Impact of Land Use Pattern and Heavy Metals on Lake Water Quality in Vidarbha and Marathwada Region, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.3. Sample Collection
2.4. Physio-Chemical Analysis
2.5. Watershed Delineation
2.6. Pearson Correlation Index
3. Results
3.1. Physico-Chemical Analysis
3.2. Watershed Characteristics
3.3. LULC Pattern and Its Effect on Water Quality
3.4. Statistical Analysis
4. Discussion
4.1. Water Quality and Heavy Metal Contamination
4.2. Impact of LULC Changes on Water Quality
4.3. Application of GIS and Remote Sensing for Water Quality Monitoring
5. Conclusions, Limitations, and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameters | Procedure |
---|---|
pH test | 1. Cut approximately 2–3 cm length of pH paper strip and dip in water sample to be tested. 2. Observe change in color of pH strip. 3. Match the color obtained on the strip with the color given on front of pH paper strip. 4. Note the corresponding pH value. (Limit of detection of pH—2) |
Turbidity test | 1. Fill the water sample to be tested in the empty test bottle marked as test sample bottle. 2. Compared the turbidity (Haziness) with the standards of 0 NTU, 5 NTU, 10 NTU, and 25 NTU provided for comparison. 3. Interpret the results in the terms of NTU. (Limit of detection of turbidity—0 NTU) |
Chloride test | 1. Fill the aqua check test jar with water sample up to 10 mL mark. 2. Add one tiny spoonful of reagent CHL-A and 2 drops of reagent CHL-B. 3. Mix well. 4. Add drop by drop reagent CHL-C counting the number of drops while mixing until the color changes to bluish violate. 5. Now apply the formula given below: Chloride mg/L (ppm) as Cl = 10 × (number of drops of CHL-C). (Limit of detection of chloride—10 mg/L) |
Total Hardness test | 1. Fill the aqua check test jar with water sample up to 10 mL mark. 2. Add one spoonful of powder reagent TH-A with the tiny spoon provided. 3. Mix well to dissolve the powder completely. 4. Add 4-5 drops of reagent TH-B and mix well. 5. Observe change in color of solution: - Solution turns blue: soft; - Solution turns red: hard. 6. Add drop by drop reagent TH-C counting the number of drops while mixing, until the color changes from red to blue. 7. Now apply the formula given below: Total hardness mg/L (ppm) as CaCO₃ = 25 × (number of drops of TH-C). (Limit of detection of total hardness—25 mg/L) |
Fluoride test | 1. Fill the aqua check test jar with 10 mL sample. 2. Add 3 drops of reagent FL-A. Mix the contents well. 3. Now add 8 drops of reagent FL-B. Mix the contents and allow to stand for 2–5 min. 4. Match the correct color and read the mg/L (ppm) fluoride from the color chart. (Limit of detection of fluoride—0 mg/L) |
Nitrate test | 1. Obtain 1.0 mL of water sample in aqua test jar provided. 2. Now add one spoonful of reagent N-A and 5 drops of Reagent N-B. Add 1 spoonful of reagent N-C shake well. Wait for 5 min to allow for maximum color development. 3. Dilute to 10 ml mark with DM water. 4. Match the correct color and read the mg/L (ppm) nitrate from the color chart. (Limit of detection of nitrate—0 mg/L) |
Iron test | 1. Obtain 5ml water sample in aqua check test jar provided. 2. Add 1 spoonful of reagent Fe-A and 1 spoonful of reagent Fe-B. 3. Mix contents thoroughly by swirling. 4. Match the correct color and read the mg/L (ppm) iron from the color chart. (Limit of detection of iron—0 mg/L) |
Residual free chlorine | 1. Fill the aqua check test jar with water sample up to the 10 mL mark. 2. Add 4—drops of reagent RCL-A and shake well. 3. Add 2–3 drops of reagent RCL-B. Mix well. 4. Observe change in color of solution: Solution turns blue: free chlorine present; No blue color: chlorine is absent. 5. Add drop by drop reagent RCL-C, counting the number of drops while mixing, until the blue color dis-appears. 6. Now apply the formula given below: Residual free chlorine mg/L (ppm) as chlorine = 0.1 × (No. of drops of reagent RCL-C). (Limit of detection of residual free chlorine—0 mg/L) |
Manganese test | 1. Fill the aqua check test jar with 10 mL sample. 2. Add 10 drops of reagent 045A and mix the contents well. 3. Now add 5 drops of reagent 045B and mix the content and allow to stand for 5–10 min. 4. Match the developed color with color chart and read the level of manganese. (Limit of detection of manganese—0 mg/L) |
Cadmium Test | 1. Fill the aqua check test jar with 10 mL sample. 2. Add 1 ml of reagent 070A. Mix the contents well. 3. Now add 2 drops of reagent 070B. Mix the contents. 4. Add 8 drops of reagent 070C. Mix the content well. 5. Now add 10 drops of 070D. Mix the content and allow to stand for 1–2 min. 6. Match the developed color with color chart and read the level of cadmium. (Limit of detection of cadmium—0 mg/L) |
