Simulation of the Water Storage Capacity of Siling Co Lake on the Tibetan Plateau and Its Hydrological Response to Climate Change
Abstract
:1. Introduction
2. Study Area and Data
2.1. Overview of the Study Area
2.2. Data Sources
3. Research Methods
3.1. Principles of the SPHY Model
3.1.1. Glacier Melt Runoff Process
3.1.2. Snow Runoff Process
3.2. Water Balance Process
3.3. Model Calibration and Validation
4. Results and Analysis
4.1. Model Efficiency Evaluation
4.2. Characteristics of Regional Climate Change
4.3. Characteristics of Water Storage Changes in the Lake Area
4.4. Characteristics of Variation in the Runoff Components of Lake Inflow
4.5. Hydrological Responses to Climate Change
5. Discussion
5.1. Uncertainty in the Simulation of Total Lake Inflow
5.2. Uncertainty in Lake Water Storage Estimation
5.3. Uncertainty in Runoff Prediction
6. Conclusions
- (1)
- The multiyear average temperature in the Siling Co basin fluctuated but increased overall at a rate of approximately 0.57 °C/decade, while annual precipitation significantly declined at a rate of 5.0 mm/yr. The precipitation at various meteorological stations varied significantly between 2000 and 2007 and consistently decreased after 2008, which became a direct driving factor affecting the lake inflow.
- (2)
- The lake inflow and the annual water storage capacity showed a strong positive correlation, and the average rates of change were 2.6 billion m3/yr and 1.2 billion m3/yr, respectively. During the study period, the lake water storage capacity experienced rapid to gentle increases.
- (3)
- The average contribution of GR to the total runoff was 22% and showed a significant increasing trend (11 million m3/yr). SR, RR, and BF are all projected to decline during the simulation period, with average contribution rates of 38%, 16%, and 24%, respectively.
- (4)
- A 10% increase in precipitation would lead to a 28% increase in the total runoff into the basin, while a 1 °C increase in temperature would lead to a 10% decrease in runoff. Under different future climate scenarios, the increases in temperature and precipitation could increase the average runoff depth in the basin by 30–39 mm, and the lake water storage capacity and area could further increase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Bibi, S.; Wang, L.; Li, X.; Zhou, J.; Chen, D.; Yao, T. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review. Int. J. Climatol. 2018, 38, e1–e17. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Wei, Z.; Bintao, L.; Xi, N.; Bo, K. Water security and the countermeasures in South Asia based on the “Belt and Road” intiative. Adv. Earth Sci. 2018, 33, 687–701. [Google Scholar]
- Sun, H.; Zheng, D.; Yao, T.; Zhang, Y. Protection and Construction of the National Ecological Security Shelter Zone on Tibetan Plateau. J. Geogr. 2012, 67, 3–12. [Google Scholar]
- Zhao, Z.; Zhang, Y.; Liu, L.; Liu, F.; Zhang, H. Recent changes in wetlands on the Tibetan Plateau: A review. J. Geogr. Sci. 2015, 25, 879–896. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yao, T.; Xie, H.; Kang, S.; Lei, Y. Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophys. Res. Lett. 2013, 40, 2125–2130. [Google Scholar] [CrossRef]
- Zhu, L.; Xie, M.; Wu, Y. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau. Chin. Sci. Bull. 2010, 55, 1294–1303. [Google Scholar] [CrossRef]
