Mapping Specific Constituents of an Ochre-Coloured Watercourse Based on In Situ and Airborne Hyperspectral Remote Sensing Data
Abstract
:1. Introduction
- To show that airborne hyperspectral/RGB RS technologies are suitable for monitoring water quality parameters for small streams.
- To propose simple linear modelling approaches for modelling and predicting TFe, Fe (II), Fe(III), sulphates and Chl-a in ochre streams.
- To develop and test a robust procedure to derive TFe, Fe(II), Fe(III), sulphates and Chl-a based on airborne hyperspectral RS data and simultaneous field sampling in a river section influenced by mining activities.
- To transfer the point results from the in situ field sampling to the area.
- To discuss the framework conditions as well as the limitations of the presented approach.
2. Materials and Methods
2.1. Study Area
2.2. In Situ Data
2.3. Remote Sensing Data
2.4. Model Development for the Area-Wide Derivation
3. Results and Discussion
3.1. In Situ Measurements of Water Quality
3.2. Airborne Hyperspectral RS and Modelling
4. Conclusions and Outlook
- The present results were only achieved by combining airborne hyperspectral RS data with simultaneous in situ measurements.
- Airborne hyperspectral sensors acquire very high-resolution and continuous spectra that allow detailed analyses to be carried out. The high spatial resolution offers significant advantages over satellite data (multispectral and hyperspectral) with a low spatial resolution for the derivation of water constituents from inland waters.
- Machine learning methods must be applied rather than simple regression models for modelling and prediction to achieve a better generalisation and transferability of the results.
- Spectral databases need to be in place for the quantification of water quality indicators.
- Scale dependencies have to be undertaken to transfer from high-resolution airborne hyperspectral RS data to the now freely available spaceborne hyperspectral data (EnMAP, DESIS, Prisma).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Dijk, A.I.J.M.; Beck, H.E.; de Jeu, R.A.M.; Dorigo, W.A.; Hou, J.; Preimesberger, W.; Rahman, J.; Rozas Larraondo, P.R.; Van Der, R.S. Global Water Monitor 2022, Summary Report. Global Water Monitor. Available online: www.globalwater.online (accessed on 3 March 2023).
- Tiwary, R.K. Environmental Impact of Coal Mining Onwater Regime and Its Management. Water. Air. Soil Pollut. 2001, 132, 185–199. [Google Scholar] [CrossRef]
- Margareta, M.; Kaartinen, T.; Mäkinen, J.; Punkkinen, H.; Häkkinen, A.; Mamelkina, M.; Tuunila, R.; Lamberg, P.; Gonzales, M.S.; Sandru, M.; et al. Water Conscious Mining (WASCIOUS); TemaNord; Nordic Council of Ministers: Copenhagen, Denmark, 2017; ISBN 9789289349628. [Google Scholar]
- España, J.S. Acid Mine Drainage in the Iberian Pyrite Belt: An Overview with Special Emphasis on Generation Mechanisms, Aqueous Composition and Associated Mineral Phases. In Proceedings of the Conferencia Invitada: Sánchez España, Macla, Spain, Madrid; 2008; Volume 10, pp. 34–43. Available online: https://www.researchgate.net/publication/235355094_Acid_Mine_Drainage_in_the_Iberian_Pyrite_Belt_an_Overviewwith_Special_Emphasis_on_Generation_MechanismsAqueous_Composition_and_Associated_Mineral_Phases (accessed on 1 February 2023).
- Schultze, M.; Pokrandt, K.-H.; Hille, W. Pit lakes of the Central German lignite mining district: Creation, morphometry and water quality aspects. Limnologica 2010, 40, 148–155. [Google Scholar] [CrossRef]
- Bilek, F.; Koch, C. Eisenretention in der Talsperre Spremberg, 2012. Available online: https://lfu.brandenburg.de/lfu/de/ueber-uns/veroeffentlichungen/detail/~31-10-2012-eisenretention-in-der-talsperre-spremberg (accessed on 1 February 2023).
