The Loss of Ice Worm Glacier, North Cascade Range, Washington USA
Abstract
:1. Introduction
2. Study Area
3. Methods and Data Sources
3.1. Glacier Mass Balance Measurement
3.2. Glacier Area Mapping
4. Results
4.1. Glacier Area Change
4.2. Glacier Mass Balance Observations
4.3. Glacier Base Observations
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations 2025 International Year of Glaciers’ Preservation. Available online: https://www.un-glaciers.org/en/homepage (accessed on 12 December 2024).
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Rounce, D.R.; Hock, R.; Maussion, F.; Hugonnet, R.; Kochtitzky, W.; Huss, M.; Berthier, E.; Brinkerhoff, D.; Compagno, L.; Copland, L.; et al. Global glacier change in the 21st century: Every increase in temperature matters. Science 2023, 379, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Pelto, M. Forecasting Temperate Alpine Glacier Survival from Accumulation Zone Observations. Cryosphere 2010, 3, 323–350. [Google Scholar] [CrossRef]
- Kargel, J.S.; Leonard, G.J.; Bishop, M.P.; Kaab, A.; Raup, B. Global Land Ice Measurements from Space (Springer-Praxis); Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-540-79817-0. [Google Scholar]
- Cogley, J.G.; Hock, R.; Rasmussen, L.; Arendt, A.; Bauder, A.; Braithwaite, R.; Jansson, P.; Kaser, G.; Möller, M.; Nicholson, L.; et al. Glossary of Glacier Mass Balance and Related Terms; prepared by the Working Group on Mass-balance Terminology and Methods of the International Association of Cryospheric Sciences IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2; UNESCO-IHP: Paris, France, 2011; 114p. [Google Scholar]
- Fountain, A.G.; Glenn, B.; McNeil, C. Inventory of glaciers and perennial snowfields of the conterminous USA. Earth Syst. Sci. Data 2023, 15, 4077–4104. [Google Scholar] [CrossRef]
- Leigh, J.R.; Stokes, C.R.; Carr, R.J.; Evans, I.S.; Andreassen, L.M.; Evans, D.J.A. Identifying and mapping very small (<0.5 km2) mountain glaciers on coarse to high-resolution imagery. J. Glaciol. 2019, 65, 873–888. [Google Scholar] [CrossRef]
- Huss, M.; Fischer, M. Sensitivity of Very Small Glaciers in the Swiss Alps to Future Climate Change. Front. Earth Sci. 2016, 4, 34. [Google Scholar] [CrossRef]
- Paul, F.; Rastner, P.; Azzoni, R.S.; Diolaiuti, G.; Fugazza, D.; Le Bris, R.; Nemec, J.; Rabatel, A.; Ramusovic, M.; Schwaizer, G.; et al. Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2. Earth Syst. Sci. Data 2020, 12, 1805–1821. [Google Scholar] [CrossRef]
- Bevington, A.; Menounos, B. Accelerated change in the glaciated environments of western Canada revealed through trend analysis of optical satellite imagery. Remote Sens. Environ. 2022, 270, 112862. [Google Scholar] [CrossRef]
- Bakken-French, N.; Boyer, S.J.; Southworth, W.C.; Thayne, M.; Rood, D.H.; Carlson, A.E. Unprecedented Twenty-First Century Glacier Loss on Mt. Hood, Oregon, U.S.A. EGUsphere 2024, 18, 4517–4530. [Google Scholar] [CrossRef]
- Pelto, M.S. How Unusual Was 2015 in the 1984–2015 Period of the North Cascade Glacier Annual Mass Balance? Water 2018, 10, 543. [Google Scholar] [CrossRef]
- Vano, J.A.; Scott, M.J.; Voisin, N.; Stöckle, C.O.; Hamlet, A.F.; Mickelson, K.E.B.; Elsner, M.M.; Lettenmaier, D.P. Climate change impacts on water management and irrigated agriculture in the Yakima River Basin, Washington, USA. Clim. Change 2010, 102, 287–317. [Google Scholar] [CrossRef]
- Sentinel Hub EO Browser. Available online: https://apps.sentinel-hub.com/eo-browser (accessed on 2 January 2024).
