A Community-Led Assessment to Identify Groundwater-Dependent Lakes in Parkland County (Alberta, Canada)
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Regional Synoptic Survey
3.2. Citizen Water Sampling
3.3. Regional Groundwater Chemistry
4. Results and Discussion
4.1. Direction of Groundwater Flow
4.2. Water Chemistry
4.3. Isotopic Indicators of Groundwater Interaction
4.4. Identifying Groundwater-Dependent Lakes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yevenes, M.A.; Pereira, H.; Bermudez, R. Citizen Science as a Co-Creative Measure to Water Quality: Chemical Data and Local Participation in a Rural Territory. Front. Environ. Sci. 2022, 10, 940778. [Google Scholar] [CrossRef]
- Bonney, R.; Shirk, J.L.; Phillips, T.B.; Wiggins, A.; Ballard, H.L.; Miller-Rushing, A.J.; Parrish, J.K. Next Steps for Citizen Science. Science 2014, 343, 1436–1437. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Kirschke, S. Groundwater Monitoring through Citizen Science: A Review of Project Designs and Results. Groundwater 2023, 61, 481–493. [Google Scholar] [CrossRef]
- Little, K.E.; Hayashi, M.; Liang, S. Community-Based Groundwater Monitoring Network Using a Citizen-Science Approach. Groundwater 2016, 54, 317–324. [Google Scholar] [CrossRef]
- Living Lakes Canada—Columbia Basin Groundwater Monitoring Program. Available online: https://livinglakescanada.ca/project/columbia-basin-groundwater-monitoring-program/ (accessed on 8 January 2025).
- Kohut, A.P.; Rivera, A.; Wei, M.; Allen, D.M.; Nowlan, L. Groundwater Management in Canada. In Canada’s Groundwater Resources; Rivera, A., Ed.; Fitzhenry & Whiteside: Markham, ON, Canada, 2014; pp. 639–663. [Google Scholar]
- Hegarty, S.; Hayes, A.; Regan, F.; Bishop, I.; Clinton, R. Using citizen science to understand river water quality while filling data gaps to meet United Nations Sustainable Development Goal 6 objectives. Sci. Total Environ. 2021, 783, 146953. [Google Scholar] [CrossRef]
- Jollymore, A.; Haines, M.J.; Satterfield, T.; Johnson, M.S. Citizen science for water quality monitoring: Data implications of citizen perspectives. J. Environ. Manag. 2017, 200, 456–467. [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Lewandowski, J.; Meinikmann, K.; Nützmann, G. Groundwater—The disregarded component in lake water and nutrient budgets. Part 1: Effects of groundwater on hydrology. Hydrol. Process. 2015, 29, 2895–2921. [Google Scholar] [CrossRef]
- Winter, T. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Winter, T.C.; Rosenberry, D.O.; LaBaugh, J.W. Where Does the Ground Water in Small Watersheds Come From? Groundwater 2003, 41, 989–1000. [Google Scholar] [CrossRef]
- Webster, K.E.; Kratz, T.K.; Bowser, C.J.; Magnuson, J.J.; Rose, W.J. The influence of landscape position on lake chemical responses to drought in northern Wisconsin. Limnol. Oceanogr. 1996, 41, 977–984. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-aho, P.; Bertrand, G.; Boukalova, Z.; Ertürk, A.; Goldscheider, N.; Ilmonen, j.; Karakaya, N.; Kupfersberger, H.; Kvœrner, J.; et al. Groundwater dependent ecosystems, Part I: Hydroecological status and trends. Environ. Sci. Policy 2011, 14, 770–781. [Google Scholar] [CrossRef]
- Huggins, X.; Gleeson, T.; Castilla-Rho, J.; Holley, C.; Re, V.; Famiglietti, J.S. Groundwater Connections and Sustainability in Social-Ecological Systems. Groundwater 2023, 61, 463–478. [Google Scholar] [CrossRef] [PubMed]
- von Gunten, K.; Trew, D.; Smerdon, B.; Alessi, D.S. Natural controls on phosphorus concentrations in small Lakes in Central Alberta, Canada. Can. Water Resour. J. 2022, 48, 1–17. [Google Scholar] [CrossRef]
- Snihur, K.N.; Soares, J.V.; Oiffer, A.; Reyes, A.V.; Flynn, S.L.; Smerdon, B.D.; Konhauser, K.O.; Froese, D.; Alessi, D.S. Drivers of hydrologic budgets in small terminal lakes in the Alberta prairies. Can. Water Resour. J. 2023, 49, 253–267. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada, Canadian Climate Normals 1991–2020 (WMO ID 71123). Available online: https://climate.weather.gc.ca/climate_normals/index_e.html (accessed on 8 January 2025).
- Alberta Parks. Natural Regions and Subregions of Alberta 2015. A Framework for Alberta’s Parks. Alberta Tourism, Parks and Recreation. Edmonton, Alberta; 72p. Available online: https://www.albertaparks.ca/media/6256258/natural-regions-subregions-of-alberta-a-framework-for-albertas-parks-booklet.pdf (accessed on 8 January 2025).