Nickel Test | 1. Fill the aqua check test jar with 10mL sample. 2. Add 5 drops of reagent 060A. Mix the contents well. 3. Now add 5 drops of reagent 060B. Mix the contents. 4. Add 5 drops of reagent 060C. Mix the contents and allow them to stand for 4–5 mins. 5. Match the developed color with color chart and read the level of Nickel. (Limit of detection of nickel—0 mg/L) |
Arsenic Test | 1. Use syringe to add 5 mL sample solution into the reaction vessel. 2. Add 1 measuring spoon reagent AS/01 and swirl reaction vessel gently for 1 min. 3. Add 1 measuring spoon reagent AS/2. 4. Insert test strip with test field 2 cm into reaction vessel and clamp it with lid. 5. During the 12-minute reaction time, swirl gently the reaction vessel. The test field should not get in contact with the sample. 6. After 12 min, remove test strip from reaction vessel, dip it for 2 s. with the test field into water, sake off excess liquid. 7. Compare test field to color scale. (Limit of detection of arsenic—0.05 mg/L) |
Chromium Test | 1. Fill the aqua check test jar with 10 ml sample. 2. Add 2 drops of reagent 050A. Mix the contents well. 3. Now add 2 drops of reagent 050B. Mix the contents and allow them to stand for 4–5 min. 4. Match the developed color with color chart provided and read the level of chromium. (Limit of Detection of Chromium—0 mg/L) |
Zinc Test | 1. Obtain 1 mL water sample with syringe into test jar. 2. Add 5 drops of reagent 044A, 4 drops of reagent 044B and one spoonful of reagent 044C. Mix the contents well. 3. Add 2 mL of reagent 044D with plastic dropper and shake vigorously till both get mixed thoroughly. 4. Wait for 5 min. to develop pinkish red colored layer at the bottom of the solution (This shows the presence of zinc) otherwise green color indicates absence of zinc. 5. Match color of solution with color chart to find out zinc level in sample. (Limit of detection of zinc—0 mg/L) |
Lead Test | 1. Fill the aqua check screw tube with 5 mL sample. 2. Add 5 mL of reagent 052A. Mix the contents well. 3. Now add one spoon of reagent 052B. Mix the contents well. 4. Now add 2 mL of reagent 052C. Mix the content, shake for 30–60 s. and allow to stand for 4–5 min 5. Match the developed color with color chart provided and read the level of Lead. (Limit of detection of lead—0 mg/L) |
Copper Test | 1. Fill the aqua check Test jar with 10 mL sample. 2. Add 2 drops of reagent 0446A. Mix the content well. 3. Now add 1 drop of reagent 046B. Mix the content and allow to stand for 5–10 min. 4. Match the developed color with color chart provided and read the level of copper (Cu), mg/L (ppm). (Limit of detection of copper—0 mg/L) |
Orthophosphate Test | 1. Fill the aqua check jar with 10 mL sample. 2. Add 2 drops of reagent O59D. Mix the content well. 3. Now add 2 drops of reagent O59E. Mix the content well and allow to stand for 1 min. 4. Match the developed color with the color chart provided and read the level of phosphate. (Limit of detection of orthophosphate—0 mg/L) |
References
- Kumar, P.; Mahajan, A.K. Trophic status and its regulating factor determination at the Rewalsar Lake, Northwest Himalaya (HP), India, based on selected parameters and multivariate statistical analysis. SN Appl. Sci. 2020, 2, 1266. [Google Scholar] [CrossRef]
- Diwate, P.; Khan, F.; Maurya, S.; Meena, N.K.; Humane, S.; Golekar, R.B. Sedimentation Pattern and its Controlling Factors in Indian Lakes. Bull. Pure Appl. Sci.-Geol. 2021, 40, 38–52. [Google Scholar] [CrossRef]
- Moore, F.; Forghani, G.; Qishlaqi, A. Assessment of heavy metal contamination in water and surface sediments of the Maharlu Saline Lake, SW Iran. Iran. J. Sci. 2009, 33, 43–55. [Google Scholar]
- Peerzada, H.A.; Pandit, B.A.; Bint Nazir, N.; Lone, A.H. Change Detection and Spatial Variability in Dal Lake and Nigeen Lake using Remote Sensing and Geographical Information System. Int. J. Sci. Res. (IJSR) 2022, 12, 471–478. [Google Scholar] [CrossRef]
- Singare, P.U.; Lokhande, R.S.; Naik, K.U. A case study of some lakes located at and around thane city of Maharashtra, India, with special reference to physico-chemical properties and heavy metal content of lake water. Interdiscip. Environ. Rev. 2010, 11, 90–107. [Google Scholar] [CrossRef]
- Khare, K.C.; Jadhav, M.S. Water quality assessment of Katraj lake, Pune (Maharashtra, India): A case study. In Proceedings of the Taal2007: The 12th World Lake Conference, Jaipur, India, 28 October–2 November 2008; Volume 292, p. 299. [Google Scholar]
- Mishra, S.; Kumar, A.; Yadav, S.; Singhal, M.K. Assessment of heavy metal contamination in water of Kali River using principal component and cluster analysis, India. Sustain. Water Resour. Manag. 2018, 4, 573–581. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Khan, M.J.; Khan, S.A.; Ghani, J.; Ullah, Z.; Nawab, J.; Alrefaei, A.F.; Almutairi, M.H.; Alharbi, S.N. Potentially harmful elements and health risk assessment in groundwater of urban industrial areas. Front. Environ. Sci. 2024, 12, 1332965. [Google Scholar] [CrossRef]
