Tidal Effects on Dissolved Organic Matter Dynamics in a Brackish Water Front Adjacent to Yangtze River Estuary
Abstract
:1. Introduction
2. Study Area and Sampling
2.1. Study Area
2.2. Sampling and Pretreatment
2.3. Analytical Methods
2.3.1. Total Carbon and Nitrogen Analyses
2.3.2. Ultraviolet-Visible (UV-Vis) Spectroscopy Analysis
2.3.3. Fluorescence Spectroscopy Analysis
2.3.4. FT-ICR MS Analyses
2.4. Data Processing
3. Results
3.1. Tidal Variation and Salinity
3.2. Variations in DOM Concentrations and UV-Vis Optical Characteristics
3.3. Variations in Fluorescence Optical Characteristics
3.4. Variations in Molecular Formulas Revealed by FT-ICR MS
4. Discussion
4.1. Different Behaviors of DOC and TN Concentrations Within the Tidal Cycle
4.2. Variable DOM Compositions Within Tidal Cycle
4.3. Different Controls on DOM Components Within a Tidal Cycle
5. Conclusions
- (1)
- The DOC concentration did not exhibit a tidal periodicity, while the TN concentration demonstrated a negative correlation with tidal height and salinity. This suggests that nitrogen levels in the water primarily originate from riverine inputs and exhibit conservative behavior during river–sea mixing, whereas the DOC concentration is influenced by biogeochemical processes beyond physical mixing.
- (2)
- The DOM at low tide displayed higher percentages of nitrogen- and sulfur-containing compounds (CHON%, CHOS%, and CHONS%), increased aromatization (as indicated by PACs+PP%), and higher molecular weight. These findings align with those regarding the Yangtze River–East China Sea continuum, indicating a stronger influence of riverine inputs during low tide. Conversely, high-tide samples contained a greater abundance of CHO%, a humic-like fluorescent C1 component, and CRAM, suggesting a more pronounced influence of marine-derived organic matter or an increased release of refractory DOM from resuspended sediments.
- (3)
- Variations in the optical spectral parameters (such as BIX, HIX, a325, and protein-like fluorescent C2 and C3 components) did not correlate with tidal changes, indicating a complex interplay affecting different DOM components. The PCA results also support that in addition to riverine and seawater inputs, in situ primary productivity, degradation processes, and the release/absorption of DOM associated with sediment resuspension also play significant roles in DOM dynamics.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Raymond, P.A.; Lauerwald, R.; Zhang, Q.; Trapp-Müller, G.; Davis, K.L.; Moosdorf, N.; Xiao, C.; Middelburg, J.J.; Bouwman, A.F.; et al. Global riverine land-to-ocean carbon export constrained by observations and multi-model assessment. Nat. Geosci. 2024, 17, 896–904. [Google Scholar] [CrossRef]
- Hedges, J.I.; Keil, R.G.; Benner, R. What happens to terrestrial organic matter in the ocean? Org. Geochem. 1997, 27, 195–212. [Google Scholar] [CrossRef]
- Qiao, S.; Shi, X.; Wang, G.; Zhou, L.; Hu, B.; Hu, L.; Yang, G.; Liu, Y.; Yao, Z.; Liu, S. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea. Mar. Geol. 2017, 390, 270–281. [Google Scholar] [CrossRef]
- Kitheka, J.U. Coastal tidally-driven circulation and the role of water exchange in the linkage between tropical coastal ecosystems. Estuar. Coast. Shelf Sci. 1997, 45, 177–187. [Google Scholar] [CrossRef]
