-Smolis, K.; Gustyn, J.; Kozera, A.; Kozłowska, J.; Marikin, M.; Morytz-Balska, E.; Piotrowski, F.; Rybak-Nguyen, E.; Safader, M.; et al. Statistical Yearbook of the Republic of Poland; Central Statistical Office: Warszaw, Poland, 2020; p. 791. [Google Scholar]
- Borek, D.; Głowacka-Smolis, K.; Gustyn, J.; Kozera, A.; Kozłowska, J.; Marikin, M.; Morytz-Balska, E.; Rybak-Nguyen, E.; Safader, M.; Waker, R.; et al. Statistical Yearbook of the Republic of Poland; Central Statistical Office: Warszaw, Poland, 2019; p. 786. [Google Scholar]
- Wilk, B.K.; Fudala-Ksiazek, S.; Szopińska, M.; Luczkiewicz, A. Landfill leachates and wastewater of maritime origin as possible sources of endocrine disruptors in municipal wastewater. Environ. Sci. Pollut. Res. 2019, 26, 25690–25701. [Google Scholar] [CrossRef] [Green Version]
- Giebułtowicz, J.; Stankiewicz, A.; Wroczyński, P.; Nałęcz-Jawecki, G. Occurrence of cardiovascular drugs in the sewage-impacted Vistula River and in tap water in the Warsaw region (Poland). Environ. Sci. Pollut. Res. 2016, 23, 24337–24349. [Google Scholar] [CrossRef]
- Styszko, K.; Proctor, K.; Castrignanò, E.; Kasprzyk-Hordern, B. Occurrence of pharmaceutical residues, personal care products, lifestyle chemicals, illicit drugs and metabolites in wastewater and receiving surface waters of Krakow agglomeration in South Poland. Sci. Total. Environ. 2021, 768, 144360. [Google Scholar] [CrossRef] [PubMed]
- Giebułtowicz, J.; Nałęcz-Jawecki, G.; Harnisz, M.; Kucharski, D.; Korzeniewska, E.; Płaza, G. Environmental Risk and Risk of Resistance Selection Due to Antimicrobials’ Occurrence in Two Polish Wastewater Treatment Plants and Receiving Surface Water. Molecules 2020, 25, 1470. [Google Scholar] [CrossRef] [Green Version]
- Kot-Wasik, A.; Jakimska, A.; Śliwka-Kaszyńska, M. Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants. Environ. Monit. Assess. 2016, 188, 661. [Google Scholar] [CrossRef]
- Giebułtowicz, J.; Tyski, S.; Wolinowska, R.; Grzybowska, W.; Zaręba, T.; Drobniewska, A.; Wroczyńsk, P.; Nałęcz-Jawecki, G. Occurrence of antimicrobial agents, drug-resistant bacteria, and genes in the sewage-impacted Vistula River (Poland). Environ. Sci. Pollut. Res. 2018, 25, 5788–5807. [Google Scholar] [CrossRef]
- Baranowska, I.; Kowalski, B. Using HPLC Method with DAD Detection for the Simultaneous Determination of 15 Drugs in Surface Water and Wastewater. Pol. J. Environ. Stud. 2011, 20, 21–28. [Google Scholar]
- Felis, E.; Miksch, K.; Surmacz-Górska, J.; Ternes, T. Presence of pharmaceutics in wastewater from waste water treatment plant „Zabrze-Śródmieście” in Poland. Arch. Environ. Prot. 2005, 31, 49–58. [Google Scholar]
- Giebułtowicz, J.; Nałęcz-Jawecki, G. Occurrence of immunosuppressive drugs and their metabolites in the sewage-impacted Vistula and Utrata Rivers and in tap water from the Warsaw region (Poland). Chemosphere 2016, 148, 137–147. [Google Scholar] [CrossRef]
- Kotowska, U.; Kapelewska, J.; Sturgulewska, J. Determination of phenols and pharmaceuticals in municipal wastewaters from Polish treatment plants by ultrasound-assisted emulsification–microextraction followed by GC–MS. Environ. Sci. Pollut. Res. 2014, 21, 660–673. [Google Scholar] [CrossRef] [Green Version]
- Zembrzuska, J.; Zając, A.; Ginter-Kramarczyk, D.; Kruszelnicka, I. Occurrence of non-steroidal antiinflammatory drugs in municipal wastewater and industrial wastewater of Wielkopolska and their ecotoxicological assessment. In Water Supply and Water Quality; Dymaczewski, Z., Jeż-Walkowiak, J., Urbaniak, A., Eds.; Polskie Zrzeszenie Inżynierów i Techników Sanitarnych Oddział Wielkopolski: Poznań, Poland, 2016; pp. 980–994. [Google Scholar]
