Spatiotemporal Characteristics Analysis and Driving Forces Assessment of Flash Floods in Altay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
3. Methods
3.1. Spatiotemporal Analysis Method
3.1.1. Temporal Analysis
3.1.2. Spatial Analysis
- (1)
- Estimation of the kernel density, KDE
- (2)
- Standard deviational ellipse, SDE
- (3)
- Spatial gravity center model, SGCM
3.2. Analysis of Influencing Factors
3.2.1. Correlation Coefficient Calculation
3.2.2. Multiple Linear Regression, MLR
3.2.3. Principal Component Analysis, PCA
3.2.4. “Random Forest”, RF
4. Results
4.1. Temporal Pattern of Flash Floods
4.2. Spatial Pattern of the Flash Floods
4.3. Analysis of the Driving Force of Mountain Flash Flood Kernel Flood
5. Discussion
5.1. Temporal and Spatial Distribution of the Flash Floods
5.2. Discussion of Driving Factors Results
5.3. Implications and Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lumbroso, D.; Gaume, E. Reducing the uncertainty in indirect estimates of extreme flash flood discharges. J. Hydrol. 2012, 414, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Borga, M.; Anagnostou, E.N.; Bloschl, G.; Creutin, J.D. Flash floods Observations and analysis of hydro-meteorological controls Preface. J. Hydrol. 2010, 394, 1–3. [Google Scholar] [CrossRef]
- Saharia, M.; Kirstetter, P.E.; Vergara, H.; Gourley, J.J.; Hong, Y. Characterization of floods in the United States. J. Hydrol. 2017, 548, 524–535. [Google Scholar] [CrossRef]
- He, B.S.; Huang, X.L.; Ma, M.H.; Chang, Q.R.; Tu, Y.; Li, Q.; Zhang, K.; Hong, Y. Analysis of flash flood disaster characteristics in China from 2011 to 2015. Nat. Hazards 2018, 90, 407–420. [Google Scholar] [CrossRef]
- Barredo, J.I. Major flood disasters in Europe: 1950–2005. Nat. Hazards 2007, 42, 125–148. [Google Scholar] [CrossRef]
- Pereira, S.; Diakakis, M.; Deligiannakis, G.; Zezere, J.L. Comparing flood mortality in Portugal and Greece (Western and Eastern Mediterranean). Int. J. Disaster Risk Reduct. 2017, 22, 147–157. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y. Spatial Distribution of Major Natural Disasters of China in Historical Period. Acta Geogr. Sin. 2012, 67, 291–300. [Google Scholar]
- Lin, Q.; Wang, Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides 2018, 15, 2357–2372. [Google Scholar] [CrossRef]
- Xiong, J.N.; Li, J.; Cheng, W.M.; Wang, N.; Guo, L. A GIS-Based Support Vector Machine Model for Flash Flood Vulnerability Assessment and Mapping in China. ISPRS Int. J. Geo-Inf. 2019, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to 524 the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Xiong, J.N.; Ye, C.C.; Cheng, W.M.; Guo, L.; Zhou, C.H.; Zhang, X.L. The Spatiotemporal Distribution of Flash Floods and Analysis of Partition Driving Forces in Yunnan Province. Sustainability 2019, 11, 2926. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Xiong, J.N.; Cheng, W.M.; Wang, N.; Li, Y.; He, Y.F.; Liu, J.; He, W.; Yang, G. Flood vulnerability assessment using the triangular fuzzy number-based analytic hierarchy process and support vector machine model for the Belt and Road region. Nat. Hazards 2021, 1–26. [Google Scholar] [CrossRef]
- Mehr, A.; Akdegirmen, O. Estimation of Urban Imperviousness and its Impacts on Flash floods in Gazipaşa, Turkey. Knowl.-Based Eng. Sci. 2021, 8, 297. [Google Scholar]
- Saber, M.; Kantoush, S.; Sumi, T.; Ogiso, Y.; Hadidi, A. Integrated Study of Flash Floods in Wadi Basins Considering Sedimentation and Climate Change: An International Collaboration Project. In Wadi Flash Floods; Springer: Singapore, 2022; pp. 401–422. [Google Scholar]
- Budiyono, Y.; Aerts, J.; Brinkman, J.; Marfai, M.A.; Ward, P. Flood risk assessment for delta mega-cities: A case study of Jakarta. Nat. Hazards 2015, 75, 389–413. [Google Scholar] [CrossRef]
- Liu, J.F.; Wang, X.Q.; Zhang, B.; Li, J.; Zhang, J.Q.; Liu, X.J. Storm flood risk zoning in the typical regions of Asia using GIS technology. Nat. Hazards 2017, 87, 1691–1707. [Google Scholar] [CrossRef]
