Weakened Snowmelt Contribution to Floods in a Climate-Changed Tibetan Basin
Abstract
:1. Introduction
2. Methodology
2.1. Methods
2.1.1. Evaluation of Snowmelt’s Contributions to Floods
2.1.2. Extraction of Flood Events
2.1.3. Trend Analysis
2.2. Research Area
2.3. Data and Parameters
3. Results
3.1. Performance of the GBEHM
3.1.1. Validation by Daily Discharge
3.1.2. Validation by Peak Discharge
3.1.3. Validation by Remotely Sensed Snow Data
3.2. Flood Characteristics and Variation Trends
3.2.1. Flood Characteristics
3.2.2. Flood Trends
3.3. Climate Change Trends
3.4. Snowmelt Contribution
3.4.1. Snowmelt Runoff Contribution
3.4.2. Snowmelt’s Contributions to Floods
4. Discussion
4.1. Changed Snowmelt Contribution to Floods in the Xiying River Basin
4.2. Comparison of Snowmelt’s Contribution to Floods Between the Xiying River and the Other Regions of the World
4.3. The Advantages and Limitations of the Evaluation Method
5. Conclusions
- (1)
- In the Xiying River basin, the annual average air temperature exhibited a significant increase of 0.76 °C/10a in the past 40 years. The annual precipitation (precipitation is the sum of rainfall and snowfall) decreased at a rate of 5.59 mm/10a, and the annual rainfall increased at a rate of 11.01 mm/10a. These trends were inapparent. The annual snowfall showed a significant decreasing trend of 14.41 mm/10a.
- (2)
- In the study area, under the influence of climate change, the frequency of snowmelt-driven floods decreased significantly, and flood time advanced notably, while the intensity and frequency of rainfall-driven floods slowly decreased. The causes of snowmelt-driven flood change are the significant increase in air temperature and the noticeable decrease in snowfall and snowmelt runoff depth. The contribution of snowmelt to rainfall-driven floods slowly weakened, resulting in a slight decrease in the intensity and frequency of rainfall-driven floods.
- (3)
- Rising air temperature can decrease snowmelt-driven floods. In most mountainous areas, rainfall and snowmelt together promote the formation of and change in floods. While rainfall dominates peak discharge, snowpack and snowmelt play a significant role in the formation and variability of rainfall-driven floods.
- (4)
- The contributions of snowmelt and rainfall to floods have changed under the influence of climate change, which is the main cause of flood variability. The changed snowmelt would add to the uncertainties and even decrease the size and frequency of floods in snow-packed high mountain areas.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berghuijs, W.R.; Harrigan, S.; Molnar, P.; Slater, L.J.; Kirchner, J.W. The Relative Importance of Different Flood-Generating Mechanisms Across Europe. Water Resour. Res. 2019, 55, 4582–4593. [Google Scholar] [CrossRef]
- Paprotny, D.; Sebastian, A.; Morales-Nápoles, O.; Jonkman, S.N. Trends in flood losses in Europe over the past 150 years. Nat. Commun. 2018, 9, 1985. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef]
- Burns, D.A.; Klaus, J.; McHale, M.R. Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA. J. Hydrol. 2007, 336, 155–170. [Google Scholar] [CrossRef]
- Zaqout, T.; Andradóttir, H.Ó. Impacts of climate change on winter flood mechanisms: Spatial variability, trends, and bivariate frequency of rain-on-snow and soil frost. J. Hydrol. 2024, 638, 131439. [Google Scholar] [CrossRef]
- Dobler, C.; Bürger, G.; Stötter, J. Assessment of climate change impacts on flood hazard potential in the Alpine Lech watershed. J. Hydrol. 2012, 460–461, 29–39. [Google Scholar] [CrossRef]