- Shahli, F.M.; Rahmat, S.N.; Salleh, S.N.A.M. Hydrochemical analysis and evaluation of heavy metals in groundwater: A case study. WATEC Web Conf. 2018, 250, 06009. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Sinha, S.; Singh, V.K.; Murthy, R.C. Estimation of source of heavy metal contamination in sediments of Gomti River (India) using principal component analysis. Water Air Soil Pollut. 2005, 166, 321–341. [Google Scholar] [CrossRef]
- Khadija, D.; Hicham, A.; Rida, A.; Hicham, E.; Nordine, N.; Najlaa, F. Surface water quality assessment in the semi-arid area by a combination of heavy metal pollution indices and statistical approaches for sustainable management. Environ. Chall. 2021, 5, 100230. [Google Scholar] [CrossRef]
- Huang, C.; Yang, H.; Li, Y.; Zou, J.; Zhang, Y.; Chen, X.; Mi, Y.; Zhang, M. Investigating changes in land use cover and associated environmental parameters in Taihu Lake in recent decades using remote sensing and geochemistry. PLoS ONE 2015, 10, e0120319. [Google Scholar] [CrossRef]
- Hosseini, H.; Shakeri, A.; Rezaei, M.; Dashti Barmaki, M.; Rastegari Mehr, M. Water chemistry and water quality pollution indices of heavy metals: A case study of Chahnimeh Water Reservoirs, Southeast of Iran. Int. J. Energy Water Resour. 2020, 4, 63–79. [Google Scholar]
- Jiang, D.; Wang, Y.; Zhou, S.; Long, Z.; Liao, Q.; Yang, J.; Fan, J. Multivariate analyses and human health assessments of heavy metals for surface water quality in the Xiangjiang River Basin, China. Environ. Toxicol. Chem. 2019, 38, 1645–1657. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Wang, J.; Lou, W.; Wang, L.; Xu, J.; Pan, Y.; Peng, J.; Liu, D. Pollution, ecological risk and source identification of heavy metals in sediments from the Huafei River in the eastern suburbs of Kaifeng, China. Int. J. Environ. Res. Public Health 2022, 19, 11259. [Google Scholar] [CrossRef] [PubMed]
- Devanesan, E.; Chandrasekaran, A.; Sivakumar, S.; Freny Joy, K.M.; Najam, L.A.; Ravisankar, R. Magnetic susceptibility as proxy for heavy metal pollution detection in sediment. Iran. J. Sci. Technol. Trans. A: Sci. 2020, 44, 875–888. [Google Scholar] [CrossRef]
- Diwate, P.; Meena, N.K.; Bhushan, R.; Pandita, S.; Chandana, K.; Kumar, P. Sedimentation rate (Pb and Cs), grain size, organic matter and bathymetric studies 210 137 in Renuka Lake, Himachal Pradesh, India. Health Environ. Res. Online (HERO) 2020, 41, 51–62. [Google Scholar]
- Githaiga, K.B.; Njuguna, S.M.; Gituru, R.W.; Yan, X. Water quality assessment, multivariate analysis and human health risks of heavy metals in eight major lakes in Kenya. J. Environ. Manag. 2021, 297, 113410. [Google Scholar] [CrossRef]
- Poyraz, B.; Taspinar, F. Analysis, assesment and principal component analysis of heavy metals in drinking waters of industrialized region of Turkey. Int. J. Environ. Res. 2014, 8, 1261–1270. [Google Scholar]
- Chen, Y.; Wang, L.; Liang, T.; Xiao, J.; Li, J.; Wei, H.; Dong, L. Major ion and dissolved heavy metal geochemistry, distribution, and relationship in the overlying water of Dongting Lake, China. Environ. Geochem. Health 2019, 41, 1091–1104. [Google Scholar] [PubMed]
- Montes-Botella, C.; Tenorio, M.D. Water characterization and seasonal heavy metal distribution in the Odiel River (Huelva, Spain) by means of principal component analysis. Arch. Environ. Contam. Toxicol. 2003, 45, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Algül, F.; Beyhan, M. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci. Rep. 2020, 10, 11782. [Google Scholar]
- Shakerkhatibi, M.; Mosaferi, M.; Pourakbar, M.; Ahmadnejad, M.; Safavi, N.; Banitorab, F. Comprehensive investigation of groundwater quality in the north-west of Iran: Physicochemical and heavy metal analysis. Groundw. Sustain. Dev. 2019, 8, 156–168. [Google Scholar]
- Saleh, A.H.; Elsayed, S.; Gad, M.; Elmetwalli, A.H.; Elsherbiny, O.; Hussein, H.; Moghanm, F.S.; Qazaq, A.S.; Eid, E.M.; El-Kholy, A.S.; et al. Utilization of pollution indices, hyperspectral reflectance indices, and data-driven multivariate modelling to assess the bottom sediment quality of Lake Qaroun, Egypt. Water 2022, 14, 890. [Google Scholar] [CrossRef]
- Choramin, M.; Safaei, A.; Khajavi, S.; Hamid, H.; Abozari, S. Analyzing and studding chemical water quality parameters and its changes on the base of Schuler, Wilcox and Piper diagrams (project: Bahamanshir River). WALIA J. 2015, 31, 22–27. [Google Scholar]
- Indian Standard Drinking Water—Specification (IS 10500: 2012). Available online: https://cpcb.nic.in/wqm/BIS_Drinking_Water_Specification.pdf (accessed on 16 April 2024).