- Santos, I.R.; Burnett, W.C.; Dittmar, T.; Suryaputra, I.G.N.A.; Chanton, J. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary. Geochim. Cosmochim. Acta 2009, 73, 1325–1339. [Google Scholar] [CrossRef]
- Jago, C.F.; Jones, S.E.; Sykes, P.; Rippeth, T. Temporal variation of suspended particulate matter and turbulence in a high energy, tide-stirred, coastal sea: Relative contributions of resuspension and disaggregation. Cont. Shelf Res. 2006, 26, 2019–2028. [Google Scholar] [CrossRef]
- Middelburg, J.J.; Herman, P.M.J. Organic matter processing in tidal estuaries. Mar. Chem. 2007, 106, 127–147. [Google Scholar] [CrossRef]
- Liu, X.; Lan, C.; Zhu, L.; Yan, C.; Wang, N.; Chen, H.; Zheng, G.; Che, Y.; Yang, Z.; Bao, R. Sediment resuspension as a driving force for organic carbon transference and rebalance in marginal seas. Water Res. 2024, 257, 121672. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kong, F.; Li, Y.; Li, Q.; Wang, C.; Zhang, J.; Xi, M. Effect of simulated tidal cycle on DOM, nitrogen and phosphorus release from sediment in Dagu River-Jiaozhou Bay estuary. Sci. Total Environ. 2021, 783, 147158. [Google Scholar] [CrossRef] [PubMed]
- Takasu, H.; Uchino, K.; Mori, K. Dissolved and Particulate Organic Matter Dynamics Relative to Sediment Resuspension Induced by the Tidal Cycle in Macrotidal Estuaries, Kyushu, Japan. Water 2020, 12, 2561. [Google Scholar] [CrossRef]
- Findlay, S.; Pace, M.; Lints, D. Variability and transport of suspended sediment, particulate and dissolved organic carbon in the tidal freshwater Hudson River. Biogeochemistry 1991, 12, 149–169. [Google Scholar] [CrossRef]
- Regier, P.; Jaffé, R. Short-term dissolved organic carbon dynamics reflect tidal, water management, and precipitation patterns in a subtropical estuary. Front. Mar. Sci. 2016, 3, 250. [Google Scholar] [CrossRef]
- Saito, Y.; Yang, Z.; Hori, K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: A review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology 2001, 41, 219–231. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, G.; Yang, S.; Yu, Z. Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River Estuary and its adjacent waters. Acta Geogr. Sin. 2004, 13, 498–506. [Google Scholar]
- Song, S.; Gao, L.; Ge, J.; Guo, W.; Li, D. Tidal effects on variations in organic and inorganic biogeochemical components in Changjiang (Yangtze River) Estuary and the adjacent East China Sea. J. Mar. Syst. 2022, 227, 103692. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, L.; Thomas, D.N. Molecular size variations of chromophoric dissolved organic matter (CDOM) along a salinity gradient in the Changjiang River estuary. Estuar. Coast. Shelf Sci. 2024, 297, 108606. [Google Scholar] [CrossRef]
- Zhou, Y.; He, D.; He, C.; Li, P.; Fan, D.; Wang, A.; Zhang, K.; Chen, B.; Zhao, C.; Wang, Y. Spatial changes in molecular composition of dissolved organic matter in the Yangtze River Estuary: Implications for the seaward transport of estuarine DOM. Sci. Total Environ. 2021, 759, 143531. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wang, Y.; Xiao, W.; Wu, J.; Guo, L.; Wang, Y.; Ge, H.; Xu, Y. Seasonal Changes of Organic Carbon Mixing, Degradation and Deposition in Yangtze River Dominated Margin Related to Intrinsic Molecular and External Environmental Factors. J. Geophys. Res. Biogeosci. 2021, 126, e2021JG006637. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Shen, Z.; Chen, J.; Feng, C. Characterization and spacial distribution variability of chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary. Chemosphere 2014, 95, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Wu, Y.; Zhang, J. Spatial and temporal variation of dissolved organic matter in the Changjiang: Fluvial transport and flux estimation. J. Geophys. Res. Biogeosci. 2015, 120, 1870–1886. [Google Scholar] [CrossRef]