- Kudłak, B. Application of the LC-MS/MS Technique and Biotests in the Analysis of Environmental Samples to Determine Their Endocrine Potential and the Content of Selected Endocrine Compounds; Politechnika Gdańska, Wydział Chemiczny, Katedra Chemii Analitycznej: Gdańsk, Poland, 2010; p. 104. (In Polish) [Google Scholar]
- Kruć, R.; Dragon, K.; Górski, J. Pharmaceuticals in river and bank filtrate water in Krajkowo (Poland). Biuletyn Państwowego Instytutu Geologicznego 2019, 475, 109–116. [Google Scholar] [CrossRef]
- Jakimska, A.; Śliwka-Kaszyńska, M.; Reszczyńska, J.; Namieśnik, J.; Kot-Wasik, A. Elucidation of transformation pathway of ketoprofen, ibuprofen, and furosemide in surface water and their occurrence in the aqueous environment using UHPLC-QTOF-MS. Anal. Bioanal. Chem. 2014, 406, 3667–3680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caban, M.; Mioduszewska, K.; Łukaszewicz, P.; Migowska, N.; Stepnowski, P.; Kwiatkowski, M.; Kumirska, J. A new silylating reagent-dimethyl(3,3,3-trifluoropropyl_silyldiethylamine-for the derivatisation of non-steroidal anti-inflammatory drugs prior to gas chromatography-mass spectrometry analysis. J. Chromatogr. A 2014, 1346, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Nosek, K.; Styszko, K.; Gołaś, J. Combined method of solid-phase extraction and GC-MS for determination of acidic, neutral, and basic emerging contaminants in wastewater (Poland). Int. J. Environ. Anal. Chem. 2014, 94, 961–974. [Google Scholar] [CrossRef]
- Nosek, K.; Styszko, K.; Gołaś, J. Determination of Acidic Pharmaceuticals in Municipal Wastewater by Using Solid-Phase Extraction Followed by Gas Chromatography-Mass Spectrometry. Geomat. Environ. Eng. 2012, 6, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Zając, A. Effectiveness of the Removal of Selected Non-Steroidal Anti-Inflammatory Drugs from Sewage by the Activated Sludge Method; Instytut Inżynierii Środowiska, Wydział Budownictwa i Inżynierii Środowiska, Politechnika Poznańska: Poznań, Poland, 2014; p. 189. (In Polish) [Google Scholar]
- Migowska, N.; Caban, M.; Stepnowski, P.; Kumirska, J. Simultaneous analysis of non-steroidal anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography–mass spectrometry and gas chromatography with electron capture detection. Sci. Total. Environ. 2012, 441, 77–88. [Google Scholar] [CrossRef]
- Luczkiewicz, A.; Felis, E.; Ziembinska, A.; Gnida, A.; Kotlarska, E.; Olanczuk-Neyman, K.; Surmacz-Gorska, J. Resistance of Escherichia coli and Enterococcus spp. to selected antimicrobial agents present in municipal wastewater. J. Water Health 2013, 11, 600–612. [Google Scholar] [CrossRef]
- Kamińska, G.; Kudlek, E.; Dudziak, M.; Bohdziewicz, J. Removal of biologically active substances during mechanical-biological wastewater treatment. Inż. Ekol. 2016, 50, 201–209. (In Polish) [Google Scholar] [CrossRef]
- Caban, M.; Stepnowski, P. The quantification of bisphenols and their analogues in wastewaters and surface water by an improved solid-phase extraction gas chromatography/mass spectrometry method. Environ. Sci. Pollut. Res. 2020, 27, 28829–28839. [Google Scholar] [CrossRef]
- Baranowska, I.; Kowalski, B. A Rapid UHPLC Method for the Simultaneous Determination of Drugs from Different Therapeutic Groups in Surface Water and Wastewater. Bull. Environ. Contam. Toxicol. 2012, 89, 8–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosnowska, K.; Styszko, K.; Gołaś, J. Preliminary studies of determination of selected pharmaceuticals in sewage effluent from Krakow Plaszow Treatment Plant. Proc. ECOpole 2011, 5, 601–607. [Google Scholar]