- Giam, X.; Olden, J.D.; Simberloff, D. Impact of coal mining on stream biodiversity in the US and its regulatory implications. Nat. Sustain. 2018, 1, 176–183. [Google Scholar] [CrossRef]
- Hüttl, R.F. Ecology of post strip-mining landscapes in Lusatia, Germany. Environ. Sci. Policy 1998, 1, 129–135. [Google Scholar] [CrossRef]
- Zerbe, S.; Wiegleb, G. Renaturierung von Ökosystemen in Mitteleuropa; Zerbe, S., Wiegleb, G., Eds.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2009; ISBN 978-3-8274-1901-9. [Google Scholar]
- Lunt, J.; Smee, D.L. Turbidity alters estuarine biodiversity and species composition. ICES J. Mar. Sci. 2020, 77, 379–387. [Google Scholar] [CrossRef]
- Ramadas, M.; Samantaray, A.K. Applications of Remote Sensing and GIS in Water Quality Monitoring and Remediation: A State-of-the-Art Review. In Water Remediation; Springer Nature: Singapore, 2018; pp. 225–246. [Google Scholar]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota. Remote Sens. Environ. 2013, 130, 254–265. [Google Scholar] [CrossRef]
- Chawla, I.; Karthikeyan, L.; Mishra, A.K. A review of remote sensing applications for water security: Quantity, quality, and extremes. J. Hydrol. 2020, 585, 124826. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Melesse, A.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef]
- Göritz, A.; Berger, S.; Gege, P.; Grossart, H.-P.; Nejstgaard, J.; Riedel, S.; Röttgers, R.; Utschig, C. Retrieval of Water Constituents from Hyperspectral In-Situ Measurements under Variable Cloud Cover—A Case Study at Lake Stechlin (Germany). Remote Sens. 2018, 10, 181. [Google Scholar] [CrossRef]
- Pan, X.; Wang, Z.; Ullah, H.; Chen, C.; Wang, X.; Li, X.; Li, H.; Zhuang, Q.; Xue, B.; Yu, Y. Evaluation of Eutrophication in Jiaozhou Bay via Water Color Parameters Determination with UAV-Borne Hyperspectral Imagery. Atmosphere 2023, 14, 387. [Google Scholar] [CrossRef]
- Kakuta, S.; Ariyasu, E.; Takeda, T. Shallow Water Bathymetry Mapping Using Hyperspectral Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1539–1542. [Google Scholar]
- Alonso, K.; Bachmann, M.; Burch, K.; Carmona, E.; Cerra, D.; de los Reyes, R.; Dietrich, D.; Heiden, U.; Hölderlin, A.; Ickes, J.; et al. Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS). Sensors 2019, 19, 4471. [Google Scholar] [CrossRef] [PubMed]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Lopinto, E.; Fasano, L.; Longo, F.; Varacalli, G.; Sacco, P.; Chiarantini, L.; Sarti, F.; Agrimano, L.; Santoro, F.; Cogliati, S.; et al. Current Status and Future Perspectives of the PRISMA Mission at the Turn of One Year in Operational Usage. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1380–1383. [Google Scholar]
- Imatani, R.; Ito, Y.; Ikehara, K.; Iwasaki, A.; Inada, H.; Tanii, J.; Kashimura, O. The flight model performances of Hyperspectral Imager Suite (HISUI). In Proceedings of the Sensors, Systems, and Next-Generation Satellites XXV, Online Conference, Spain; 2021; p. 3. Available online: https://ui.adsabs.harvard.edu/abs/2021SPIE11858E..08I/abstract (accessed on 1 February 2023).