- WGMS. Fluctuations of Glaciers Database; World Glacier Monitoring Service (WGMS): Zurich, Switzerland, 2024; Available online: https://wgms.ch/data_databaseversions/ (accessed on 2 January 2024).
- RGI Consortium Randolph Glacier Inventory (v.6.0): A Dataset of Global Glacier Outlines. Global Land Ice Measurements from Space, Boulder, Colorado USA (RGI Technical Report, 2017). Available online: http://www.glims.org/RGI/randolph60.html (accessed on 11 November 2024).
- Karpillo, R.D., Jr. Glacier Monitoring Techniques; Young, R., Norby, L., Eds.; Geological Monitoring: Boulder, CO, USA, 2009; pp. 141–162. [Google Scholar] [CrossRef]
- Bogaert, P.; Delincé, J.; Kay, S. Assessing the error of polygonal area measurements: A general formulation with applications to agriculture. Meas. Sci. Technol. 2005, 16, 1170–1178. [Google Scholar] [CrossRef]
- NCEI NOAA. 2023. Available online: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/divisional/time-series/4505/ (accessed on 18 December 2024).
- USDA Natural Resources and Conservation Service, National Water and Climate Center. 2023. Available online: https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=791 (accessed on 18 December 2023).
- Pelto, M.S. Impact of climate change on North Cascade alpine glaciers and alpine runoff. Northwest Sci. 2008, 82, 65–75. [Google Scholar] [CrossRef]
- Sudlow, K.; Tremblay, S.; Vinebrooke, R. Glacial stream ecosystems and epilithic algal communities under a warming climate. Environ. Rev. 2023, 31, 471–483. [Google Scholar] [CrossRef]
- Fountain, A.G.; Gray, C.; Glenn, B.; Menounos, B.; Pflug, J.; Riedel, J.L. Glaciers of the Olympic Mountains, Washington—The Past and Future 100 Years. J. Geophys. Res. 2022, 127, e2022JF006670. [Google Scholar] [CrossRef]
Year | Field Mapped Area (m2) | Validating Aerial/Satellite Image Area (m2) |
---|---|---|
1958 | 190,000 (GLIMS) | |
1986 | 180,000 (±10,000) | Field Observation only |
1992 | 170,000 (±10,000) | Field Observation only |
2005 | 150,000 (±5000) | Field Observation only |
2015 | 110,000 (±5000) | 106,000 (RGI) |
2021 | 88,000 (±2000) | 90,000 (Sentinel) |
2022 | 68,000 (±2000) | Field Observation only |
2023 | 41,000 (±2000) | 40,000 (Sentinel) |
2024 | 32,000 (±2000) | 30,000 (Sentinel) |
Decade | Mean Annual Balance (m w.e.) | All North Cascade Glaciers (m w.e.) |
---|---|---|
1984–1993 | −0.62 | −0.47 |
1994–2003 | −0.28 | −0.32 |
2004–2013 | −0.81 | −0.63 |
2014–2023 | −1.45 | −1.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelto, M.S.; Pelto, J. The Loss of Ice Worm Glacier, North Cascade Range, Washington USA. Water 2025, 17, 432. https://doi.org/10.3390/w17030432
Pelto MS, Pelto J. The Loss of Ice Worm Glacier, North Cascade Range, Washington USA. Water. 2025; 17(3):432. https://doi.org/10.3390/w17030432
Chicago/Turabian StylePelto, Mauri S., and Jill Pelto. 2025. "The Loss of Ice Worm Glacier, North Cascade Range, Washington USA" Water 17, no. 3: 432. https://doi.org/10.3390/w17030432
APA StylePelto, M. S., & Pelto, J. (2025). The Loss of Ice Worm Glacier, North Cascade Range, Washington USA. Water, 17(3), 432. https://doi.org/10.3390/w17030432