- Zhang, L.; Su, F.; Yang, D.; Hao, Z.; Tong, K. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 8500–8518. [Google Scholar] [CrossRef]
- Yang, H.; Qi, J.; Xu, X.; Yang, D.; Lv, H. The regional variation in climate elasticity and climate contribution to runoff across China. J. Hydrol. 2014, 517, 607–616. [Google Scholar] [CrossRef]
- Li, H.; Xu, C.; Beldring, S.; Tallaksen, L.M.; Jain, S.K. Water Resources Under Climate Change in Himalayan Basins. Water Resour. Manag. 2016, 30, 843–859. [Google Scholar] [CrossRef]
- Duan, J.; Wang, L.; Ren, J.; Li, L. Progress in Glacier Variations in China and Its Sensitivity to Climatic Change during the Past Century. Prog. Geogr. 2009, 28, 231–237. [Google Scholar]
- Molina, J.; Lagüela, S.; Zazo, S. Methodology to Evaluate Aquifers Water Budget Alteration Due to Climate Change Impact on the Snow Fraction. Water Resour. Manag. 2021, 35, 2569–2583. [Google Scholar] [CrossRef]
- Gao, B.; Yang, D.; Zhao, T.; Yang, H. Changes in the eco-flow metrics of the Upper Yangtze River from 1961 to 2008. J. Hydrol. 2012, 448, 30–38. [Google Scholar] [CrossRef]
- Wang, X.; Chen, G.; Dai, X.; Zhao, J.; Liu, X.; Gao, Y.; Zhang, J.; Chen, Y.; Li, X.; Qin, W.; et al. Improved Process Management of Glacial Lake Outburst Flood Hazards by Integrating Modular Monitoring, Assessment, and Simulation. Water Resour. Manag. 2022, 36, 2343–2358. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Gao, B.; Wang, T.; Qin, Y.; Yang, D. Frozen ground degradation may reduce future runoff in the headwaters of an inland river on the northeastern Tibetan Plateau. J. Hydrol. 2018, 564, 1153–1164. [Google Scholar] [CrossRef]
- Tao, C.; Xiaohua, H.; Liyun, D.; Hongyi, L.; Xiaodong, H.; Lin, X. Snow Cover Variation and Its Impacts over the Qinghai-Tibet Plateau. Proc. Chin. Acad. Sci. 2019, 34, 1247–1253. [Google Scholar]
- Hao, G.; Wu, B.; Zhang, L.; Fu, D.; Li, Y. Temporal and spatial variation analysis of the area of Siling Co lake in Tibet based on ESTARFM (1976–2014). J. Geo-Inf. Sci. 2016, 18, 833–846. [Google Scholar]
- Lei, Y.; Yao, T.; Bird, B.W.; Yang, K.; Zhai, J.; Sheng, Y. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. J. Hydrol. 2013, 483, 61–67. [Google Scholar] [CrossRef]
- Zhu, L.; Xie, M.; Wu, Y. Quantitative analysis of lake area variation and its causes in Namco, Tibet (1971 to 2004). Chin. Sci. Bull. 2010, 55, 1789–1798. [Google Scholar] [CrossRef]
- Yang, R.; Zhu, L.; Wang, J.; Ju, J.; Ma, Q.; Turner, F.; Guo, Y. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Clim. Change 2017, 140, 621–633. [Google Scholar] [CrossRef]
- Qiao, B.; Zhu, L.; Yang, R. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sens. Environ. 2019, 222, 232–243. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Zhou, T.; Chen, W. Progress in remote sensing monitoring of lake area, water level, and volume changes on the Tibetan Plateau. J. Remote Sens. 2022, 26, 115–125. [Google Scholar]
- Meng, K.; Shi, X.; Wang, E.; Liu, F. Selin Co Lake in the central Tibetan Plateau has been rising rapidly and melting glaciers in recent 10 years. Chin. Sci. Bull. 2012, 57, 668–676. [Google Scholar]