- North Saskatchewan Watershed Alliance. The State of the North Saskatchewan River Watershed Report 2005. Available online: https://www.nswa.ab.ca/public/download/files/242826 (accessed on 8 January 2025).
- Andriashek, L.D. Quaternary Stratigraphy of the Edmonton Map Area (NTS 83H). Alberta Research Council 1988, ARC/AGS Open File Report 1988-04. Available online: https://ags.aer.ca/publications/all-publications/ofr-1988-04 (accessed on 8 January 2025).
- Feltham, K. Quaternary sediments in central Edmonton, Alberta, Canada: Stratigraphy, distribution and Geotechnical Implications. Quat. Int. 1993, 20, 13–26. [Google Scholar] [CrossRef]
- Andriashek, L.D.; Fenton, M.M.; Root, J.D. Surficial Geology Wabamun Lake, Alberta (NTS). Alberta Research Council 1979, Map 149 (83G). Available online: https://ags.aer.ca/publications/all-publications/map-149 (accessed on 8 January 2025).
- Pawley, S.M.; Utting, D.J.; Hartman, G.; Liggett, J.E. Thickness of Sediments Above Bedrock and Three-Dimensional Distribution of Coarse-Grained Deposits in Alberta (Gridded Data, GeoTIFF Format). Alberta Energy Regulator/Alberta Geological Survey 2023, AER/AGS Digital Data 2023-0014. Available online: https://ags.aer.ca/publications/all-publications/dig-2023-0014 (accessed on 8 January 2025).
- Bibby, R. Hydrogeology of the Edmonton Area (Northwest Segment), Alberta. Alberta Research Council 1974, ARC/AGS Earth Sciences Report 1974-10. Available online: https://ags.aer.ca/publications/all-publications/esr-1974-10 (accessed on 8 January 2025).
- Ozoray, G.F. Hydrogeology of the Wabamun Lake Area, Alberta; Research Council of Alberta 1972, RCA/AGS Earth Sciences Report 1972-08. 21p. Available online: https://ags.aer.ca/publications/all-publications/esr-1972-08 (accessed on 8 January 2025).
- Hydrogeological Consultants Ltd. Parkland County—Regional Groundwater Assessment (Report No. 97-202), Agriculture and Agri-Food Canada, Prairie Farm Rehabilitation 1988. Available online: https://www.hcl.ca/public/download/documents/11747 (accessed on 8 January 2025).
- Oiffer, A. Summary of Groundwater Conditions in the Sturgeon River Basin 2019. Available online: https://www.nswa.ab.ca/public/download/files/242843 (accessed on 8 January 2025).
- Kehler, M.H.; Rostron, B.J.; Smerdon, B.D.; Alessi, D.S. Can small buried-valley aquifers be an emergency water source on the Canadian Prairies? Hydrogeol. J. 2024, 32, 1331–1345. [Google Scholar] [CrossRef]
- Arnoux, M.; Gibert-Brunet, E.; Barbecot, F.; Guillon, S.; Gibson, J.; Noret, A. Interactions between groundwater and seasonally ice-covered lakes: Using water stable isotopes and radon-222 multilayer mass balance models. Hydrol. Process. 2017, 31, 2566–2581. [Google Scholar] [CrossRef]
- Davis, J.; Munksgaard, N.; Hodgetts, J.; Lambrinidis, D. Identifying groundwater-fed climate refugia in remote arid regions with citizen science and isotope hydrology. Freshw. Biol. 2020, 66, 35–43. [Google Scholar] [CrossRef]
- Gibson, J.J.; Birks, S.J.; Yi, Y.; Moncur, M.C.; McEachern, P.M. Stable isotope mass balance of fifty lakes in central Alberta: Assessing the role of water balance parameters in determining trophic status and lake level. J. Hydrol. Reg. Stud. 2016, 6, 13–25. [Google Scholar] [CrossRef]
- Isokangas, E.; Rozanski, K.; Rossi, P.M.; Ronkanen, A.-K.; Kløve, B. Quantifying groundwater dependence of a sub-polar lake cluster in Finland using an isotope mass balance approach. Hydrol. Earth Syst. Sci. 2015, 19, 1247–1262. [Google Scholar] [CrossRef]
- Dimova, N.T.; Burnett, W.C.; Chanton, J.P.; Corbett, J.E. Application of radon-222 to investigate groundwater discharge into small shallow lakes. J. Hydrol. 2013, 486, 112–122. [Google Scholar] [CrossRef]
- Kluge, T.; von Rohden, C.; Sonntag, P.; Lorenz, S.; Wieser, M.; Aeschbach-Hertig, W.; Ilmberger, J. Localising and quantifying groundwater inflow into lakes using high-precision 222Rn profiles. J. Hydrol. 2012, 450–451, 70–81. [Google Scholar] [CrossRef]
- Petermann, E.; Gibson, J.J.; Knöller, K.; Pannier, T.; Weiß, H.; Schubert, M. Determination of groundwater discharge rates and water residence time of groundwater-fed lakes by stable isotopes of water (18O, 2H) and radon (222Rn) mass balances. Hydrol. Process. 2018, 32, 805–816. [Google Scholar] [CrossRef]
- Peter, B.; Sinn, C.; Trew, D.; Neilson, W. Lakes of the Carvel Pitted Delta—Summer Field Program 2021. Available online: http://alms.ca/wp-content/uploads/2024/01/Carvel-Pitted-Delta-Report-Final-1.pdf (accessed on 8 January 2025).