- Edition, F. Guidelines for drinking-water quality. WHO Chron. 2011, 38, 104–108. [Google Scholar]
- Dandge, K.P.; Patil, S.S. Spatial distribution of ground water quality index using remote sensing and GIS techniques. Appl. Water Sci. 2022, 12, 7. [Google Scholar]
- Singh, S.K.; Singh, P.; Gautam, S.K. Appraisal of urban lake water quality through numerical index, multivariate statistics and earth observation data sets. Int. J. Environ. Sci. Technol. 2016, 13, 445–456. [Google Scholar]
- Azhari, H.E.; Cherif, E.K.; Sarti, O.; Azzirgue, E.M.; Dakak, H.; Yachou, H.; da Silva, J.C.G.E.; Salmoun, F. Assessment of surface water quality using the water quality index (IWQ), multivariate statistical analysis (MSA) and geographic information system (GIS) in Oued Laou Mediterranean Watershed, Morocco. Water 2022, 15, 130. [Google Scholar] [CrossRef]
- Felegari, S.; Sharifi, A.; Khosravi, M.; Sabanov, S.; Tariq, A.; Karuppannan, S. Using Sentinel-2 data to estimate the concentration of heavy metals caused by industrial activities in Ust-Kamenogorsk, Northeastern Kazakhstan. Heliyon 2023, 9, e21908. [Google Scholar] [PubMed]
- Kouhgardi, E.; Hemati, M.; Shakerdargah, E.; Shiri, H.; Mahdianpari, M. Monitoring shoreline and land use/land cover changes in sandbanks provincial park using remote Sensing and climate data. Water 2022, 14, 3593. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kumar, R.; Bhardwaj, R.; Kumar Thukral, A.; Rodrigo-Comino, J. Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 1–16. [Google Scholar]
- Singh, P.; Javed, S.; Shashtri, S.; Singh, R.P.; Vishwakarma, C.A.; Mukherjee, S. Influence of changes in watershed landuse pattern on the wetland of Sultanpur National Park, Haryana using remote sensing techniques and hydrochemical analysis. Remote Sens. Appl. Soc. Environ. 2017, 7, 84–92. [Google Scholar]
- Gayathri, S.; Krishnan, K.A.; Krishnakumar, A.; Maya, T.V.; Dev, V.V.; Antony, S.; Arun, V. Monitoring of heavy metal contamination in Netravati river basin: Overview of pollution indices and risk assessment. Sustain. Water Resour. Manag. 2021, 7, 20. [Google Scholar]
- Hernández-Martínez, J.L.; Perera-Burgos, J.A.; Acosta-González, G.; Alvarado-Flores, J.; Li, Y.; Leal-Bautista, R.M. Assessment of Physicochemical Parameters by Remote Sensing of Bacalar Lagoon, Yucatán Peninsula, Mexico. Water 2023, 16, 159. [Google Scholar] [CrossRef]
- Das Sharma, S. Risk assessment and mitigation measures on the heavy metal polluted water and sediment of the Kolleru Lake in Andhra Pradesh, India. Pollution 2019, 5, 161–178. [Google Scholar]
- Dwivedi, K.N.; Lakhera, A. Correlation analysis of river Narmada by Karl-Pearson method and weighted arithmetic water quality index. Int. Res. J. Mod. Eng. Technol. Sci. 2022, 4, 2729–2736. [Google Scholar]
- Subramani, T.; Someswari, P. Identification and Analysis of Pollution in Thirumani Muthar River Using Remote Sensing. Int. J. Eng. Res. Appl. 2014, 4, 198–207. [Google Scholar]
- Wagh, U.; Khillare, Y.K.; Khillare, K. Accumulative level of Heavy Metals in riverine water of Marathwada region. World J. Pharm. Pharm. Sci. 2017, 6, 980–990. [Google Scholar]
- Suryawanshi, G.D. Bioavailability of waterborne heavy metals in freshwater mussels from large dams of Marathwada, India. Biochem. Cell. Arch. 2017, 17, 301–308. [Google Scholar]
- Bhattacherjee, J.W.; Pathak, S.P.; Gaur, A. Antibiotic resistance and metal tolerance of coliform bacteria isolated from Gomati River water at Lucknow city. J. Gen. Appl. Microbiol. 1988, 34, 391–399. [Google Scholar] [CrossRef]