- Dittmar, T.; Koch, B.; Hertkorn, N.; Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 2008, 6, 230–235. [Google Scholar] [CrossRef]
- Wang, Y.; Spencer, R.G.M.; Podgorski, D.C.; Kellerman, A.M.; Rashid, H.; Zito, P.; Xiao, W.; Wei, D.; Yang, Y.; Xu, Y. Spatiotemporal transformation of dissolved organic matter along an alpine stream flow path on the Qinghai–Tibet Plateau: Importance of source and permafrost degradation. Biogeosciences 2018, 15, 6637–6648. [Google Scholar] [CrossRef]
- Han, L.; Wang, Y.; Xu, Y.; Wang, Y.; Zheng, Y.; Wu, J. Water- and base-extractable organic matter in sediments from lower Yangtze River–Estuary–East China Sea continuum: Insight into accumulation of organic carbon in the river-dominated mMargin. Front. Mar. Sci. 2021, 8, 617241. [Google Scholar] [CrossRef]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- Fichot, C.G.; Benner, R. The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnol. Oceanogr. 2012, 57, 1453–1466. [Google Scholar] [CrossRef]
- Fellman, J.B.; Hood, E.; Spencer, R.G.M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnol. Oceanogr. 2010, 55, 2452–2462. [Google Scholar] [CrossRef]
- Chen, M.; Kim, S.H.; Jung, H.J.; Hyun, J.H.; Choi, J.H.; Lee, H.J.; Huh, I.A.; Hur, J. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications. Water Res. 2017, 121, 150–161. [Google Scholar] [CrossRef]
- Zsolnay, A.; Baigar, E.; Jimenez, M.; Steinweg, B.; Saccomandi, F. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 1999, 38, 45–50. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2008, 40, 706–719. [Google Scholar] [CrossRef]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial: Fluorescence-PARAFAC analysis of DOM. Limnol. Oceanogr. Methods 2008, 6, 572–579. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Wenig, P.; Bro, R.J.A.M. OpenFluor—An online spectral library of auto-fluorescence by organic compounds in the environment. Anal. Methods 2014, 6, 658–661. [Google Scholar] [CrossRef]
- Lechtenfeld, O.J.; Kattner, G.; Flerus, R.; Mccallister, S.L.; Schmitt-Kopplin, P.; Koch, B.P. Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean. Geochim. Cosmochim. Acta 2014, 126, 321–337. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, G.; Wang, Y.; Wang, Y.; Han, L.; Liu, Z.; Zhang, X.; Xu, Y. Sea Ice Melting Drives Substantial Change in Dissolved Organic Matter in Surface Water off Prydz Bay, East Antarctic. J. Geophys. Res. Biogeosci. 2023, 128, e2023JG007415. [Google Scholar] [CrossRef]
- He, D.; Wang, K.; Pang, Y.; He, C.; Sun, Y.J.W.R. Hydrological management constraints on the chemistry of dissolved organic matter in the Three Gorges Reservoir. Water Res. 2020, 187, 116413. [Google Scholar] [CrossRef] [PubMed]
- Hertkorn, N.; Benner, R.; Frommberger, M.; Schmitt-Kopplin, P.; Witt, M.; Kaiser, K.; Kettrup, A.; Hedges, J.I. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 2006, 70, 2990–3010. [Google Scholar] [CrossRef]
- Schlitzer, R. Ocean Data View. 2023. Available online: https://odv.awi.de/ (accessed on 21 August 2023).