- Peter, B.; Trew, D.; Sinn, C.; Mussell, D.; Neilson, W. Lakes of the Carvel Pitted Delta—Summer Field Program 2022. Available online: http://alms.ca/wp-content/uploads/2023/10/2023-Carvel-Pitted-Delta-Report-Final-V2.pdf (accessed on 8 January 2025).
- Alberta Lake Management Society (ALMS); Mayatan Lake Management Association. Carvel Pitted Delta Lakes Survey (Dataset). 4.1.0. DataStream. Available online: https://doi.org/10.25976/9h1b-ja71 (accessed on 8 January 2025).
- Thistle, S.; Humez, P.; Pooley, K.E.; Liggett, J.E. Statistical Summary and Distribution of Groundwater Quality Parameters by Quarter Township from Selected Alberta Geological Units (GIS Data, Polygon Features); Alberta Energy Regulator/Alberta Geological Survey 2022, AER/AGS Digital Data 2022-0032. Available online: https://ags.aer.ca/publications/all-publications/dig-2022-0032 (accessed on 8 January 2025).
- Alberta Geological Survey, Geological Framework of Alberta, Version 3 (Interactive App and Map, Methodology, Model, Dataset, StoryMaps, Web Maps); Alberta Energy Regulator/Alberta Geological Survey 2021, AER/AGS Interactive Application. Available online: https://gfa-v3-ags-aer.hub.arcgis.com/ (accessed on 8 January 2025).
- Smerdon, B.D.; Gardner, W.P.; von Gunten, K.; Alessi, D.S. Downstream variation of environmental tracers in Strawberry Creek reveals potential interaction with a buried-valley aquifer (Alberta, Canada). Environ. Earth Sci. 2024, 83, 538. [Google Scholar] [CrossRef]
- Eldridge, E.L. Radon in Alberta Groundwater. Master’s Thesis, University of Calgary, Calgary, AB, Canada, July 2022. Available online: http://hdl.handle.net/1880/114843 (accessed on 8 January 2025).
Analyses | Method | Laboratory | Purpose |
---|---|---|---|
Routine water chemistry (major ions, alkalinity; 500 mL LDPE bottle) | Ion Chromatography, Colourimetry, Titration | Bureau Veritas | General chemical composition |
δ2H and δ18O of water (0.2 μm nylon-filtered, 2 mL glass vial) | Picarro Cavity Ring-Down Spectroscopy L2130-i Isotopic Water Analyzer (Picarro Inc., Santa Clara, CA, USA) | University of Alberta | Origin and movement of stable isotopes within hydrological cycle. Results expressed as δ values representing deviations per mil from Vienna standard mean ocean water (VSMOW) |
222Rn (40 mL glass bottle with no headspace) Measured in 2021 only | RAD7 Radon Detector (Durridge Company Inc.) | University of Alberta | Naturally occurring radioactive gas with activity that increases in groundwater due to decay of uranium and radium in geological materials and rapidly decreases where it equilibrates with atmosphere. Useful tracer for identifying groundwater discharge to surface water |
TDS (mg/L) | TDS Rank | δ18O (‰) | δ18O Rank | 222Rn (Bq/L) | 222Rn Rank |
---|---|---|---|---|---|
>500 | 3 | <−11 | 3 | >12 | 3 |
250 to 500 | 2 | −11 to −8 | 2 | 5 to 12 | 2 |
<250 | 1 | >−8 | 1 | <5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smerdon, B.; Maccagno, J.B.T.; Peter, B.; Neilson, W.; Mussell, D.; Trew, D. A Community-Led Assessment to Identify Groundwater-Dependent Lakes in Parkland County (Alberta, Canada). Water 2025, 17, 440. https://doi.org/10.3390/w17030440
Smerdon B, Maccagno JBT, Peter B, Neilson W, Mussell D, Trew D. A Community-Led Assessment to Identify Groundwater-Dependent Lakes in Parkland County (Alberta, Canada). Water. 2025; 17(3):440. https://doi.org/10.3390/w17030440
Chicago/Turabian StyleSmerdon, Brian, Jenna Bahija Tarrabain Maccagno, Bradley Peter, Walter Neilson, Dave Mussell, and David Trew. 2025. "A Community-Led Assessment to Identify Groundwater-Dependent Lakes in Parkland County (Alberta, Canada)" Water 17, no. 3: 440. https://doi.org/10.3390/w17030440
APA StyleSmerdon, B., Maccagno, J. B. T., Peter, B., Neilson, W., Mussell, D., & Trew, D. (2025). A Community-Led Assessment to Identify Groundwater-Dependent Lakes in Parkland County (Alberta, Canada). Water, 17(3), 440. https://doi.org/10.3390/w17030440