- Tei, S.; Morozumi, T.; Nagai, S.; Takano, S.; Sugimoto, A.; Shingubara, R.; Fan, R.; Fedorov, A.; Gavrilyeva, T.; Tananaev, N.; et al. An extreme flood caused by a heavy snowfall over the Indigirka River basin in Northeastern Siberia. Hydrol. Process. 2019, 34, 522–537. [Google Scholar] [CrossRef]
- Yang, W.; Yang, H.; Yang, D. Classifying floods by quantifying driver contributions in the Eastern Monsoon Region of China. J. Hydrol. 2020, 585, 124767. [Google Scholar] [CrossRef]
- Hodgkins, G.A.; Whitfield, P.H.; Burn, D.H.; Hannaford, J.; Renard, B.; Stahl, K.; Fleig, A.K.; Madsen, H.; Mediero, L.; Korhonen, J.; et al. Climate-driven variability in the occurrence of major floods across North America and Europe. J. Hydrol. 2017, 552, 704–717. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Portner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Loschke, S., Moller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Bernhardt, M.; Schulz, K.; Liston, G.; Zängl, G. The influence of lateral snow redistribution processes on snow melt and sublimation in alpine regions. J. Hydrol. 2012, 424–425, 196–206. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Aalbers, E.E.; Larsen, J.R.; Trancoso, R.; Woods, R.A. Recent changes in extreme floods across multiple continents. Environ. Res. Lett. 2017, 12, 114035. [Google Scholar] [CrossRef]
- Pederson, G.T.; Gray, S.T.; Woodhouse, C.A.; Betancourt, J.L.; Fagre, D.B.; Littell, J.S.; Watson, E.; Luckman, B.H.; Graumlich, L.J. The unusual nature of recent snowpack declines in the North American cordillera. Science 2011, 333, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Mallakpour, I.; Villarini, G. The changing nature of flooding across the central United States. Nat. Clim. Chang. 2015, 5, 250–254. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Wang, X.; Yan, Z.; Qin, C.; Yang, J.; Yang, H.; Deng, Y.; Pan, L.; Chen, C.; et al. Single-grain K-feldspar pIRIR dating of the Shalongka archeological site revealed the relationship between monsoon, overbank flooding, and human occupation during the Holocene on the northeastern Tibetan Plateau. Quat. Sci. Rev. 2022, 298, 107848. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Villarini, G.; Li, X.; Hu, H.; Wang, L.; Blöschl, G.; Tian, F. Climate More Important for Chinese Flood Changes Than Reservoirs and Land Use. Geophys. Res. Lett. 2021, 48, e2021GL093061. [Google Scholar] [CrossRef]
- Asadieh, B.; Krakauer, N.Y. Global change in streamflow extremes under climate change over the 21st century. Hydrol. Earth Syst. Sci. 2017, 21, 5863–5874. [Google Scholar] [CrossRef]
- Dankers, R.; Arnell, N.W.; Clark, D.B.; Falloon, P.D.; Fekete, B.M.; Gosling, S.N.; Heinke, J.; Kim, H.; Masaki, Y.; Satoh, Y.; et al. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proc. Natl. Acad. Sci. USA 2014, 111, 3257–3261. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Y.D.; Zhang, L.; Zhang, Q.; Chiew, F.H.S. Future Changes in Floods and Water Availability across China: Linkage with Changing Climate and Uncertainties. J. Hydrometeorol. 2016, 17, 1295–1314. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, L.; Zhang, L.; Yang, Y.; Wei, Z.; Zhou, S.; Yang, D.; Yang, X.; Wu, X.; Zhang, Y.; et al. Reconciling disagreement on global river flood changes in a warming climate. Nat. Clim. Chang. 2022, 12, 1160–1167. [Google Scholar] [CrossRef]
- Wasko, C. Floods differ in a warmer future. Nat. Clim. Chang. 2022, 12, 1090–1091. [Google Scholar] [CrossRef]