- Sosnowska, K.; Styszko, K.; Gołaś, J. Preliminary studies of diclofenac in treated wastewater by gas chromatography—Mass spectrometry. In Proceedings of the Krakowska Konferencja Młodych Uczonych, Kraków, Poland, 23–25 September 2010; Volume 5, pp. 353–364. (In Polish). [Google Scholar]
- Styszko, K.; Dudarska, A.; Zuba, D. The Presence of Stimulant Drugs in Wastewater from Krakow (Poland): A Snapshot. Bull. Environ. Contam. Toxicol. 2016, 97, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakimska, A.; Śliwka-Kaszyńska, M.; Nagórski, P.; Kot-Wasik, A.; Namieśnik, J. Environmental Fate of Two Psychiatric Drugs, Diazepam and Sertraline: Phototransformation and Investigation of their Photoproducts in Natural Waters. J. Chromatogr. Sep. Tech. 2014, 5, 253–264. [Google Scholar]
- Nosek, K.; Styszko, K.; Gołaś, J. Determination of selected nonsteroidal anti-inflammatory drugs, triclosan and bisphenol A in municipal wastewater by Gas Chromatography—Mass Spectrometry (GC/MS). In Proceedings of the Krakowska Konferencja Młodych Uczonych, Kraków, Poland, 29 September–1 October 2011; Volume 6, pp. 663–672. (In Polish). [Google Scholar]
- Gbylik-Sikorska, M.; Posyniak, A.; Mitrowska, K.; Gajda, A.; Błądek, T.; Śniegocki, T.; Żmudzki, J. Occurrence of veterinary antibiotics and chemotherapeutics in fresh water, sediment, and fish of the rivers and lakes in Poland. Bull. Vet. Inst. Pulawy 2014, 53, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography–positive electrospray ionisation tandem mass spectrometry. J. Chromatogr. A 2007, 1161, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Kruć, R.; Dragon, K.; Górskie, J. Migration of Pharmaceuticals from the Warta River to the Aquifer at a Riverbank Filtration Site in Krajkowo (Poland). Water 2019, 11, 2238. [Google Scholar] [CrossRef] [Green Version]
- Casado, J.; Brigden, K.; Santillo, D.; Johnston, P. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry. Sci. Total. Environ. 2019, 670, 1204–1225. [Google Scholar] [CrossRef]
- Szymczycha, B.; Borecka, M.; Białk-Bielińska, A.; Siedlewicz, G.; Pazdro, K. Submarine groundwater discharge as a source of pharmaceutical and caffeine residues in coastal ecosystem: Bay of Puck, southern Baltic Sea case study. Sci. Total. Environ. 2020, 713, 136522. [Google Scholar] [CrossRef]
- Dębska, J.; Kot-Wasik, A.; Namieśnik, J. Determination of nonsteroidal antiinflammatory drugs in water samples using liquid chromatography coupled with diode-array detector and mass spectrometry. J. Sep. Sci. 2005, 28, 2419–2426. [Google Scholar] [CrossRef]
- Zgoła-Grześkowiak, A. Application of DLLME to Isolation and Concentration of Non-Steroidal Anti-Inflammatory Drugs in Environmental Water Samples. Chromatographia 2010, 72, 671–678. [Google Scholar] [CrossRef]
- Bohdziewicz, J.; Kudlek-Jelonek, E.; Dudziak, M. Determination of pharmaceutical residues in the water environment using HPLC(UV) and GC-MS(EI) techniques. In Chromatografia Jonowa; Michalski, R., Ed.; Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk: Zabrze, Poland, 2014; pp. 250–262. (In Polish) [Google Scholar]
- Caban, M.; Lis, E.; Kumirska, J.; Stepnowski, P. Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS(SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Sci. Total. Environ. 2015, 538, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Kmiecik, E.; Styszko, K.; Wątor, K.; Dwornik, M.; Tomaszewska, B. BPA—An endocrine disrupting compound in water used for drinking purposes, a snapshot from South Poland. Geol. Geophys. Environ. 2020, 46, 5–16. [Google Scholar] [CrossRef]