- Zhou, J.; Wang, L.; Zhong, X.; Yao, T.; Qi, J.; Wang, Y.; Xue, Y. Quantifying the major drivers for the expanding lakes in the interior Tibetan Plateau. Sci. Bull. 2022, 67, 474–478. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Zhang, Y.; Guo, Y.; Li, X.; Liu, W. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003–2012 from a basin-wide hydrological modeling. Water Resour. Res. 2015, 51, 8060–8086. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Ding, Y.; Wu, J.; Liu, F.; Wang, S. Streamflow generation in semi-arid, glacier-covered, montane catchments in the upper Shule River, Qilian Mountains, northeastern Tibetan plateau. Hydrol. Process. 2021, 35, e14276. [Google Scholar] [CrossRef]
- Xu, L.; Liu, J.; Jin, C.; Wang, A.; Guan, D.; Wu, J.; Yuan, F. Advances in basic flow segmentation methods for hydrological processes. Chin. J. Appl. Ecol. 2011, 22, 3073–3080. [Google Scholar]
- Gan, R.; Chen, Z. Simulation of runoff process and variation characteristics in Shaying River Basin. South-North Water Transf. Water ST 2021, 19, 83–91. [Google Scholar]
- Singh, V.; Jain, S.K.; Shukla, S. Glacier change and glacier runoff variation in the Himalayan Baspa river basin. J. Hydrol. 2021, 593, 125918. [Google Scholar] [CrossRef]
- Luo, Y.; Arnold, J.; Liu, S.; Wang, X.; Chen, X. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China. J. Hydrol. 2013, 477, 72–85. [Google Scholar] [CrossRef]
- Guo, J.; Li, Z.; Li, F.; Zhang, S. Evaluation on snow coverage and snow depth simulated by VIC-CAS model based on multi-source remote sensing data in mountainous upper reach of the Shule River basin. J. Glaciol. Geocryol. 2021, 43, 650–661. [Google Scholar]
- Huss, M.; Farinotti, D.; Bauder, A.; Funk, M. Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol. Process. 2008, 22, 3888–3902. [Google Scholar] [CrossRef]
- Terink, W.; Lutz, A.F.; Simons, G.W.H.; Immerzeel, W.W.; Droogers, P. SPHY v2.0: Spatial Processes in Hydrology. Geosci. Model Dev. 2015, 8, 2009–2034. [Google Scholar] [CrossRef] [Green Version]
- Latif, Y.; Ma, Y.; Ma, W.; Muhammad, S.; Adnan, M.; Yaseen, M.; Fealy, R. Differentiating Snow and Glacier Melt Contribution to Runoff in the Gilgit River Basin via Degree-Day Modelling Approach. Atmosphere 2020, 11, 1023. [Google Scholar] [CrossRef]
- Wu, J.; Li, H.; Zhou, J.; Tai, S.; Wang, X. Variation of Runoff and Runoff Components of the Upper Shule River in the Northeastern Qinghai–Tibet Plateau under Climate Change. Water 2021, 13, 3357. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Yao, T.; Kang, S. Water balance estimation of top 10 Lakes in China based on ICESat and Landsat. Chin. Sci. Bull. 2013, 58, 2664–2678. [Google Scholar]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yao, X.; Guo, W.; Xu, J.; Shang, G.; Wei, J.; Bao, W.; Wu, L. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. J. Geogr. 2015, 70, 3–16. [Google Scholar]
- Fatima, E.; Hassan, M.; Hasson, S.U.; Ahmad, B.; Ali, S.S.F. Future water availability from the western Karakoram under representative concentration pathways as simulated by CORDEX South Asia. Theor. Appl. Climatol. 2020, 141, 1093–1108. [Google Scholar] [CrossRef]
- Li, S.; Du, T.; Gippel, C.J. A Modified Fu (1981) Equation with a Time-varying Parameter that Improves Estimates of Inter-annual Variability in Catchment Water Balance. Water Resour. Manag. 2022, 36, 1645–1659. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, T.; Yang, K.; Sheng, Y.; Kleinherenbrink, M.; Yi, S.; Bird, B.W.; Zhang, X.; Zhu, L.; Zhang, G. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology. Geophys. Res. Lett. 2017, 44, 892–900. [Google Scholar] [CrossRef] [Green Version]