- Das, S.; Kumari, A.; Sherpa, M.T.; Najar, I.N.; Thakur, N. Metavirome and its functional diversity analysis through microbiome study of the Sikkim Himalayan hot spring solfataric mud sediments. Curr. Res. Microb. Sci. 2020, 1, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Das, A.N.; Sharma, D.K.; Ahmed, R. An Assessment of physico-chemical parameters of water in association with the ichthyofauna diversity of Dhir beel in Dhubri district of Assam, India. Int. J. Ecol. Environ. Sci. 2021, 47, 227–241. [Google Scholar]
- Pichel, N.; de Souza, F.H.; Sabogal-Paz, L.P.; Shah, P.K.; Adhikari, N.; Pandey, S.; Shrestha, B.M.; Gaihre, S.; Pineda-Marulanda, D.A.; Hincapie, M.; et al. Field-testing solutions for drinking water quality monitoring in low-and middle-income regions and case studies from Latin American, African and Asian countries. J. Environ. Chem. Eng. 2023, 11, 111180. [Google Scholar] [CrossRef]
- Ram, S.M.; Thakkar, V.P.; Machale, P. Determination of fluoride level in drinking water from water samples in Navi Mumbai, Maharashtra. J. Indian Assoc. Public Health Dent. 2017, 15, 395–398. [Google Scholar]
- Babar, S.M. Geology, microecological environment and conservation of Lonar Lake, Maharashtra, India. In Environmental Management; Sciyo Publications: Rijeka, Croatia, 2010; pp. 241–257. ISBN 978-953-307-133-6. [Google Scholar]
- Mawari, G.; Kumar, N.; Sarkar, S.; Frank, A.L.; Daga, M.K.; Singh, M.M.; Joshi, T.K.; Singh, I. Human health risk assessment due to heavy metals in ground and surface water and association of diseases with drinking water sources: A study from Maharashtra, India. Environ. Health Insights 2022, 16, 11786302221146020. [Google Scholar] [CrossRef] [PubMed]
- Dabhade, D.S. Eutrophication, a threat to saline lake in a crater at Lonar, Maharashtra. Asi. J. Contemp. Sci 2013, 2, 1–6. [Google Scholar]
- Deshmukh, D.V.; Puranik, P.R. Study of antioxidant potentials of alkaliphilic cyanobacteria isolated from Loar Lake India. Int. J. Pharmacogn. 2014, 1, 113–118. [Google Scholar]
- Patil, S.N.; Ingle, S.T.; Yeole, D.R.; Patil, D.V.; Patil, B.D. Correlation between Magnetic Susceptibility and Heavy Metal contamination in Agricultural Soil of Jalgaon Peri Urban Area, Maharashtra, India. J. Geosci. Res. 2020, 5, 117–122. [Google Scholar]
- Koshy, N.; Sushalekshmi, S.U.; Sharma, S.; Joseph, J.; Sharma, V.; Singh, D.N.; Singh, M. Characterization of the soil samples from the Lonar Crater, India. Geotech. Eng. J. SEAGS AGSSEA 2018, 49, 99–105. [Google Scholar]
- Patil, S.N.; Deshpande, A.V.; Varade, A.M.; Diwate, P.; Kokoreva, A.A.; Golekar, R.B.; Gawali, P.B. Magnetic susceptibility and heavy metals contamination in agricultural soil of Kopargaon Area, Ahmadnagar District, Maharashtra, India. Geospat. Technol. Landsc. Environ. Manag. Sustain. Assess. Plan. 2022, 405–430. [Google Scholar] [CrossRef]
- Kukade, R.J. Studies on food and feeding habits of ornitho fauna in and around Chhatri Lake, Amravati, Maharashtra. Online Int. Interdiscip. Res. J. 2015, 5, 114–123. [Google Scholar]
- Nayana, S.; Malode, S.N. Effect of idol immersion in wadali lake, amravati (ms) india on growth, chlorophyll and anatomy of hydrilla verticellata. Biosci. Discov. 2011, 2, 363–366. [Google Scholar]
- Population Census. Available online: https://www.census2011.co.in/census/city/350-amravati.html (accessed on 31 January 2025).
- Population Census. Available online: https://www.census2011.co.in/data/town/802683-chikhaldara-maharashtra.html (accessed on 31 January 2025).
- Census India. Available online: https://www.censusindia.co.in/villages/sawanga-vithoba-population-amravati-maharashtra-533184 (accessed on 31 January 2025).