- Sharma, A.; Wasko, C.; Lettenmaier, D.P. If Precipitation Extremes Are Increasing, Why Aren’t Floods? Water Resour. Res. 2018, 54, 8545–8551. [Google Scholar] [CrossRef]
- Jin, H.; Chen, X.; Zhong, R.; Wu, P.; Ju, Q.; Zeng, J.; Yao, T. Extraction of snow melting duration and its spatiotemporal variations in the Tibetan Plateau based on MODIS product. Adv. Space Res. 2022, 70, 15–34. [Google Scholar] [CrossRef]
- Callaghan, T.V.; Johansson, M.; Brown, R.D.; Groisman, P.Y.; Labba, N.; Radionov, V.; Barry, R.G.; Bulygina, O.N.; Essery, R.L.H.; Frolov, D.M.; et al. The Changing Face of Arctic Snow Cover: A Synthesis of Observed and Projected Changes. Ambio 2012, 40, 17–31. [Google Scholar] [CrossRef]
- Eiriksson, D.; Whitson, M.; Luce, C.H.; Marshall, H.P.; Bradford, J.; Benner, S.G.; Black, T.; Hetrick, H.; McNamara, J.P. An evaluation of the hydrologic relevance of lateral flow in snow at hillslope and catchment scales. Hydrol. Process. 2013, 27, 640–654. [Google Scholar] [CrossRef]
- Musselman, K.N.; Lehner, F.; Ikeda, K.; Clark, M.P.; Prein, A.F.; Liu, C.; Barlage, M.; Rasmussen, R. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Chang. 2018, 8, 808–812. [Google Scholar] [CrossRef]
- Yi, Y.; Liu, S.; Zhang, X.; Yang, Y.; Zhu, Y.; Cui, F.; Wu, K.; Xie, F. Spring floods and their major influential factors in the upper reaches of Jinsha River basin during 2001–2020. J. Hydrol. Reg. Stud. 2023, 45, 101318. [Google Scholar] [CrossRef]
- Vormoor, K.; Lawrence, D.; Schlichting, L.; Wilson, D.; Wong, W.K. Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. J. Hydrol. 2016, 538, 33–48. [Google Scholar] [CrossRef]
- Vormoor, K.; Lawrence, D.; Schlichting, L.; Wilson, D.; Wong, W.K. Effects of a snow-compaction treatment on soil freezing, snowmelt runoff, and soil nitrate movement: A field-scale paired-plot experiment. J. Hydrol. 2018, 567, 280–289. [Google Scholar] [CrossRef]
- Kulik, A.; Gordienko, O. Conditions of Snowmelt Runoff Formation on Slopes in the South of the Volga Upland. Eurasian Soil Sci. 2022, 55, 44–54. [Google Scholar] [CrossRef]
- Starkloff, T.; Stolte, J.; Hessel, R.; Ritsema, C.; Jetten, V. Integrated, spatial distributed modelling of surface runoff and soil erosion during winter and spring. Catena 2018, 166, 147–157. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; Li, W.; Li, Z. Quantifying the contributions of snow/glacier meltwater to river runoff in the Tianshan Mountains, Central Asia. Glob. Planet. Chang. 2019, 174, 47–57. [Google Scholar] [CrossRef]
- Yang, J.; Chen, F.; Long, A.; Sun, H.; He, C.; Liu, B. Runoff simulation of the Kaidu River Basin based on the GR4J-6 and GR4J-6-LSTM models. J. Hydrol. Reg. Stud. 2024, 56, 102034. [Google Scholar] [CrossRef]
- Yang, Y.; Weng, B.; Yan, D.; Gong, X.; Dai, Y.; Niu, Y.; Dong, G. Tracing potential water sources of the Nagqu River using stable isotopes. J. Hydrol. Reg. Stud. 2021, 34, 100807. [Google Scholar] [CrossRef]
- Ahluwalia, R.S.; Rai, S.; Jain, S.K.; Kumar, B.; Dobhal, D. Assessment of snowmelt runoff modelling and isotope analysis: A case study from the western Himalaya, India. Ann. Glaciol. 2013, 54, 299–304. [Google Scholar] [CrossRef]
- Agnihotri, J.; Coulibaly, P. Evaluation of Snowmelt Estimation Techniques for Enhanced Spring Peak Flow Prediction. Water 2020, 12, 1290. [Google Scholar] [CrossRef]
- Woo, M.-K.; Thorne, R. Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada. Hydrol. Process. 2006, 20, 2129–2139. [Google Scholar] [CrossRef]
- Kampf, S.K.; Lefsky, M.A. Transition of dominant peak flow source from snowmelt to rainfall along the Colorado Front Range: Historical patterns, trends, and lessons from the 2013 Colorado Front Range floods. Water Resour. Res. 2016, 52, 407–422. [Google Scholar] [CrossRef]