- Martin-Vide, J.P.; Llasat, M.C. The 1962 flash flood in the Rubi stream (Barcelona, Spain). J. Hydrol. 2018, 566, 441–454. [Google Scholar] [CrossRef]
- Varlas, G.; Anagnostou, M.N.; Spyrou, C.; Papadopoulos, A.; Kalogiros, J.; Mentzafou, A.; Michaelides, S.; Baltas, E.; Karymbalis, E.; Katsafados, P. A Multi-Platform Hydrometeorological Analysis of the Flash Flood Event of 15 November 2017 in Attica, Greece. Remote Sens. 2019, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Papagiannaki, K.; Lagouvardos, K.; Kotroni, V.; Bezes, A. Flash flood occurrence and relation to the rainfall hazard in a highly urbanized area. Nat. Hazards Earth Syst. Sci. 2015, 15, 1859–1871. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.Y.; Zhang, G.T.; Wang, J.; Li, C.Y.; Wu, S.N.; Li, Y. Spatiotemporal variation of flash floods in the Hengduan Mountains region affected by rainfall properties and land use. Nat. Hazards 2021, 21, 2109–2124. [Google Scholar] [CrossRef]
- Noren, V.; Hedelin, B.; Nyberg, L.; Bishop, K. Flood risk assessment—Practices in flood prone Swedish municipalities. Int. J. Disaster Risk Reduct. 2016, 18, 206–217. [Google Scholar] [CrossRef]
- Zelenakova, M.; Ganova, L.; Purcz, P.; Satrapa, L. Methodology of flood risk assessment from flash floods based on hazard and vulnerability of the river basin. Nat. Hazards 2015, 79, 2055–2071. [Google Scholar] [CrossRef]
- Wu, X.S.; Wang, Z.L.; Guo, S.L.; Liao, W.L.; Zeng, Z.Y.; Chen, X.H. Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China. J. Hydrol. 2017, 547, 428–442. [Google Scholar] [CrossRef]
- Seyoum, S.D.; Vojinovic, Z.; Price, R.K.; Weesakul, S. Coupled 1D and Noninertia 2D Flood Inundation Model for Simulation of Urban Flooding. J. Hydraul. Eng. 2012, 138, 23–34. [Google Scholar] [CrossRef]
- Benito, G.; Thorndycraft, V.R. Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation: An introduction. Nat. Hazards 2004, 31, 623–643. [Google Scholar]
- Fang, J.; Li, M.; Shi, P.J. Assessment and mapping of global fluvial flood risk. J. Nat. Disasters 2015, 24, 1–8. [Google Scholar]
- Fayne, J.V.; Bolten, J.D.; Doyle, C.S.; Fuhrmann, S.; Rice, M.T.; Houser, P.R.; Lakshmi, V. Flood mapping in the lower Mekong River Basin using daily MODIS observations. Int. J. Remote Sens. 2017, 38, 1737–1757. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, D. Assessment of flood risk in Nanning city. J. Nat. Disasters 2017, 26, 200–2016. [Google Scholar]
- Tang, C.; van Asch, T.W.J.; Chang, M.; Chen, G.Q.; Zhao, X.H.; Huang, X.C. Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: The combined effects of a strong earthquake and subsequent rainstorms. Geomorphology 2012, 139, 559–576. [Google Scholar] [CrossRef]
- Xiong, J.N.; Pang, Q.; Fan, C.K.; Cheng, W.M.; Ye, C.C.; Zhao, Y.L.; He, Y.R.; Cao, Y.F. Spatiotemporal Characteristics and Driving Force Analysis of Flash Floods in Fujian Province. ISPRS Int. J. Geo-Inf. 2020, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.S.; Yuan, X.M.; Guo, L.; Huang, Y.H.; Zhang, X.L. Driving Force Analysis of the Temporal and Spatial Distribution of Flash Floods in Sichuan Province. Sustainability 2017, 9, 1527. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhou, C.; Yang, F.; Wang, B.; Sun, D. Spatio-temporal evolution and the influencing factors of PM2.5 in China be-571 tween 2000 and 2011. Acta Ecol. Sin. 2017, 72, 161–174. [Google Scholar]
- Shi, J.; Baozhu, L.I.; Peng, L.I.; Huang, J.; Sun, F.; Liu, B.J. Analisis of Characteristics and Formation Mechanism for the 9·17 Giant Debris Flow in Yuanmou Country, Yunnan Province. Geol. Rev. 2018, 64, 665–673. [Google Scholar]
- Xu, S.; Yuan, Z.; Yang, Z. Based on EKC analysis of landslide and debris flow disasters. Soil Water Conserv. China 2015, 07, 54–56. [Google Scholar]
- Flash Flooding Definition. Available online: https://www.weather.gov/phi/FlashFloodingDefinition (accessed on 1 October 2021).