- Khadse, G.K.; Patni, P.M.; Labhasetwar, P.K. Removal of iron and manganese from drinking water supply. Sustain. Water Resour. Manag. 2015, 1, 157–165. [Google Scholar] [CrossRef]
- Mahore, P.; Chaudhari, P.R.; Charde, P. Electrolytic Method for Deactivation of Microbial Pathogens in Surface Water for Domestic Use. Int. J. Latest. Res. Eng. Technol. 2016, 2, 23–33. [Google Scholar]
- Jain, S.; Sannigrahi, S.; Sen, S.; Bhatt, S.; Chakraborti, S.; Rahmat, S. Urban heat island intensity and its mitigation strategies in the fast-growing urban area. J. Urban Manag. 2020, 9, 54–66. [Google Scholar] [CrossRef]
- Pathak, P. Human Intervention for Protecting Urban Green Cover: Case of Nagpur, India. J. Environ. Prot. 2022, 13, 628–639. [Google Scholar] [CrossRef]
- Lahoti, S.A.; Dhyani, S.; Saito, O. Exploring the Factors Shaping Urban Greenspace Interactions: A Case Study of Nagpur, India. Land 2024, 13, 1576. [Google Scholar] [CrossRef]
- Census India. Available online: https://www.censusindia.co.in/towns/ramtek-population-nagpur-maharashtra-802707 (accessed on 31 January 2025).
- Population Census. Available online: https://www.census2011.co.in/data/town/802680-karanja-maharashtra.html (accessed on 31 January 2025).
- Paul Antony, C.; Kumaresan, D.; Hunger, S.; Drake, H.L.; Murrell, J.C.; Shouche, Y.S. Microbiology of Lonar Lake and other soda lakes. ISME J. 2013, 7, 468–476. [Google Scholar] [CrossRef]
- Population Census. Available online: https://www.census2011.co.in/data/town/802672-lonar-maharashtra.html (accessed on 31 January 2025).
- Nalawade, P.M.; Solunke, K.R.; Late, A.M.; Patil, C.A.; Mule, M.B. Dying Lake: A Loosing Habitat of Migratory Birds-A Case Study from Aurangabad City. In Proceedings of the Taal2007: The 12th World Lake Conference, Jaipur, India, 28 October–2 November 1986; Volume 1623, p. 1627. [Google Scholar]
- Konka, P.R.; Patil, P.K. Change Detection Analysis of Land Use/Land Cover of Aurangabad City Using Remotely Sensed Data. Peer Rev. Int. Res. J. Geogr. 2018, 35, 32–42. [Google Scholar]
- Population Census. Available online: https://www.census2011.co.in/data/town/802760-jalna-maharashtra.html (accessed on 31 January 2025).
- Pawar, U.; Suppawimut, W.; Rathnayake, U. Mapping of groundwater potential zones in a drought prone Marathwada Region using frequency ratio and statistical index methods, India. Results Eng. 2024, 22, 101994. [Google Scholar] [CrossRef]
- Karhade, V.; Vangujare, S. Soil Erosion Computation using RUSLE for Harsul Lake Catchment of Kham River Basin, Aurangabad, India. Int. J. Sci. Res. (IJSR) 2018, 9, 523–526. [Google Scholar]
- Kalekar, P.; Kamble, P.; Chakraborti, S.; Dev, P.; Alvarez, E.; Laware, S. Heavy metal contamination in surface sediments of the Upper Bhima Basin, Maharashtra, India. Environ. Sustain. 2022, 5, 507–531. [Google Scholar] [CrossRef]
- Ghatol, S.G.; Karale, R.L. Assessment of degraded lands of Vidarbha Region using remotely sensed data. J. Indian Soc. Remote Sens. 2000, 28, 213–219. [Google Scholar] [CrossRef]
- Gudadhe, S.K.; Niranjane, M.A. Study of soil quality of Chandrapur, Vidarbha region, India. Forest 2020, 12, 12–15. [Google Scholar]
- Patil, S.S.; Kaushik, G. Heavy metal assessment in water and sediments at Jaikwadi dam (Godavari River) Maharashtra, India. Int. J. Environ. 2016, 5, 75–88. [Google Scholar] [CrossRef]
- Shinde Vinod, A.; More, S.M. Study of Physicochemical Characterization of Lonar Lake Effecting Biodiversity Lonar Lake, Maharashtra, India. Int. Res. J. Environ. Sci. 2013, 2, 25–28. [Google Scholar]
- Samrat, A.D.; Wanjule, R.V.; Shinde, S.; Pande, B.N. Study of the physico-chemical parameters of Harsul Dam, Aurangabad (MS). In Proceedings of the International Conference, Aurangabad, India, 20–21 December 2012; 2012; pp. 208–213. [Google Scholar]
- Bhagure, G.R.; Mirgane, S.R. Heavy metal concentrations in groundwaters and soils of Thane Region of Maharashtra, India. Environ. Monit. Assess. 2011, 173, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Chavan, T.P.; AS, M.T.; Thorat, S.R.; Gaddamwar, A.G. Status of Water Quality Index in Harsul Lake at Aurangabad; A Case Study. Aayushi Int. Interdiscip. Res. J. (AIIRJ) 2021, 7, 33–39. [Google Scholar]