- Gege, P. Radiative Transfer Theory for Inland Waters. In Bio-Optical Modeling and Remote Sensing of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2017; pp. 25–67. ISBN 978-0-12-804644-9. [Google Scholar]
- Ogashawara, I.; Mishra, D.R.; Gitelson, A.A. Remote Sensing of Inland Waters. In Bio-Optical Modeling and Remote Sensing of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–24. ISBN 978-0-12-804644-9. [Google Scholar]
- Dörnhöfer, K.; Oppelt, N. Remote sensing for lake research and monitoring—Recent advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- Dekker, A.G. Detection of Optical Water Quality Parameters for Eutrophic Waters by High Resolution Remote Sensing. Ph.D. Thesis, Free University, Berlin, Germany, 1993. [Google Scholar]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems; 3. Auflage.; Cambridge University Press: Canberra, Australia, 2010; ISBN 978-0-521-15175-7. [Google Scholar]
- Frauendorf, J. Entwicklung und Anwendung von Fernerkundungsmethoden zur Ableitung von Wasserqualitätsparametern verschiedener Restseen des Braunkohlentagebaus in Mitteldeutschland; Martin-Luther-Universität Halle-Wittenberg: Halle, Germany, 2002. [Google Scholar] [CrossRef]
- Asmala, E.; Stedmon, C.A.; Thomas, D.N. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries. Estuar. Coast. Shelf Sci. 2012, 111, 107–117. [Google Scholar] [CrossRef]
- Gitelson, A.A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Kopačková, V.; Hladíková, L. Applying Spectral Unmixing to Determine Surface Water Parameters in a Mining Environment. Remote Sens. 2014, 6, 11204–11224. [Google Scholar] [CrossRef]
- Repic, R.L.; Lee, J.K.; Mausel, P.W. An Analysis of Selected Water Parameters in Surface Coal Mines Using Multispectral Videography. Photogramm. Eng. 1991, 4, 1589–1596. [Google Scholar]
- Anderson, J.E.; Robbins, E. Spectral Reflectance and Detection of Iron-Oxide Precipitates Associated with Acidic Mine Drainage. Photogramm. Eng. Remote Sens. 1998, 64, 1201–1208. [Google Scholar]
- Williams, D.J.; Bigham, J.M.; Cravotta III, C.A.; Trainaa, S.J.; Anderson, J.E.; Lyon, J.G. Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates. Appl. Geochem. 2002, 17, 1273–1286. [Google Scholar] [CrossRef]
- Gläßer, C.; Groth, D.; Frauendorf, J. Monitoring of hydrochemical parameters of lignite mining lakes in Central Germany using airborne hyperspectral casi-scanner data. Int. J. Coal Geol. 2011, 86, 40–53. [Google Scholar] [CrossRef]
- Schroeter, L.; Gläβer, C. Analyses and monitoring of lignite mining lakes in Eastern Germany with spectral signatures of Landsat TM satellite data. Int. J. Coal Geol. 2011, 86, 27–39. [Google Scholar] [CrossRef]
- Brando, V.E.; Dekker, A.G. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1378–1387. [Google Scholar] [CrossRef]
- Bukata, R.P.; Jerome, J.H.; Kondratyev, K.Y.; Pozdnyakov, D.V. Optical Properties and Remote Sensing of Inland and Coastal Waters; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9780203744956. [Google Scholar]
- Kutser, T.; Hedley, J.; Giardino, C.; Roelfsema, C.; Brando, V.E. Remote sensing of shallow waters—A 50 year retrospective and future directions. Remote Sens. Environ. 2020, 240, 111619. [Google Scholar] [CrossRef]
- Kuhn, C.; de Matos Valerio, A.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Richey, J.; Stadler, P.; Crawford, J.; Striegl, R.; et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef]
- Balasubramanian, S.V.; Pahlevan, N.; Smith, B.; Binding, C.; Schalles, J.; Loisel, H.; Gurlin, D.; Greb, S.; Alikas, K.; Randla, M.; et al. Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters. Remote Sens. Environ. 2020, 246, 111768. [Google Scholar] [CrossRef]
- Baschek, B.; Fricke, K.; Dörnhöfer, K.; Oppelt, N. Grundlagen und Möglichkeiten der passiven Fernerkundung von Binnengewässern. In Handbuch Angewandte Limnologie: Grundlagen—Gewässerbelastung—Restaurierung—Aquatische Ökotoxikologie—Bewertung—Gewässerschutz; Wiley: Hoboken, NJ, USA, 2018; pp. 1–28. ISBN 978-3-527-67848-8. [Google Scholar]
- Doxaran, D.; Froidefond, J.-M.; Castaing, P. Remote-sensing reflectance of turbid sediment-dominated waters Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios. Appl. Opt. 2003, 42, 2623. [Google Scholar] [CrossRef]
- Knaeps, E.; Ruddick, K.G.; Doxaran, D.; Dogliotti, A.I.; Nechad, B.; Raymaekers, D.; Sterckx, S. A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters. Remote Sens. Environ. 2015, 168, 66–79. [Google Scholar] [CrossRef]
- Friedland, G.; Grüneberg, B.; Hupfer, M. Geochemical signatures of lignite mining products in sediments downstream a fluvial-lacustrine system. Sci. Total Environ. 2021, 760, 143942. [Google Scholar] [CrossRef]
- Bilek, F.; Moritz, F.; Albinus, S. Iron-Hydroxide-Removal from Mining Affected Rivers. In Proceedings of the Mining Meets Water—Conflicts and Solutions; International Mine Water Association (IMWA): Freiberg, Germany, 2016; pp. 151–158. [Google Scholar]
- Gleisner, M.; Herbert, R.B. Sulfide mineral oxidation in freshly processed tailings: Batch experiments. J. Geochem. Explor. 2002, 76, 139–153. [Google Scholar] [CrossRef]
- Uhlig, U.; Radigk, S.; Uhlmann, W.; Preuß, V.; Koch, T. Iron removal from the Spree River in the Bühlow pre-impoundment basin of the Spremberg reservoir IMWA 2016. Available online: https://www.imwa.info/docs/imwa_2016/IMWA2016_Uhlig_75.pdf (accessed on 1 February 2023).