- Borecka, M.; Białk-Bielińska, A.; Siedlewicz, G.; Kornowska, K.; Kumirska, J.; Stepnowski, P.; Pazdro, K. A new approach for the estimation of expanded uncertainty of resultsof an analytical method developed for determining antibiotics inseawater using solid-phase extraction disks and liquidchromatography coupled with tandem mass spectrometry technique. J. Chromatogr. A 2013, 1304, 138–146. [Google Scholar] [CrossRef]
- Siedlewicz, G.; Białk-Bielińska, A.; Borecka, M.; Winogradow, A.; Stepnowski, P.; Pazdro, K. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea—Summary of 3 years of studies. Mar. Pollut. Bull. 2018, 129, 787–801. [Google Scholar] [CrossRef]
- Kuczyńska, A. Presence of pharmaceutical compounds in groundwater with respect to land use in the vicinity of sampling sites. Geologos 2019, 25, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Kuczyńska, A.; Janica, R. Analysis of the influence of sewage from diffuse sources on the groundwater quality, exemplified by research results of the Polish Hydrogeological Survey intervention team. Prz. Geol. 2017, 65, 1312–1318. [Google Scholar]
- Kotowska, U.; Kapelewska, J.; Kotowski, A.; Pietuszewska, E. Rapid and Sensitive Analysis of Hormones and Other Emerging Contaminants in Groundwater Using Ultrasound-Assisted Emulsification Microextraction with Solidification of Floating Organic Droplet Followed by GC-MS Detection. Water 2019, 11, 1638. [Google Scholar] [CrossRef] [Green Version]
PPCP Groups (Number of Compounds) | Description | Compounds | Dominant PPCP in the Review |
---|---|---|---|
Alkylphenols (4) | Organic compounds obtained by the alkylation of phenols; used in industry, e.g., as detergents and additives in making fuels, lubricants, fragrances, fire retardant materials, etc. | Bisphenol A, Bisphenol S, Nonylphenol, Octylphenol | Bisphenol A up to 2,202,000 ng/L in landfill leachate [69] |
Alpha-1 blockers (2) | Drugs blocking the effect of alpha-1-adrenergic receptors; used to treat prostate enlargement, hypertension and post-traumatic stress disorder | Alfuzosin, Carvedilol | not detected |
Antiarrhythmic drugs (2) | Medications used to treat cardiac arrhythmias | Amiodarone, Propafenone | Propafenone up to 87 ng/L in surface water [70] |
Antibacterial agents (2) | Antimicrobial substances applied to destroy bacteria and reduce the possibility of infection; previously used in personal care products, e.g., soaps, lotions, toothpaste, detergents, etc. | Triclocarban, Triclosan | Triclosan up to 6721.7 ng/L in raw wastewater [71] |
Antibiotics (75) | Medications killing or inhibiting the growth of bacteria; used for fighting and preventing bacterial infections | Amoxicillin, Ampicillin, Azithromycin, Carbadox, Cefadroxil, Cefalonium, Cefapirin, Cefazolin, Cefoperazone, Cefotaxime, Cefquinome, Ceftazidime, Ceftiofur, Cephalexin, Chloramphenicol, Chlorotetracycline, Ciprofloxacin, Clarithromycin, Clindamycin, Cloxacillin, Danofloxacin, Dicloxacillin, Difloxacin, Dihydrostrepromycin, Doxycycline, Enoxacin, Enrofloxacin, Erythromycin, Fleroxacin, Flumequine, Fluraltadone, Josamycin, Levofloxacin, Lincomycin, Lomefloxacin, Marbofloxacin, Metronidazole, Nafcillin, Nalidixic acid, Neomycin, Nitrofurantoin, Norfloxacin, Ofloxacin, Oleandomycin, Oxacillin, Oxolinic acid, Oxytetracycline, Penicillin G, Rifampicin, Roxithromycin, Sarafloxacin, Spectinomycin, Spiramycin, Streptomycin, Sulfachloropiridazine, Sulfadiazine, Sulfadoxine, Sulfadimethoxine, Sulfamerazine, Sulfamethazine, Sulfamethizole, Sulfamethoxazole, Sulfamethoxypyridazine, Sulfamonomethaxine, Sulfanilamide, Sulfapyridine, Sulfasalazine, Sulfathiazole, Sulfisoxazole, Tetracycline, Tiamulin, Tilmicosin, Trimethoprim, Tylosin, Vancomycin | Metronidazole up to 7400 ng/L in raw wastewater [72] |
Antidementia agents (1) | Medications used to treat dementia and Alzheimer’s disease | Memantine | not detected |