- Li, D.; Wrzesien, M.L.; Durand, M.; Adam, J.; Lettenmaier, D.P. How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 2017, 44, 6163–6172. [Google Scholar] [CrossRef]
- Siderius, C.; Biemans, H.; Wiltshire, A.; Rao, S.; Franssen, W.; Kumar, P.; Gosain, A.; van Vliet, M.; Collins, D. Snowmelt contributions to discharge of the Ganges. Sci. Total Environ. 2013, 468, S93–S101. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Yang, D.; Wang, J.; Gao, B.; Pan, X.; Zhang, Y.; Hao, X. Tracing Snowmelt Paths in an Integrated Hydrological Model for Understanding Seasonal Snowmelt Contribution at Basin Scale. J. Geophys. Res. Atmos. 2019, 124, 8874–8895. [Google Scholar] [CrossRef]
- Yang, D.; Gao, B.; Jiao, Y.; Lei, H.; Zhang, Y.; Yang, H.; Cong, Z. A distributed scheme developed for eco-hydrological modeling in the upper Heihe River. Sci. China Earth Sci. 2014, 58, 36–45. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, W.; Li, H.; Long, Y.; Pan, X.; Shen, Y. Analysis of seasonal snowmelt contribution using a distributed energy balance model for a river basin in the Altai Mountains of northwestern China. Hydrol. Process. 2021, 35, e14046. [Google Scholar] [CrossRef]
- Lang, M.; Ouarda, T.; Bobée, B. Towards operational guidelines for over-threshold modeling. J. Hydrol. 1999, 225, 103–117. [Google Scholar] [CrossRef]
- Langbein, W.B. Annual floods and the partial-duration flood series. Eos Trans. Am. Geophys. Union 1949, 30, 879–881. [Google Scholar] [CrossRef]
- Svensson, C.; Kundzewicz, W.Z.; Maurer, T. Trend detection in river flow series: 2. Flood and low-flow index series/Détection de tendance dans des séries de débit fluvial: 2. Séries d’indices de crue et d’étiage. Hydrol. Sci. J. 2005, 50, 824. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Fattah, M.A.; Hasan, M.M.; Dola, I.A.; Morshed, S.R.; Chakraborty, T.; Kafy, A.-A.; Alsulamy, S.; Khedher, K.M.; Shohan, A.A.A. Implications of Rainfall Variability on Groundwater Recharge and Sustainable Management in South Asian Capitals: An in-Depth Analysis Using Mann Kendall Tests, Continuous Wavelet Coherence, and Innovative Trend Analysis. Groundw. Sustain. Dev. 2024, 24, 101060. [Google Scholar] [CrossRef]
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 2014, 519, 3634–3650. [Google Scholar] [CrossRef]
- Liao, L.; Rad, S.; Dai, J.; Shahab, A.; Mo, J.; Qi, S. Spatial and Temporal Variations’ Characteristics of Extreme Precipitation and Temperature in Jialing River Basin—Implications of Atmospheric Large-Scale Circulation Patterns. Water 2024, 16, 2504. [Google Scholar] [CrossRef]
- Yang, K.; He, J. China Meteorological Forcing Dataset (1979–2018). National Tibetan Plateau/Third Pole Environment Data Center. 2019. Available online: https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49 (accessed on 12 January 2022).
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present. Copernicus Climate Change Service (C3S). Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview (accessed on 20 May 2022).
- Lu, L.; Liu, C. Chinese Soil Data Set Based on World Soil Database(hwsd)(v1.1). National Cryosphere Desert Data Center. 2019. Available online: https://cstr.cn/CSTR:11738.11.ncdc.Westdc.2020.585 (accessed on 15 January 2022).
- Ran, Y.; Li, X. Land Cover Map of China in 2000. National Tibetan Plateau Data Center. 2019. Available online: https://data.tpdc.ac.cn/en/data/7e61387b-d3f2-40cb-bc05-8d16e01ea72b/ (accessed on 15 January 2022).