- Uhlmann, W.; Theiss, S.; Nestler, W.; Claus, T. Fortführung der Studie zur Talsperre Spremberg—Abschlussbericht (Dezember 2013). Available online: https://docplayer.org/83470767-Fortfuehrung-der-studie-zur-talsperre-spremberg-abschlussbericht-dezember-2013.html (accessed on 1 February 2023).
- Uhlmann, W.; Theiss, S.; Nestler, W.; Zimmermann, K.; Claus, T. Weiterführende Untersuchungen zu den Hydrochemischen und Ökologischen Auswirkungen der Exfiltration von Eisenhaltigem, Saurem Grundwasser in die Kleine Spree und in Die Spree Projektphase 2: Präzisierung der Ursachen und Quellstärken für die Hohe Eisenbel; IWB: Dresden, Germany, 2012. [Google Scholar]
- LMBV LMBV: Spree bei Wilhelmsthal bekommt wieder Kalk—Übergang in Spätsommer-Fahrweise. Available online: https://www.lmbv.de/index.php/pressemitteilung/lmbv-spree-bei-wilhelmsthal-bekommt-wieder-kalk-uebergang-in-spaetsommer-fahrweise-4576.html (accessed on 1 February 2023).
- Mehnert, G.; Rücker, J.; Nicklisch, A.; Leunert, F.; Wiedner, C. Effects of thermal acclimation and photoacclimation on lipophilic pigments in an invasive and a native cyanobacterium of temperate regions. Eur. J. Phycol. 2012, 47, 182–192. [Google Scholar] [CrossRef]
- Schonberger, J.L.; Frahm, J.-M. Structure-from-Motion Revisited. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar]
- Schläpfer, D. PARGE Airborne Image Rectification PARGE® Image Rectification. 2022. Available online: https://www.rese-apps.com/software/parge/index.html (accessed on 1 February 2023).
- Schläpfer, D. ATCOR for Airborne Remote Sensing. ATCOR 4—For Airborne Remote Sensing Systems. 2022. Available online: https://www.rese-apps.com/software/atcor-4-airborne/index.html (accessed on 1 February 2023).
- Hovis, W.A.; Leung, K.C. Remote Sensing of Ocean Color. Opt. Eng. 1977, 16, 439–472. [Google Scholar] [CrossRef]
- Ray, T.W. A FAQ on Vegetation in Remote Sensing, 1994, IEEE/ACM Third International Conference on Cyber-Physical Systems. Pasadena. 1994. Available online: http://www.remote-sensing.info/wp-content/uploads/2012/07/A_FAQ_on_Vegetation_in_Remote_Sensing.pdf (accessed on 1 February 2023).
- Moses, W.J.; Sterckx, S.; Montes, M.J.; De Keukelaere, L.; Knaeps, E. Atmospheric Correction for Inland Waters. In Bio-Optical Modeling and Remote Sensing of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2017; pp. 69–100. ISBN 978-0-12-804644-9. [Google Scholar]
- Håkanson, L.; Bryhn, A.C.; Blenckner, T. Operational Effect Variables and Functional Ecosystem Classifications—A Review on Empirical Models for Aquatic Systems along a Salinity Gradient. Int. Rev. Hydrobiol. 2007, 92, 326–357. [Google Scholar] [CrossRef]
- Ulrich, C.; Bannehr, L.; Lausch, A. Ableitung von Eisen(II, III)oxid in Fließgewässern mittels Multispektraldaten. In Proceedings of the Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation, Bern, Switzerland; 2016; Volume 25, pp. 34–43. Available online: https://www.google.com.hk/search?q=Ableitung+von+Eisen%28II%2C+III%29oxid+in+Flie%C3%9Fgew%C3%A4ssern+mittels+Multispektraldaten&ei=JL83ZOaWDb-m2roP7qah8Ao&ved=0ahUKEwjmuNmCuqb-AhU_k1YBHW5TCK4Q4dUDCA4&uact=5&oq=Ableitung+von+Eisen%28II%2C+III%29oxid+in+Flie%C3%9Fgew%C3%A4ssern+mittels+Multispektraldaten&gs_lcp=Cgxnd3Mtd2l6LXNlcnAQA0oECEEYAFAAWABgiQNoAHABeACAAXmIAXmSAQMwLjGYAQCgAQKgAQHAAQE&sclient=gws-wiz-serp (accessed on 1 February 2023).