Antidepressants (12) | Medications used in the treatment of depression, anxiety disorders, chronic pains and some addictions | Amitriptyline, Citalopram, Clomipramine, Desvenlafaxine, Diazepam, Doxepin, Fluoxetine, Fluvoxamine, Imipramine, Mirtazapine, Sertraline, Venlafaxine | Diazepam up to 531 ng/L in raw wastewater [17] |
Antidiabetic drugs (2) | Drugs used in the treatment of diabetes, altering the glucose level in the blood | Gilbenclamide, Metformin | Metformin up to 16,790.7 ng/L in raw wastewater [73] |
Antiepileptics (6) | Pharmaceutical drugs used in the treatment of epileptic seizures, neuropathic pain and as mood stabilizers | Carbamazepine, Gabapentin, Lamotrigine, Lorazepam, Phenytoin, Primidone | Carbamazepine up to 5127.8 ng/L in treated wastewater [73] |
Antifungal agents (2) | Medications for fungal infections or preservatives used to control mould and fungal diseases | Fluconazole, Thiabendazole | Thiabendazole up to 104 ng/L in surface water [72] |
Antihistamines and histamine receptor modulators (3) | Drugs opposing the activity of histamine receptors in the body and used to treat allergies | Cimetidine, Fexofenadine, Ranitidine | Rantidine up to 5702.2 ng/L in raw wastewater [73] |
Antihypertensives (11) | Drugs lowering blood pressure; used to treat hypertension | Almodipine, Enalapril, Irbesartan, Labetalol, Losartan, Nifedipine, Quinapril, Ramipril, Telmisartan, Valsartan, Verapamil | Valsartan up to 92,532.7 ng/L in raw wastewater [71] |
Antiischemic agents (1) | Medications used to treat insufficient blood flow, e.g., for angina | Trimetazidine | Trimetazidine up to 826.7 ng/L in raw wastewater [73] |
Antiparasitics (5) | Substances destroying or inhibiting the growth of parasites; used for the treatment of parasitic diseases | Flubendazole, Ivermectin, Mebendazole, Sulfaquinoxalline, Tinidazole | Mebendazole up to 9.8 ng/L in surface water [74] |
Antiretroviral drugs (1) | Medications inhibiting viruses development; used for treating viral infections | Darunavir | not detected |
Antithrombotics (1) | Drugs reducing and preventing the formation of blood clots | Warfarin | not detected |
Beta-blockers (9) | Medications used to manage abnormal heart rhythms, prevent heart attacks and treat high blood pressure | Acebutolol, Atenolol, Bisoprolol, Celiprolol, Metoprolol, Nadolol, Pindolol, Propranolol, Sotalol | Sotalol up to 2120 ng/L in surface water [75] |
Beta-2-adrenergic agonists (2) | Drugs acting on the beta-2-adrenergic receptor and causing smooth muscle relaxation; used to treat asthma and other pulmonary disorders | Salbutamol, Terbutaline | not detected |
Chemotherapeutic agents (2) | Substances used in chemotherapy for cancer | Cyclophosphamide, Ifosfamide | Cyclophosphamide up to 33.3 ng/L in raw wastewater [73] |
Contrast agents (5) | Substances used to increase the contrast of structures within the body in medical imaging | Diatrizoate, Iohexol, Iomeprol, Iopamidol, Iopromide | Iopromide up to 27,000 ng/L in raw wastewater [76] |
Corrosion inhibitors (2) | Compounds decreasing the corrosion rate of material into contact with the fluid; used in industry, over-the-counter products and as additives to water to prevent leaching of lead or copper from pipes | 1H-Benzotriazole, Tolyltriazole | 1H-Benzotriazole up to 180 ng/L in groundwater [63] |
Corticosteroids (3) | Synthetic analogues of steroid hormones produced in the adrenal cortex; used as pharmaceutical drugs in the treatment of various conditions, e.g., skin diseases, asthma, cancers, tumours, allergies, inflammation and others | Dexamethasone, Flumethasone, Prednisolone | not detected |
