Numerical Simulation Study of Factors Influencing Ultrasonic Cavitation Bubble Evolution on Rock Surfaces during Ultrasonic-Assisted Rock Breaking
Abstract
:1. Introduction
2. Methods
2.1. Selection of a Two-Phase Gas–Liquid Model
2.2. Governing Equations
2.3. Solution
2.4. Physical Process and Calculation Assumptions
- (1)
- Water and air are treated as compressible fluids satisfying the ideal gas state equation.
- (2)
- The flow process is assumed to be laminar due to the low Reynolds number throughout the process.
- (3)
- The bubbles are considered to have negligible mass and are unaffected by gravity at their initial moment.
- (4)
- Water and air are assumed to be immiscible, and mass transfer between them is neglected.
2.5. Geometric Model and Boundary Conditions
2.6. Meshing
3. Results and Discussion
3.1. Model Validation
3.2. Impact of Ultrasonic Parameters on Bubble Collapse
3.2.1. Effect of Ultrasonic Frequency on Bubble Collapse
3.2.2. Effect of Ultrasonic Amplitude on Bubble Collapse
3.3. Effect of Rock Material on Bubble Collapse
3.4. Effect of Liquid Circulating Medium on Bubble Collapse
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
P | hydrostatic pressure (Pa) |
ρ | fluid density (kg/m3) |
μ | kinematic viscosity of fluid (Pa·s) |
v | fluid velocity vector (m/s) |
E | total energy (J) |
v | flow velocity (m/s) |
h | sensible enthalpy (J) |
Yj | mass fraction of fluid |
hj | apparent enthalpy of fluid (J) |
T | temperature (K) |
Tref | ordinary temperature (K), Tref = 293 k |
cp,j | constant pressure heat capacity of fluid (J/(kg·K)) |
c | sound velocity (m/s), c = 340 m/s |
K | bulk modulus (Pa) |
K0 | bulk modulus of liquid at P0 pressure (Pa) |
n | density coefficient |
αg | gas volume fraction |
p0 | initial static pressure of water (Pa) |
σ | the surface tension coefficient of the fluid (N/m), σ = 0.0728 N/m |
x(t) | vibration displacement (m) |
A | vibration amplitude (m) |
f | vibration frequency (kHz) |
t | vibration time (s) |
L | the distance between the bubble center and the wall (m) |
R0 | bubble initial radius (m) |
References
- Wang, X.; Wang, X.; Wang, J.; Tian, Z. Feasibility Study and Prospects of Rock Fragmentation Using Ultrasonic Vibration Excitation. Appl. Sci. 2020, 10, 5868. [Google Scholar] [CrossRef]
- Li, S.; Chen, Z.; Li, W.; Yan, T.; Bi, F.; Tong, Y. An FE Simulation of the Fracture Characteristics of Blunt Rock Indenter Under Static and Harmonic Dynamic Loadings Using Cohesive Elements. Rock Mech. Rock Eng. 2023, 56, 2935–2947. [Google Scholar] [CrossRef]
- Akhymbayeva, B.S.; Akhymbayev, D.G.; Nauryzbayeva, D.K.; Mauletbekova, B.K. The Process of Crack Propagation during Rotary Percussion Drilling of Hard Rocks. Period. Eng. Nat. Sci. 2021, 9, 392–416. [Google Scholar] [CrossRef]
- Honda, A.; Sugino, F.; Yamamoto, K. Inactivation of Algae and Plankton by Ultrasonic Cavitation. Sustainability 2021, 13, 6769. [Google Scholar] [CrossRef]
- Feng, J.; Yan, T.; Cao, Y.; Sun, S. Ultrasonic-Assisted Rock-Breaking Technology and Oil and Gas Drilling Applications: A Review. Energies 2022, 15, 8394. [Google Scholar] [CrossRef]
- Rayleigh, L. On the Pressure Developed in a Liquid during the Collapse of a Spherical Cavity. Philos. Mag. Ser. 1917, 6, 94–98. [Google Scholar] [CrossRef]
- Plesset, M.S. The Dynamics of Cavitation Bubbles. J. Appl. Mech. 2021, 16, 277–282. [Google Scholar] [CrossRef]
- Gilmore, F. The Collapse and Growth of a Spherical Bubble in a Viscous Compressible Liquid; California Institute of Technology: Pasadena, CA, USA, 1952. [Google Scholar]
- Benjamin, T.B.; Ellis, A.T. The Collapse of Cavitation Bubbles and the Pressures Thereby Produced against Solid Boundaries. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci. 1966, 260, 221–240. [Google Scholar]
- Zhang, Y.; Li, S. Effects of Liquid Compressibility on Radial Oscillations of Gas Bubbles In Liquids. J. Hydrodyn. 2012, 24, 760–766. [Google Scholar] [CrossRef]
- Park, S.; Son, G. Numerical Study of the Effect of Liquid Compressibility on Acoustic Droplet Vaporization. Ultrason. Sonochem. 2021, 79, 105769. [Google Scholar] [CrossRef]
- Knapp, R.T.; Hollander, A. Laboratory Investigations of the Mechanism of Cavitation. Trans. Am. Soc. Mech. Eng. 1948, 70, 419–431. [Google Scholar] [CrossRef]
- Lauterborn, W.; Bolle, H. Experimental Investigations of Cavitation-Bubble Collapse in the Neighbourhood of a Solid Boundary. J. Fluid Mech. 1975, 72, 391–399. [Google Scholar] [CrossRef]