- Durning, W.P.; Polis, S.R.; Frost, E.G.; Kaiser, J.V. Integrated Use of Remote Sensing and GIS for Mineral Exploration-Final Report. Affiliated Research Center, San Diego State University: San Diego, CA, USA, 1998. [Google Scholar]
- Eloheimo, K.; Hannonen, T.; Härmä, P.; Pyhälahti, T.; Koponen, S.; Pulliainen, J.; Servomaa, H.; Kutser, T. Coastal monitoring using satellite, airborne and in situ data in the archipelago of Baltic Sea. In Proceedings of the 5th International Conference on Remote Sensing for Marine and Coastal Environments, San Diego, CA, USA, 5–7 October 1998; pp. 306–331. [Google Scholar]
- Robinson, M.-C.; Morris, K.P.; Dyer, K.R. Deriving Fluxes of Suspended Particulate Matter in the Humber Estuary, UK, Using Airborne Remote Sensing. Mar. Pollut. Bull. 1999, 37, 155–163. [Google Scholar] [CrossRef]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for geological applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- IOCCG. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters, Reports of the International Ocean-Colour Coordinating Group. Reports of the International Ocean-Colour Coordinating Group, Dartmouth, Kanada. 2020. Available online: http://ioccg.org/wp-content/uploads/2015/10/ioccg-report-03.pdf (accessed on 1 February 2023).
- Gao, H.; Birkett, C.; Lettenmaier, D.P. Global monitoring of large reservoir storage from satellite remote sensing. Water Resour. Res. 2012, 48, 2012WR012063. [Google Scholar] [CrossRef]
- Wang, J.-J.; Lu, X.X. Estimation of suspended sediment concentrations using Terra MODIS: An example from the Lower Yangtze River, China. Sci. Total Environ. 2010, 408, 1131–1138. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A.; Prairie, Y.T.; Tranvik, L.J. Browning of Boreal Freshwaters Coupled to Carbon-Iron Interactions along the Aquatic Continuum. PLoS ONE 2014, 9, e88104. [Google Scholar] [CrossRef]
- Knaeps, E.; Dogliotti, A.I.; Raymaekers, D.; Ruddick, K.; Sterckx, S. In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary. Remote Sens. Environ. 2012, 120, 133–144. [Google Scholar] [CrossRef]
- Rowan, L.C.; Goetz, A.F.H.; Ashley, R.P. Discrimination of hydrothermallyy altered and unaltered rocks in visible and near infrared multispectral images. Geophysics 1977, 42, 522–535. [Google Scholar] [CrossRef]
- Haardt, H.; Maske, H. Specific in vivo absorption coefficient of chlorophyll a at 675 nm1. Limnol. Oceanogr. 1987, 32, 608–619. [Google Scholar] [CrossRef]
- Gege, P. The water colour simulator WASI: A software tool for forward and inverse modeling of optical in-situ spectra. In Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, Australia, 9–13 July 2001; Volume 6, pp. 2743–2745. [Google Scholar]
SP ID | TFe [mg/L] (1) | Fe(II) [mg/L] | Fe(III) [mg/L] | Sulphate [mg/L] (2) | Chl-a [µg/L] |
---|---|---|---|---|---|
1 | 0.7 | 0.04 | 0.66 | 356 | 11.9 |