Cosmetic and pharmaceutical preservatives (4) | Substances added to pharmaceutical drugs and cosmetics, preventing decomposition by microbial growth or by undesirable chemical changes, mostly parabens | Butylparaben, Ethylparaben, Methylparaben, Propylparaben | Methylparaben up to 40,898.6 ng/L in raw wastewater [71] |
Diuretics (3) | Medications increasing the production of urine and the excretion of water from a body | Chlorothiazide, Furosemide, Hydrochlorothiazide | Hydrochlorothiazide up to 5072.3 ng/L in raw wastewater [73] |
Fibrates (6) | Medications used for metabolic disorders, mainly hypercholesterolemia | Bezafibrate, Ciprofibrate, Clofibric acid, Etofibrate, Fenofibrate, Gemfibrozil | Bezafibrate up to 1000 ng/L in raw wastewater [76] |
Hormones (11) | Compounds responsible for the regulation of physiological processes and behavioural activities in organisms, some of which used as medications with a dose far greater than naturally occurs in a body, especially for hormonal contraception or hormone replacement therapy | 17α-Ethynyloestradiol, 17β-Oestradiol, Androstenedione, Diethylstilboestrol, Oestriol, Oestrone, Equilin, Levonorgestrel, Norethisterone, Progesterone, Testosterone | Levonorgestrel up to 1529.8 ng/L in raw wastewater [73] |
Hypnotics (2) | Psychoactive drugs used in the treatment of insomnia and for surgical anaesthesia | Nitrazepam, Temazepam | Temazepam up to 257 ng/L in treated wastewater [71] |
Immunosuppressive drugs (2) | Medicines used to inhibit or prevent the activity of the immune system | Mycophenolic acid, Tacrolimus | Mycophenolic acid up to 179.6 ng/L in surface water [77] |
Lipid-modifying agents (4) | Statin medications used to treat elevated lipid levels, preventing cardiovascular disease | Atorvastatin, Lovastatin, Pravastatin, Simvastatin | Atorvastatin up to 2756.5 ng/L in raw wastewater [71] |
Metabolites (33) | Products of metabolism, degradation and elimination of parent compounds | 17α-hydroxyprogesterone, 4-n-nonylphenol, 4-n-octylphenol, ATH, Benzoylecgonine, Carbamazepine 10,11-dihydroxy, 2-hydroxy Carbamazepine, Cocaethylene, Cotinine, Creatinine, DAMI (N-Deethylamiodarone), Diclofenac-4’-hydroxy, Dihydrocodeine, Dihydromorphine, Dimethyl-aminophenazone, EDDP, Erythromycin-H2O, HMMA, Ibuprofen-2-hydroxy, Ibuprofen-carboxy, N-acetyl-sulfamethoxazole, Naproxene-o-desmethyl, Nordiazepam, Norephedrine, Norketamine, Normorphine, Noroxycodone, O-desmethyltramadol, Oxazepam, Oxcarbazepine, Oxypurinol, Paraxanthine, Salicylic acid | Paraxanthine up to 174,336.8 ng/L in raw wastewater [71] |
Nonsteroidal anti-inflammatory drugs (14) | Drugs used for the treatment of acute or chronic conditions, reducing pain, decreasing fever and inflammation and preventing blood clots | 5-Aminosalicylic acid, Acetylsalicylic acid, Diclofenac, Diflunisal, Fenoprofen, Flurbiprofen, Ibuprofen, Indomethacin, Ketoprofen, Ketorolac, Naproxen, Phenazone, Propyphenazone, Tolmetin | Naproxen up to 551,960 ng/L in raw wastewater [78] |
Painkillers (11) | Drugs and substances used to achieve analgesia and relief from pain | Codeine, Hydrocodone, Ketamine, Metamizole, Methadone, Morphine, Oxycodone, Oxymorphone, Paracetamol, Pentoxifylline, Tramadol | Paracetamol up to 51,400 ng/L in raw wastewater [79] |
PDE5 inhibitors (2) | Vasodilating drugs used to treat erectile dysfunction | Sildenafil, Vardenafil | Sildenafil up to 81.17 ng/L in surface water [80] |
Repellents (1) | Substances applied for the determent of insects to prevent insect-borne diseases | DEET | DEET up to 2620 ng/L in raw wastewater [50] |