- Phan, V.H.; Lindenbergh, R.; Menenti, M. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. Int. J. Appl. Earth Obs. Geoinf. 2012, 17, 12–22. [Google Scholar] [CrossRef]
- Jiang, L.; Nielsen, K.; Andersen, O.B.; Bauer-Gottwein, P. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. J. Hydrol. 2017, 544, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Long, D.; Huang, Q.; Han, P.; Zhao, F.; Wada, Y. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth Syst. Sci. Data 2019, 11, 1603–1627. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Yang, H.; Li, S. An Improved Conceptual Model Quantifying the Effect of Climate Change and Anthropogenic Activities on Vegetation Change in Arid Regions. Remote Sens. 2019, 11, 2110. [Google Scholar] [CrossRef] [Green Version]
- Khanal, S.; Lutz, A.F.; Kraaijenbrink PD, A.; van den Hurk, B.; Yao, T.; Immerzeel, W.W. Variable 21st Century Climate Change Response for Rivers in High Mountain Asia at Seasonal to Decadal Time Scales. Water Resour. Res. 2021, 57, e2020WR029266. [Google Scholar] [CrossRef]
- Luo, Y.; Arnold, J.; Allen, P.; Chen, X. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China. Hydrol. Earth Syst. Sci. 2012, 16, 1259–1267. [Google Scholar] [CrossRef] [Green Version]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change 2014, 4, 587–592. [Google Scholar] [CrossRef] [Green Version]
- White, C.J.; Tanton, T.W.; Rycroft, D.W. The Impact of Climate Change on the Water Resources of the Amu Darya Basin in Central Asia. Water Resour. Manag. 2014, 28, 5267–5281. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, M.; Wan, G.; Wang, X. The Spatial and Temporal Variation of Temperature in the Qinghai-Xizang (Tibetan) Plateau during 1971–2015. Atmosphere 2017, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, W.; Yang, H.; Lei, H.; Muhammad, A.; Yang, D. Improving the Regional Applicability of Satellite Precipitation Products by Ensemble Algorithm. Remote Sens. 2018, 10, 577. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Huang, B.; Ke, L. Inter-annual changes of alpine inland lake water storage on the Tibetan Plateau: Detection and analysis by integrating satellite altimetry and optical imagery. Hydrol. Process. 2014, 28, 2411–2418. [Google Scholar] [CrossRef]
- Liu, W.; Liu, H.; Xie, C.; Zhao, J.; Liu, G.; Wang, W.; Zhang, Q.; Zhao, Q. Dynamic changes in lakes and potential drivers within the Selin Co basin, Tibetan Plateau. Environ. Earth Sci. 2022, 81, 1–17. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H. Assessment of warm season precipitation in the eastern slope of the Tibetan Plateau by CMIP6 models. Adv. Clim. Change Res. 2022, 18, 129–141. [Google Scholar]
- Chen, W.; Jiang, D.; Wang, X. Evaluation and Projection of CMIP6 Models for Climate over the Qinghai-Xizang (Tibetan) Plateau. Plateau Meteorol. 2021, 40, 1455–1469. [Google Scholar]
- Zhu, Y.; Yang, S. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Change Res. 2020, 11, 239–251. [Google Scholar] [CrossRef]