- Xiong, J.N.; Wei, F.; Liu, Z. Hazard assessment of debris flow in Sichuan Province. J. Geo-Inf. Sci. 2017, 191, 604–1161. [Google Scholar]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Kendall, M. The Advanced Theory of Statistics. Rev. Mex. Sociol. 1961, 23, 310. [Google Scholar] [CrossRef]
- Peng, Y.; Song, J.Y.; Cui, T.T.; Cheng, X. Temporal-spatial variability of atmospheric and hydrological natural disasters during recent 500 years in Inner Mongolia, China. Nat. Hazards 2017, 89, 441–456. [Google Scholar] [CrossRef]
- Guo, F.T.; Innes, J.L.; Wang, G.Y.; Ma, X.Q.; Sun, L.; Hu, H.Q.; Su, Z.W. Historic distribution and driving factors of human-caused fires in the Chinese boreal forest between 1972 and 2005. J. Plant Ecol. 2015, 8, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Shi, W.Z.; Miao, Z.L. Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional Euclidean Space. PLoS ONE 2015, 10, e118537. [Google Scholar] [CrossRef]
- Chai, J.; Wang, Z.Q.; Yang, J.; Zhang, L.G. Analysis for spatial-temporal changes of grain production and farmland resource: Evidence from Hubei Province, central China. J. Clean. Prod. 2019, 207, 474–482. [Google Scholar] [CrossRef]
- Li, M.S.; Ren, X.X.; Zhou, L.; Zhang, F.Y. Spatial mismatch between pollutant emission and environmental quality in China—A case study of NOx. Atmos. Pollut. Res. 2016, 7, 294–302. [Google Scholar] [CrossRef]
- Liu, Y.S.; Yang, Z.S.; Huang, Y.H.; Liu, C.J. Spatiotemporal evolution and driving factors of China’s flash flood disasters since 1949. Sci. China-Earth Sci. 2018, 61, 1804–1817. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Irhoumah, M.; Pusca, R.; Lefèvre, E.; Mercier, D.; Romary, R. Diagnosis of induction machines using external magnetic field and correlation coefficient. In Proceedings of the 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Tinos, Greece, 29 August–1 September 2017. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Zhao, Y.; Cheng, W.; Guo, L.; Wang, N.; Wei, L. Temporal-spatial Distribution and the Influencing Factors of Mountain-Flood Disasters in Sichuan Province. Geo-Inf. Sci. 2018, 20, 1443–1456. [Google Scholar]
- Bai, S.; Boyuan, L.I.; Huang, X.; Bureau, A.M.; Bureau, Q.M. Climate Characteristics of the Diurnal Precipitation in Altay in the Warm Season. Desert Oasis Meteorol. 2015, 9, 7. [Google Scholar]
- Hou, J.M.; Guo, K.H.; Liu, F.F.; Han, H.; Liang, Q.H.; Tong, Y.; Li, P. Assessing Slope Forest Effect on Flood Process Caused by a Short-Duration Storm in a Small Catchment. Water 2018, 10, 1256. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Xiong, J.; Abudumanan, A.; Cheng, W.; Ye, C.; He, W.; Yong, Z.; Tian, J. Spatiotemporal Pattern and Driving Force Analysis of Vegetation Variation in Altay Prefecture based on Google Earth Engine. J. Resour. Ecol. 2021, 12, 729–742. [Google Scholar]
- Kabin, H.; Bo, C.; Zhiguo, G. Statistical Yearbook of Altay. 2019. Available online: https://www.chinayearbooks.com/xinjiang-statistical-yearbook-2019.html (accessed on 1 October 2021).