- Lindau, O.; Lauterborn, W. Cinematographic Observation of the Collapse and Rebound of a Laser-Produced Cavitation Bubble near a Wall. J. Fluid Mech. 2003, 479, 327–348. [Google Scholar] [CrossRef]
- Zhang, A.M.; Wang, C.; Wang, S.P.; Cheng, X.D. Experimental Study of Interaction between Bubble and Free Surface. Acta Phys. Sin. 2012, 61, 084701. [Google Scholar] [CrossRef]
- Zhang, A.M.; Wang, S.; Bai, Z.; Huang, C. Experimental Study on Bubble Pulse Features under Different Circumstances. Lixue Xuebao Chinese J. Theor. Appl. Mech. 2011, 43, 71–83. [Google Scholar]
- Taniyama, Y.; Tachibana, K.; Hiraoka, K.; Namba, T.; Yamasaki, K.; Hashiya, N.; Aoki, M.; Ogihara, T.; Yasufumi, K.; Morishita, R. Local Delivery of Plasmid DNA Into Rat Carotid Artery Using Ultrasound. Circulation 2002, 105, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Yabuki, N.; Makuta, T. Effect of Oscillating Area on Generating Microbubbles from Hollow Ultrasonic Horn. Technologies 2024, 12, 74. [Google Scholar] [CrossRef]
- Wang, Q.X.; Blake, J.R. Non-Spherical Bubble Dynamics in a Compressible Liquid. Part 2. Acoustic Standing Wave. J. Fluid Mech. 2011, 679, 559–581. [Google Scholar] [CrossRef]
- Zhang, F.; Liao, Z.; Tang, C. Numerical Investigation of Chaotic Movement of Cavitation Bubble in Oscillating Pressure Field. Chin. J. Appl. Mech. 2001, 18, 14–19. [Google Scholar]
- Zheng, H.; Dayton, P.A.; Caskey, C.; Zhao, S.; Qin, S.; Ferrara, K.W. Ultrasound-Driven Microbubble Oscillation and Translation Within Small Phantom Vessels. Ultrasound Med. Biol. 2007, 33, 1978–1987. [Google Scholar] [CrossRef]
- Ma, X.; Huang, B.; Li, Y.; Chang, Q.; Qiu, S.; Su, Z.; Fu, X.; Wang, G. Numerical Simulation of Single Bubble Dynamics under Acoustic Travelling Waves. Ultrason. Sonochem. 2018, 42, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, T.; Lai, X.; Yu, H.; Li, D.; Zheng, H.; Chen, H.; Ohl, C.D.; Li, Y. Influence of Surface Tension on Dynamic Characteristics of Single Bubble in Free-Field Exposed to Ultrasound. Micromachines 2022, 13, 782. [Google Scholar] [CrossRef] [PubMed]
- Yasui, K.; Tuziuti, T.; Izu, N.; Kanematsu, W. Is Surface Tension Reduced by Nanobubbles (Ultrafine Bubbles) Generated by Cavitation? Ultrason. Sonochem. 2019, 52, 13–18. [Google Scholar] [CrossRef]
- Brujan, E.A.; Ikeda, T.; Matsumoto, Y. Dynamics of Ultrasound-Induced Cavitation Bubbles in Non-Newtonian Liquids and near a Rigid Boundary. Phys. Fluids 2004, 16, 2402–2410. [Google Scholar] [CrossRef]
- Sadighi-Bonabi, R.; Alijan Farzad Lahiji, F.; Razeghi, F. The Effect of Viscosity, Applied Frequency and Driven Pressure on the Laser Induced Bubble Luminescence in Water–Sulfuric Acid Mixtures. Phys. Lett. A 2016, 380, 2219–2226. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, C.; Pu, Z.; Yu, H.; Li, D. Effect of Low-Frequency Ultrasonic Field at Different Power on the Dynamics of a Single Bubble near a Rigid Wall. Ultrason. Sonochem. 2019, 58, 104704. [Google Scholar] [CrossRef]
- Takahira, H.; Matsuno, T.; Shuto, K. Numerical Investigations of Shock–Bubble Interactions in Mercury. Fluid Dyn. Res. 2008, 40, 510–520. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, D. Comparative Study on the Test Method for Tensile Elastic Modulus of Rock Materials. Adv. Civ. Eng. 2019, 2019, 3161953. [Google Scholar] [CrossRef]
- Ye, X.; Yao, X.; Han, R. Dynamics of Cavitation Bubbles in Acoustic Field near the Rigid Wall. Ocean Eng. 2015, 109, 507–516. [Google Scholar] [CrossRef]
- Qu, J.; Sun, X.; Yan, T.; Chen, Y.; Hu, Q. A Novel Prediction Model for Cuttings Bed Height in Horizontal and Deviated Wells. J. Nat. Gas Sci. Eng. 2021, 95, 104192. [Google Scholar] [CrossRef]
Serial Number | Lithology | Elastic Modulus (GPa) |
---|---|---|
1 | Granite | 42.3 |
2 | Marble | 20.2 |
3 | Sandstone | 8.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Yan, T.; Hou, Z. Numerical Simulation Study of Factors Influencing Ultrasonic Cavitation Bubble Evolution on Rock Surfaces during Ultrasonic-Assisted Rock Breaking. Water 2024, 16, 2234. https://doi.org/10.3390/w16162234
Feng J, Yan T, Hou Z. Numerical Simulation Study of Factors Influencing Ultrasonic Cavitation Bubble Evolution on Rock Surfaces during Ultrasonic-Assisted Rock Breaking. Water. 2024; 16(16):2234. https://doi.org/10.3390/w16162234
Chicago/Turabian StyleFeng, Jinyu, Tie Yan, and Zhaokai Hou. 2024. "Numerical Simulation Study of Factors Influencing Ultrasonic Cavitation Bubble Evolution on Rock Surfaces during Ultrasonic-Assisted Rock Breaking" Water 16, no. 16: 2234. https://doi.org/10.3390/w16162234