2 | 2.8 | 2.19 | 0.61 | 362 | 12.31 |
3 | 3.8 | 2.45 | 1.35 | 364 | 9.76 |
4 | 5.7 | 4.53 | 1.17 | 369 | 10.64 |
5 | 6.3 | 4.47 | 1.83 | 367 | 9.96 |
6 | 6.3 | 5.17 | 1.13 | 366 | 11.04 |
7 | 7.0 | 5.28 | 1.72 | 336 | 10.20 |
8 | 4.9 | 3.1 | 1.8 | 436 | 7.41 |
9 | 4.7 | 2.74 | 1.96 | 434 | 7.06 |
10 | 3.9 | 2.00 | 1.9 | 422 | 6.92 |
11 | 3.9 | 1.89 | 2.01 | 420 | 7.18 |
12 | 4.00 | 1.52 | 2.48 | 421 | 7.03 |
13 | 3.2 | 0.94 | 2.26 | 421 | 6.63 |
14 | 2.3 | 0.58 | 1.72 | 426 | 6.15 |
15 | 3.1 | 0.64 | 2.46 | 419 | 6.32 |
16 | 3.2 | 0.31 | 2.89 | 398 | 8.66 |
17 | 1.8 | <0.05 | - | 399 | 6.43 |
18 | 2.9 | <0.05 | - | 399 | 6.35 |
19 | 0.6 | <0.05 | - | 430 | 10.39 |
Mean | 3.74 | 2.37 | 1.75 | 3.74 | 2.37 |
Standard deviation | 1.74 | 1.68 | 0.62 | 31 | 2.05 |
Maximum | 7.00 | 5.28 | 2.89 | 436 | 12.32 |
Minimum | 0.60 | 0.04 | 0.61 | 336 | 6.15 |
TFe [mg/L] | Fe(II) [mg/L] | Fe(III) [mg/L] | Sulphate [mg/L] | Chl-a [µg/L] | |
---|---|---|---|---|---|
TFe [mg/L] | 1.00 | 0.97 | −0.50 | −0.58 | 0.79 |
Fe(II) [mg/L] | 0.97 | 1.00 | −0.70 | −0.70 | 0.79 |
Fe(III) [mg/L] | −0.50 | −0.70 | 1.00 | 0.48 | −0.56 |
Sulphate [mg/L] | −0.58 | −0.70 | 0.48 | 1.00 | −0.84 |
Chl-a [µg/L] | 0.79 | 0.79 | −0.56 | −0.84 | 1.00 |
Parameter | N | ID | Spectral Index | Equation | R2 | RMSE | rRMSE |
---|---|---|---|---|---|---|---|
TFe [mg/L] | 15 | (a) | (RRS(580)-RRS(455))/(RRS(580)+RRS(455)) | 0.70 | 0.95 | 22.19% | |
(b) | (RRS(455)-RRS(580))/(RRS(480)+RRS(580)) | 0.64 | 0.93 | 21.91% | |||
Fe(II) [mg/L] | 13 | (c) | (RRS(580)-RRS(455))/(RRS(580)+RRS(455)) | 0.78 | 0.95 | 35.33% | |
Fe(III) [mg/L] | 13 | (d) | (RRS(580)-RRS(1250))/(RRS(650)-RRS(1250)) | 0.84 | 0.27 | 14.53% | |
(e) | RRS(701)/RRS(563) | 0.79 | 0.22 | 11.86% | |||
Sulphate [mg/L] | 15 | (f) | (RRS(580)-RRS(480))/(RRS(580)+RRS(480)) | 0.53 | 21 | 5.31% | |
Chl-a [µg/L] | 15 | (g) | (RRS(580)-RRS(455))/(RRS(580)+RRS(455)) | 0.72 | 1.09 | 13.48% | |
(h) | (RRS(580)-RRS(480))/(RRS(580)+RRS(480)) | 0.67 | 0.98 | 12.09% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulrich, C.; Hupfer, M.; Schwefel, R.; Bannehr, L.; Lausch, A. Mapping Specific Constituents of an Ochre-Coloured Watercourse Based on In Situ and Airborne Hyperspectral Remote Sensing Data. Water 2023, 15, 1532. https://doi.org/10.3390/w15081532
Ulrich C, Hupfer M, Schwefel R, Bannehr L, Lausch A. Mapping Specific Constituents of an Ochre-Coloured Watercourse Based on In Situ and Airborne Hyperspectral Remote Sensing Data. Water. 2023; 15(8):1532. https://doi.org/10.3390/w15081532
Chicago/Turabian StyleUlrich, Christoph, Michael Hupfer, Robert Schwefel, Lutz Bannehr, and Angela Lausch. 2023. "Mapping Specific Constituents of an Ochre-Coloured Watercourse Based on In Situ and Airborne Hyperspectral Remote Sensing Data" Water 15, no. 8: 1532. https://doi.org/10.3390/w15081532