- Hao, X.H.; Sun, X.J.; Ji, W.Z. China MODIS Daily Cloudless 500 m Snow Area Product Dataset. National Cryosphere Desert Data Center. Available online: http://www.ncdc.ac.cn/portal/metadata/be3a4134-2e5c-467f-8a5e-b1c0ed6cc341 (accessed on 7 April 2023).
- Zhao, Q.; Hao, X.H.; Wang, J.; Sun, X.L.; Li, H.Y. A dataset of snow phenology in China based on MODIS from 2000 to 2020. National Cryosphere Desert Data Center. Available online: https://cstr.cn/CSTR:11738.11.ncdc.isnow.db2519.2022 (accessed on 7 April 2023).
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Davenport, F.V.; Herrera-Estrada, J.E.; Burke, M.; Diffenbaugh, N.S. Flood Size Increases Nonlinearly Across the Western United States in Response to Lower Snow-Precipitation Ratios. Water Resour. Res. 2020, 56, e2019WR025571. [Google Scholar] [CrossRef]
- Rottler, E.; Bronstert, A.; Bürger, G.; Rakovec, O. Projected changes in Rhine River flood seasonality under global warming. Hydrol. Earth Syst. Sci. 2021, 25, 2353–2371. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, X.; Wu, Y. Use of oxygen-18 isotope to quantify flows in the upriver and middle reaches of the Heihe River, Northwestern China. Environ. Geol. 2009, 58, 645–653. [Google Scholar] [CrossRef]
- Wu, Y.; Ouyang, W.; Hao, Z.; Yang, B.; Wang, L. Snowmelt water drives higher soil erosion than rainfall water in a mid-high latitude upland watershed. J. Hydrol. 2018, 556, 438–448. [Google Scholar] [CrossRef]
- Mediero, L.; Santillán, D.; Garrote, L.; Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain. J. Hydrol. 2014, 517, 1072–1088. [Google Scholar] [CrossRef]
- Bard, A.; Renard, B.; Lang, M. Floods in the Alpine Areas of Europe. In Changes in Flood risk in Europe; IAHS-AISH Press: Oxfordshire, UK; CRC Press: Boca Raton, FL, USA, 2012; pp. 362–371. [Google Scholar] [CrossRef]
- Arheimer, B.; Lindström, G. Climate impact on floods: Changes in high flows in Sweden in the past and the future(1911–2100). Hydrol. Earth Syst. Sci. 2015, 19, 771–784. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Parajka, J.; Perdigão, R.A.P.; Merz, B.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Bonacci, O.; Borga, M.; et al. Changing climate shifts timing of European floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Wasko, C.; Nathan, R. Influence of changes in rainfall and soil moisture on trends in flooding. J. Hydrol. 2019, 575, 432–441. [Google Scholar] [CrossRef]
- Chug, D.; Pathak, A.; Indu, J.; Jain, S.K.; Jain, S.K.; Dimri, A.P.; Niyogi, D.; Ghosh, S. Observed Evidence for Steep Rise in the Extreme Flow of Western Himalayan Rivers. Geophys. Res. Lett. 2020, 47, e2020GL087815. [Google Scholar] [CrossRef]
- Wang, J.; Tang, Q.; Chen, A.; Tang, Y.; Xu, X.; Yun, X.; Mu, M.; Wright, N.; Chen, D. Impacts of Summer Monsoons on Flood Characteristics in the Lancang-Mekong River Basin. J. Hydrol. 2021, 604, 127256. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, Y.; Xu, C.; Ciais, P.; Liu, D.; Yang, H.; Piao, S.; Yao, T. Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets. Nat. Clim. Chang. 2021, 11, 219–225. [Google Scholar] [CrossRef]