- Jongman, B.; Ward, P.J.; Aerts, J. Global exposure to river and coastal flooding: Long term trends and changes. Glob. Environ. Chang.-Hum. Policy Dimens. 2012, 22, 823–835. [Google Scholar] [CrossRef]
Type | Factors | Spatial Resolution | Temporal Resolution | Description |
---|---|---|---|---|
Basic data | Flash floods | Vector data | 1980–2015 | China, National Mountain Flood Disaster Investigation Project [31]. |
Landcover | 1 km × 1 km | 2010 | RESDC. | |
Driving force factor data | Precipitation factors | Vector data | 2015 | China, National mountain flash flood disaster survey and evaluation data. |
DEM | 90 m × 90 m | 2010 | Geospatial Data Cloud of China. | |
NDVI | 1 km × 1 km | 2000–2015 | Google Earth Engine. | |
Population density | 1 km × 1 km | 2000, 2005, 2010 and 2015 | RESDC. | |
GDP | 1 km × 1 km | 1995, 2000, 2005, 2010 and 2015 | RESDC. |
Relevance | |
---|---|
no association or no correlation | |
0.25 | very weak correlation |
weak correlation | |
strong correlation | |
very strong correlation | |
perfect correlation |
Factors | Farmland | Forest | Grassland | Settlement | ||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
H06_20 | 0.030 | 0.563 | −0.580 | <0.001 | 0.084 | 0.007 | 0.351 | 0.007 |
H24_20 | −0.238 | <0.001 | 0.445 | 0.068 | 0.470 | <0.001 | 0.105 | <0.001 |
M10_20 | −0.152 | <0.001 | −0.426 | <0.001 | −0.052 | <0.001 | 0.100 | <0.001 |
M60_20 | 0.047 | <0.001 | −0.497 | <0.001 | 0.133 | 0.002 | 0.371 | <0.001 |
DEM | 0.107 | <0.001 | −0.377 | 0.196 | −0.176 | 0.255 | 0.263 | 0.179 |
SLP | 0.007 | 0.719 | −0.248 | 0.037 | −0.149 | 0.945 | 0.144 | 0.373 |
TR | 0.002 | 0.981 | −0.247 | 0.111 | −0.147 | 0.883 | 0.138 | 0.384 |
NDVI | 0.008 | 0.543 | −0.188 | <0.001 | 0.064 | <0.001 | −0.086 | <0.001 |
GDP | 0.122 | <0.001 | 0.227 | <0.001 | 0.130 | <0.001 | 0.154 | <0.001 |
PD | 0.181 | <0.001 | 0.265 | <0.001 | 0.221 | <0.001 | 0.212 | <0.001 |
Factors | Farmland | Forest | Grassland | Settlement | ||||
---|---|---|---|---|---|---|---|---|
IMSE | INP | IMSE | INP | IMSE | INP | IMSE | INP | |
H06_20 | 38 | 56,785 | 26 | 22,856 | 36 | 18,063 | 37 | 37,870 |
H24_20 | 25 | 28,333 | 28 | 13,659 | 30 | 25,405 | 33 | 24,294 |
M10_20 | 33 | 27,964 | 35 | 20,795 | 37 | 18,539 | 39 | 19,181 |
M60_20 | 36 | 40,477 | 25 | 25,305 | 21 | 14,071 | 37 | 37,460 |
DEM | 54 | 56,410 | 19 | 11,036 | 25 | 11,759 | 37 | 36,644 |
SLP | 11 | 4590 | 12 | 2824 | 13 | 3445 | 12 | 4223 |
TR | 9 | 3300 | 10 | 2912 | 10 | 2954 | 10 | 2192 |
NDVI | 20 | 11,970 | 11 | 2858 | 16 | 6932 | 16 | 5798 |
GDP | 18 | 7804 | 24 | 6400 | 27 | 6382 | 14 | 5639 |
PD | 25 | 12,466 | 26 | 8932 | 30 | 7547 | 26 | 14,110 |
Factors | IMSE | INP |
---|---|---|
H06_20 | 18.29 | 13,796.45 |
H24_20 | 17.08 | 9781.75 |
M10_20 | 17.40 | 5552.94 |
M60_20 | 19.23 | 13,856.15 |
DEM | 19.03 | 4851.71 |
SLP | 7.30 | 879.73 |
TR | 8.65 | 984.11 |
NDVI | 7.02 | 793.23 |
GDP | 14.24 | 1991.21 |
PD | 16.21 | 2565.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahemaitihali, A.; Dong, Z. Spatiotemporal Characteristics Analysis and Driving Forces Assessment of Flash Floods in Altay. Water 2022, 14, 331. https://doi.org/10.3390/w14030331
Ahemaitihali A, Dong Z. Spatiotemporal Characteristics Analysis and Driving Forces Assessment of Flash Floods in Altay. Water. 2022; 14(3):331. https://doi.org/10.3390/w14030331
Chicago/Turabian StyleAhemaitihali, Abudumanan, and Zuoji Dong. 2022. "Spatiotemporal Characteristics Analysis and Driving Forces Assessment of Flash Floods in Altay" Water 14, no. 3: 331. https://doi.org/10.3390/w14030331
APA StyleAhemaitihali, A., & Dong, Z. (2022). Spatiotemporal Characteristics Analysis and Driving Forces Assessment of Flash Floods in Altay. Water, 14(3), 331. https://doi.org/10.3390/w14030331