- Shree, B.V.; Karankumar K, R.; Nishikant, G. Examining the heavy metal contents of an estuarine ecosystem: Case study from Maharashtra, India. J. Coast. Conserv. 2019, 23, 977–984. [Google Scholar]
- States, S.; Newberry, J.; Wichterman, J.; Kuchta, J.; Scheuring, M.; Casson, L. Rapid analytical techniques for drinking water security investigations. J.-Am. Water Work. Assoc. 2004, 96, 52–64. [Google Scholar] [CrossRef]
- Boyd, C.E. Reliability of water analysis kits. Trans. Am. Fish. Soc. 1980, 109, 239–243. [Google Scholar] [CrossRef]
- Cherukuri, J.; Anjaneyulu, Y. Design and development of low cost, simple, rapid and safe, modified field kits for the visual detection and determination of arsenic in drinking water samples. Int. J. Environ. Res. Public Health 2005, 2, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, B.V.; Bercaw, R.J.; Loomis, G.W.; Hoyt, K.P.; Avizinis, E.J.; Amador, J.A. Accuracy of rapid tests used for analysis of advanced onsite wastewater treatment system effluent. Water Air Soil Pollut. 2016, 227, 310. [Google Scholar]
- He, H.; Wei, H.; Wang, Y.; Wang, L.; Qin, Z.; Li, Q.; Shan, F.; Fang, Q.; Du, Y. Geochemical and statistical analyses of trace elements in lake sediments from Qaidam Basin, Qinghai-Tibet Plateau: Distribution characteristics and source apportionment. Int. J. Environ. Res. Public Health 2022, 19, 2341. [Google Scholar] [CrossRef] [PubMed]
- Adamu, C.I.; Okon, E.E.; Inyang, D.O. Granulometry, heavy mineral and geochemical studies of stream sediments around Bula, Dass district, northeast Nigeria. Glob. J. Geol. Sci. 2020, 18, 63–73. [Google Scholar]
- Haliuc, A.; Bonk, A.; Longman, J.; Hutchinson, S.M.; Zak, M.; Veres, D. Challenges in interpreting geochemical data: An appraisal of analytical techniques applied to a karstic lake sediment record. Water 2022, 14, 806. [Google Scholar] [CrossRef]
- Choe, E.; van der Meer, F.; van Ruitenbeek, F.; van der Werff, H.; de Smeth, B.; Kim, K.W. Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sens. Environ. 2008, 112, 3222–3233. [Google Scholar]
- Kothari, V.; Vij, S.; Sharma, S.; Gupta, N. Correlation of various water quality parameters and water quality index of districts of Uttarakhand. Environ. Sustain. Indic. 2021, 9, 100093. [Google Scholar]
- Gad, M.; El-Safa, A.; Magda, M.; Farouk, M.; Hussein, H.; Alnemari, A.M.; Elsayed, S.; Khalifa, M.M.; Moghanm, F.S.; Eid, E.M.; et al. Integration of water quality indices and multivariate modeling for assessing surface water quality in Qaroun Lake, Egypt. Water 2021, 13, 2258. [Google Scholar] [CrossRef]
- Hao, N.; Sun, P.; He, W.; Yang, L.; Qiu, Y.; Chen, Y.; Zhao, W. Water resources allocation in the Tingjiang River Basin: Construction of an interval-fuzzy two-stage chance-constraints model and its assessment through Pearson correlation. Water 2022, 14, 2928. [Google Scholar] [CrossRef]
- Shamsudin, S.N.; Rahman, M.H.F.; Taib, M.N.; Razak, W.R.W.A.; Ahmad, A.H.; Zain, M.M. Analysis between Escherichia coli growth and physical parameters in water using Pearson correlation. In Proceedings of the 2016 7th IEEE Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 8 August 2016; IEEE: NewYork, NY, USA; pp. 131–136. [Google Scholar]
- Yannawar, V.B.; Bhosle, A.B. Cultural Eutrophication of Lonar Lake, Maharashtra, India. Int. J. Innov. Appl. Stud. 2013, 3, 504–510. [Google Scholar]
- Bansod, S.R.; Nandkar, P.B. Physiological effects of mining contaminants on algae with special reference to heavy metal toxicity. Int. J. Res. Biosci. Agric. Technol. 2015, 3, 43–55. [Google Scholar]
- Singh, A.; Singh, D.; Yadav, H. Impact and assessment of heavy metal toxicity on water quality, edible fishes and sediments in lakes: A review. Trends Biosci. 2017, 10, 1551–1560. [Google Scholar]
- Umwali, E.D.; Kurban, A.; Isabwe, A.; Mind’je, R.; Azadi, H.; Guo, Z.; Udahogora, M.; Nyirarwasa, A.; Umuhoza, J.; Nzabarinda, V.; et al. Spatio-seasonal variation of water quality influenced by land use and land cover in Lake Muhazi. Sci. Rep. 2021, 11, 17376. [Google Scholar]