- Berggren, M.; Gudasz, C.; Guillemette, F.; Hensgens, G.; Ye, L.; Karlsson, J. Systematic microbial production of optically active dissolved organic matter in subarctic lake water. Limnol. Oceanogr. 2020, 65, 951–961. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, H.; Yao, Z.; Yao, W.; Wang, Y. Nutrients distribution and mixing behavior at Hangzhou Bay and its adjacent sea in autumn 2021. Mar. Environ. Sci. 2024, 43, 85–92. [Google Scholar] [CrossRef]
- Liu, M.; Lin, L.; Dong, L.; Zhao, L. Spatial Distribution Characteristics of Nitrogen in Mainstream Lower Yangtze River. J. Chang. River Sci. Res. Inst. 2015, 32, 65–69. [Google Scholar]
- Li, Q.; Yuang, P.; Yang, Q.; Zhang, X.; Jing, Z.; Tu, S.; Gao, H.; Liu, R. Spatial variation characteristics and influencing factors of nitrogen and phosphorus ecological stoichiometry in the Yangtze River system. J. Environ. Eng. Technol. 2022, 12, 573–580. [Google Scholar] [CrossRef]
- Li, R.; Zhao, K.; Song, L. Contents and distribution characteristics of nitrogen and phosphorus in water and sediment of Qiantang Estuary. Zhejiang Hydrotech. 2023, 51, 6–12. [Google Scholar] [CrossRef]
- Liu, Z.; Ning, X. Phytoplankton standing stock and primary production in the front of Hangzhou Bay. Donghai Mar. Sci. 1994, 12, 58–66, (In Chinese with English Abstract). [Google Scholar]
- Chen, Z.L.; Yi, Y.; Zhang, H.; Li, P.; Wang, Y.; Yan, Z.; Wang, K.; He, C.; Shi, Q.; He, D. Differences in Dissolved Organic Matter Molecular Composition along Two Plume Trajectories from the Yangtze River Estuary to the East China Sea. ACS Environ. Au 2024, 4, 31–41. [Google Scholar] [CrossRef]
- Wang, K.; Pang, Y.; He, C.; Li, P.; He, D. Three Gorges Reservoir construction induced dissolved organic matter chemistry variation between the reservoir and non-reservoir areas along the Xiangxi tributary. Sci. Total Environ. 2021, 784, 147095. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhao, B.; Han, L.; Ge, T.; Wang, N.; Yao, P. Sediment porewaters serve as a transient organic carbon pool at the land-ocean interface. Water Res. 2024, 263, 122151. [Google Scholar] [CrossRef] [PubMed]
Formulas | #1 | #2 | #13 | #16 | #23 | #29 |
---|---|---|---|---|---|---|
Total | 3606 | 6602 | 3394 | 6076 | 4300 | 5717 |
CHO | 1636 | 2084 | 1684 | 2339 | 1705 | 1904 |
CHON | 1304 | 2552 | 1214 | 2548 | 1514 | 2068 |
CHOS | 612 | 1419 | 457 | 885 | 913 | 1354 |
CHONS | 54 | 547 | 39 | 304 | 168 | 391 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Peng, N.; Liu, Z.; Liu, L.; Pan, S.; Duan, D.; Xu, Y. Tidal Effects on Dissolved Organic Matter Dynamics in a Brackish Water Front Adjacent to Yangtze River Estuary. Water 2025, 17, 226. https://doi.org/10.3390/w17020226
Wang Y, Peng N, Liu Z, Liu L, Pan S, Duan D, Xu Y. Tidal Effects on Dissolved Organic Matter Dynamics in a Brackish Water Front Adjacent to Yangtze River Estuary. Water. 2025; 17(2):226. https://doi.org/10.3390/w17020226
Chicago/Turabian StyleWang, Yasong, Niting Peng, Zhiliang Liu, Liang Liu, Sishang Pan, Dayu Duan, and Yunping Xu. 2025. "Tidal Effects on Dissolved Organic Matter Dynamics in a Brackish Water Front Adjacent to Yangtze River Estuary" Water 17, no. 2: 226. https://doi.org/10.3390/w17020226
APA StyleWang, Y., Peng, N., Liu, Z., Liu, L., Pan, S., Duan, D., & Xu, Y. (2025). Tidal Effects on Dissolved Organic Matter Dynamics in a Brackish Water Front Adjacent to Yangtze River Estuary. Water, 17(2), 226. https://doi.org/10.3390/w17020226