Stimulants (16) | Drugs increasing the activity of the central nervous system and substances with pleasurable and invigorating effects | 4-MEC, Amphetamine, Benzylpiperazine, Caffeine, Cocaine, mCCP, MDA, MDEA, MDMA, MDPV, Mephedrone, Methamphetamine, MPD, Nicotine, PMA, Theophylline | Nicotine up to 423,978 ng/L in raw wastewater [71] |
Sugar substitutes (2) | Artificial, non-nutritive food additives providing a sweet taste | Saccharin, Sucralose | Saccharin up to 360 ng/L in surface water [81] |
Synthetic musks (2) | Synthetic aroma compounds emulating the scent of animal musks; used as flavourings and fixatives in cosmetics, detergents, perfumes and foods | Galaxolide, Tonalide | Galaxolide up to 1200 ng/L in raw wastewater [76] |
UV filters (3) | Compounds blocking or absorbing ultraviolet light; used, e.g., in sunscreens, cosmetics and as additives in flavourings, perfumes and plastic packaging | 3-(4-ethylbenzylidene)camphor, Benzophenone, Oxybenzone | 3-(4-Methylbenzylidene)camphor up to 18,010 ng/L in raw wastewater [50] |
Vasodilators (1) | Drugs widening blood vessels; used, e.g., in the treatment of peripheral and cerebral vascular disorders | Nafronyl | Nafronyl up to 27.9 ng/L in raw wastewater [73] |
PPCP Groups | Raw Wastewater | Treated Wastewater | Landfill Leachate | Surface Water | Seawater | Groundwater | Drinking Water |
---|---|---|---|---|---|---|---|
Alkylphenols | X | X | X | X | X | X | |
Alpha-1 blockers | X | X | X | ||||
Antiarrhythmic drugs | X | X | X | ||||
Antibacterial agents | X | X | X | X | X | X | |
Antibiotics | X | X | X | X | X | X | |
Antidementia agents | X | X | |||||
Antidepressants | X | X | X | X | X | ||
Antidiabetic drugs | X | X | X | X | X | ||
Antiepileptics | X | X | X | X | X | X | X |
Antifungal agents | X | X | X | X | X | ||
Antihistamines and histamine receptor modulators | X | X | X | X | X | ||
Antihypertensives | X | X | X | X | X | ||
Antiischemic agents | X | X | X | X | |||
Antiparasitics | X | X | X | ||||
Antiretroviral drugs | X | X | |||||
Antithrombotics | X | X | |||||
Beta-blockers | X | X | X | X | X | ||
Beta-2- adrenergic agonists | X | X | X | ||||
Chemotherapeutic agents | X | X | X | X | X | ||
Contrast agents | X | X | X | ||||
Corrosion inhibitors | X | X | |||||
Corticosteroids | X | X | |||||
Cosmetic and pharmaceutical preservatives | X | X | X | X | X | ||
Diuretics | X | X | X | X | X | ||
Fibrates | X | X | X | X | X | ||
Hormones | X | X | X | X | X | X | |
Hypnotics | X | X | X | ||||
Immunosuppressive drugs | X | X | |||||
Lipid-modifying agents | X | X | X | X | X | ||
Metabolites | X | X | X | X | X | X | |
Nonsteroidal anti- inflammatory drugs | X | X | X | X | X | X | X |
Painkillers | X | X | X | X | X | X | |
PDE5 inhibitors | X | X | X | ||||
Repellents | X | X | X | X | X | ||
Stimulants | X | X | X | X | X | X | |
Sugar substitutes | X | X | |||||
Synthetic musks | X | ||||||
UV filters | X | X | X | X | X | ||
Vasodilators | X | X | X | X | |||
IN TOTAL | 28 | 28 | 9 | 36 | 5 | 33 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ślósarczyk, K.; Jakóbczyk-Karpierz, S.; Różkowski, J.; Witkowski, A.J. Occurrence of Pharmaceuticals and Personal Care Products in the Water Environment of Poland: A Review. Water 2021, 13, 2283. https://doi.org/10.3390/w13162283
Ślósarczyk K, Jakóbczyk-Karpierz S, Różkowski J, Witkowski AJ. Occurrence of Pharmaceuticals and Personal Care Products in the Water Environment of Poland: A Review. Water. 2021; 13(16):2283. https://doi.org/10.3390/w13162283
Chicago/Turabian StyleŚlósarczyk, Kinga, Sabina Jakóbczyk-Karpierz, Jacek Różkowski, and Andrzej J. Witkowski. 2021. "Occurrence of Pharmaceuticals and Personal Care Products in the Water Environment of Poland: A Review" Water 13, no. 16: 2283. https://doi.org/10.3390/w13162283