- Cui, T.; Li, C.; Tian, F. Evaluation of Temperature and Precipitation Simulations in CMIP6 Models over the Tibetan Plateau. Earth Space Sci. 2021, 8, e2020EA001620. [Google Scholar] [CrossRef]
- Zhang, J.; Lun, Y.; Liu, L.; Liu, Y.; Li, X.; Xu, Z. CMIP6 evaluation and projection of climate change in Tibetan Plateau. J. Beijing Norm. Univ. (Nat. Sci.) 2022, 58, 77–89. [Google Scholar]
Station Name | Lat/N | Lon/E | Elevation/m | Data Type | Period/Year |
---|---|---|---|---|---|
Shenzha | 30.95 | 88.6333 | 4672 | Prec/Tem | 2000–2016 |
Bange | 31.38333 | 90.01667 | 4700 | Prec/Tem | 2000–2016 |
Anduo | 32.35 | 91.1 | 4800 | Prec/Tem | 2000–2016 |
Shigatse | 29.25 | 88.88333 | 3836 | Prec/Tem | 2000–2016 |
Dumxung | 30.48333 | 91.1 | 4200 | Prec/Tem | 2000–2016 |
Naqu | 31.48333 | 92.06667 | 4507 | Prec/Tem | 2000–2016 |
Parameters | Description | Unit | Parameter Ranges | Fitted Value | |||
---|---|---|---|---|---|---|---|
Zajia Zangbo | Boqu Zangbo | Ali Zangbo | Zagen Zangbo | ||||
δgw | Groundwater recharge delay time | d | 1~4 | 1 | 1 | 1 | 1 |
αgw | Baseflow recession coefficient | // | 0.01 | 0.01 | 0.01 | 0.01 | |
GlacF | Glacier fraction of grid cell | // | 0.85 | 0 | 0.5 | 0.85 | |
DDFDG | Degree-day factor for debris-covered glaciers | mm·°C−1·d−1 | 2~8 | 4.5 | 4.5 | 4.5 | 3.5 |
DDFG | Degree-day factor for debris-free glaciers | mm·°C−1·d−1 | 2~8 | 6 | 5 | 5 | 3.8 |
DDFS | Degree-day factor for snow | mm·°C−1·d−1 | 2~8 | 4 | 4 | 4 | 4 |
Tcrit | Temperature threshold | °C | −4~2 | −3 | −3 | −3 | −3 |
Kx | Flow recession coefficient | // | 0.5~1 | 0.98 | 0.98 | 0.98 | 0.98 |
Evaluation Index | Calibration Period (2001–2008) | Validation Period (2009–2016) | Simulation Period (2001–2016) |
---|---|---|---|
NSE | 0.59 | 0.61 | 0.90 |
RE | 17.6% | −2.0% | 2.97% |
R2 | 0.92 | 0.81 | 0.97 |
Sub-Basin | Annual Runoff (108 m3) | BF (%) | GR (%) | RR (%) | SR (%) |
---|---|---|---|---|---|
Zajia Zangbo | 15.24 | 29.45 | 21.67 | 12.55 | 36.33 |
Boqu Zangbo | 0.83 | 38.55 | 0 | 31.85 | 29.60 |
Ali Zangbo | 3.34 | 20.87 | 1.04 | 43.93 | 34.16 |
Zagen Zangbo | 6.32 | 11.55 | 34.21 | 8.73 | 45.50 |
Total | 25.74 | 24.23 | 21.37 | 16.31 | 38.08 |
Climate Scenarios | Tmax | Tmin | Tmean | P | E | GM | Q | |
---|---|---|---|---|---|---|---|---|
(℃) | (mm) | |||||||
SSP1-2.6 | Amplitude of variation | 0.65 | 0.70 | 0.68 | 27.86 | −7.48 | 5.36 | 39.13 |
rate of change (/10a) | 0.22 | 0.38 | 0.28 | 23.40 | 14.96 | 1.45 | 9.96 | |
SSP3-7.0 | Amplitude of variation | 0.72 | 0.84 | 0.78 | 12.07 | −13.09 | 5.28 | 29.77 |
rate of change (/10a) | 0.34 | 0.51 | 0.41 | 36.98 | 18.11 | 0.82 | 21.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Huo, J.; Zhu, D.; Yuan, Z. Simulation of the Water Storage Capacity of Siling Co Lake on the Tibetan Plateau and Its Hydrological Response to Climate Change. Water 2022, 14, 3175. https://doi.org/10.3390/w14193175
Tang Y, Huo J, Zhu D, Yuan Z. Simulation of the Water Storage Capacity of Siling Co Lake on the Tibetan Plateau and Its Hydrological Response to Climate Change. Water. 2022; 14(19):3175. https://doi.org/10.3390/w14193175
Chicago/Turabian StyleTang, Yuanzhi, Junjun Huo, Dejun Zhu, and Zhe Yuan. 2022. "Simulation of the Water Storage Capacity of Siling Co Lake on the Tibetan Plateau and Its Hydrological Response to Climate Change" Water 14, no. 19: 3175. https://doi.org/10.3390/w14193175