- Bennett, B.; Leonard, M.; Deng, Y.; Westra, S. An empirical investigation into the effect of antecedent precipitation on flood volume. J. Hydrol. 2018, 567, 435–445. [Google Scholar] [CrossRef]
- Hirsch, R.; Archfield, S. Flood trends: Not higher but more often. Nat. Clim. Chang. 2015, 5, 198–199. [Google Scholar] [CrossRef]
- Zhang, X.S.; Amirthanathan, G.E.; Bari, M.A.; Laugesen, R.M.; Shin, D.; Kent, D.M.; MacDonald, A.M.; Turner, M.E.; Tuteja, N.K. How streamflow has changed across Australia since the 1950s: Evidence from the network of hydrologic reference stations. Hydrol. Earth Syst. Sci. 2016, 20, 3947–3965. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Graczyk, D.; Maurer, T.; Pińskwar, I.; Radziejewski, M.; Svensson, C.; Szwed, M. Trend detection in river flow series: 1. Annual maximum flow/Détection de tendance dans des séries de débit fluvial: 1. Débit maximum annuel. Hydrol. Sci. J. 2005, 50, 810. [Google Scholar] [CrossRef]
- Cui, P.; Jia, Y. Mountain hazards in the Tibetan Plateau: Research status and prospects. Natl. Sci. Rev. 2015, 2, 397–399. [Google Scholar] [CrossRef]
Parameter Description | Unit | Value | Method |
---|---|---|---|
differentiation temperature of rain and snow | °C | 1.745 | SCE-UA |
snow surface roughness | m | 0.012 | SCE-UA |
groundwater porosity | - | 0.118 | SCE-UA |
groundwater water hydraulic conductivity | m/s | 34.22 | SCE-UA |
lateral flow distribution coefficient | - | 0.063 | SCE-UA |
evapotranspiration adjustment coefficient | - | 1.078 | SCE-UA |
Variables | Monthly Values | Annual Values | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | ||
Temperature (°C) | −15.54 | −11.59 | −6.06 | 0.18 | 4.83 | 8.44 | 10.41 | 9.41 | 5.15 | −1.00 | −8.25 | −13.61 | −1.47 |
Precipitation (mm) | 9.30 | 16.31 | 29.10 | 46.24 | 78.67 | 119.81 | 149.89 | 157.12 | 112.08 | 49.84 | 12.20 | 7.21 | 787.76 |
Rainfall (mm) | 0.00 | 0.03 | 0.95 | 9.48 | 42.62 | 105.14 | 144.17 | 147.52 | 85.74 | 15.58 | 0.15 | 0.00 | 551.41 |
Snowfall (mm) | 9.30 | 16.28 | 28.15 | 36.75 | 36.05 | 14.67 | 5.71 | 9.59 | 26.33 | 34.26 | 12.04 | 7.21 | 236.35 |
TR (mm) | 5.21 | 5.56 | 12.01 | 19.09 | 25.98 | 42.84 | 71.65 | 78.74 | 67.81 | 35.79 | 11.96 | 6.13 | 382.77 |
SR (mm) | 0.01 | 0.86 | 5.46 | 8.66 | 10.49 | 12.60 | 12.65 | 11.33 | 9.45 | 6.09 | 1.15 | 0.21 | 78.95 |
CSR (%) | 0.27 | 15.44 | 45.43 | 45.37 | 40.39 | 29.40 | 17.65 | 14.39 | 13.93 | 17.02 | 9.61 | 3.37 | 20.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, L.; Wang, J.; Li, H.; Hao, X. Weakened Snowmelt Contribution to Floods in a Climate-Changed Tibetan Basin. Water 2025, 17, 507. https://doi.org/10.3390/w17040507
Niu L, Wang J, Li H, Hao X. Weakened Snowmelt Contribution to Floods in a Climate-Changed Tibetan Basin. Water. 2025; 17(4):507. https://doi.org/10.3390/w17040507
Chicago/Turabian StyleNiu, Liting, Jian Wang, Hongyi Li, and Xiaohua Hao. 2025. "Weakened Snowmelt Contribution to Floods in a Climate-Changed Tibetan Basin" Water 17, no. 4: 507. https://doi.org/10.3390/w17040507
APA StyleNiu, L., Wang, J., Li, H., & Hao, X. (2025). Weakened Snowmelt Contribution to Floods in a Climate-Changed Tibetan Basin. Water, 17(4), 507. https://doi.org/10.3390/w17040507