- Zhou, Q.; Yang, N.; Li, Y.; Ren, B.; Ding, X.; Bian, H.; Yao, X. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 2020, 22, e00925. [Google Scholar]
- Haribhau, M.G. Trace metals contamination of surface water samples in and around Akot city in Maharashtra, India. Res. J. Recent Sci. 2012, 1, 5–9, ISSN 2277-2502. [Google Scholar]
- Singare, P.U.; Naik, K.U.; Lokhande, R.S. Impact assessment of pollution in some lake water located at and around Thane City of Maharashtra, India: Physico-chemical properties and toxic effects of heavy metal content. Interdiscip. Environ. Rev. 2011, 12, 215–230. [Google Scholar]
- Zakir, H.M.; Sharmin, S.; Akter, A.; Rahman, M.S. Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: A case study of Jamalpur Sadar area, Bangladesh. Environ. Adv. 2020, 2, 100005. [Google Scholar]
- Bu, H.; Meng, W.; Zhang, Y.; Wan, J. Relationships between land use patterns and water quality in the Taizi River basin, China. Ecol. Indic. 2014, 41, 187–197. [Google Scholar]
- Ghirardi, N.; Bolpagni, R.; Bresciani, M.; Valerio, G.; Pilotti, M.; Giardino, C. Spatiotemporal dynamics of submerged aquatic vegetation in a deep lake from Sentinel-2 data. Water 2019, 11, 563. [Google Scholar] [CrossRef]
- Bishop, J.L.; Lougear, A.; Newton, J.; Doran, P.T.; Froeschl, H.; Trautwein, A.X.; Körner, W.; Koeberl, C. Mineralogical and geochemical analyses of Antarctic Lake sediments: A study of reflectance and Mössbauer spectroscopy and C, N, and S isotopes with applications for remote sensing on Mars. Geochim. Et Cosmochim. Acta 2001, 65, 2875–2897. [Google Scholar]
- Abdelaal, A.; Abdelkader, A.I.; Alshehri, F.; Elatiar, A.; Almadani, S.A. Assessment and spatiotemporal variability of heavy metals pollution in water and sediments of a coastal landscape at the Nile Delta. Water 2022, 14, 3981. [Google Scholar] [CrossRef]
- Khan, S.A.; Bukhari, S.H. Physicochemical characteristics of produced water from Dakhni oil field, Punjab, Pakistan and its effect on surrounding soil. In Proceedings of the International Academic Conferences (No. 7208932), Amsterdam, The Netherlands, 19–22 June 2018; International Institute of Social and Economic Sciences: London, UK. [Google Scholar]
- Bishop, J.L.; Koeberl, C.; Kralik, C.; Fröschl, H.; Enolert, P.A.; Andersen, D.W.; Pieters, C.M.; Wharton, R.A., Jr. Reflectance spectroscopy and geochemical analyses of Lake Hoare sediments, Antarctica: Implications for remote sensing of the Earth and Mars. Geochim. Et Cosmochim. Acta 1996, 60, 765–785. [Google Scholar]
- Lu, J.; Li, H.; Chen, X.; Liang, D. Numerical study of remote sensed dredging impacts on the suspended sediment transport in China’s largest freshwater lake. Water 2019, 11, 2449. [Google Scholar] [CrossRef]
- Abeer, N.; Khan, S.A.; Muhammad, S.; Rasool, A.; Ahmad, I. Health risk assessment and provenance of arsenic and heavy metal in drinking water in Islamabad, Pakistan. Environ. Technol. Innov. 2020, 20, 101171. [Google Scholar]
Parameters | BIS Standard (2012) | WHO (2011) | |
---|---|---|---|
Acceptable Limit | Permissible Limit | ||
pH | 6.5–8.5 | No relaxation | 6.5–8.5 |
Turbidity | 1 NTU | 5 NTU | <5 NTU |
Chloride | 250 mg/L | 1000 mg/L | 250 mg/L |
Total Hardness | 200 mg/L | 600 mg/L | 100–300 mg/L |
Residual Free Chlorine | 0.2 mg/L | 1 mg/L | 0.2–0.5 mg/L |
Fluoride | 1 mg/L | 1.5 mg/L | 1.5 mg/L |
Nitrate | 45 mg/L | No relaxation | 50 mg/L |
Iron | 0.3 mg/L | No relaxation | 0.3 mg/L |
Lead | 0.01 mg/L | No relaxation | 0.01 mg/L |
Orthophosphate | 1 mg/L | No relaxation | - |
Zinc | 5 mg/L | 15 mg/L | 5 mg/L |
Copper | 0.05 mg/L | 1.5 mg/L | 2 mg/L |
Arsenic | 0.01 mg/L | 0.05 mg/L | 0.01 mg/L |
Chromium | 0.05 mg/L | No relaxation | 0.05 mg/L |
Manganese | 0.1 mg/L | 0.3 mg/L | 0.4 mg/L |
Cadmium | 0.003 mg/L | No relaxation | 0.003 mg/L |
Nickel | 0.02 mg/L | No relaxation | 0.07 mg/L |
Name of Lakes | pH | Turbidity (NTU) | Chloride (mg/L) | Total Hardness (mg/L) | Fluoride (mg/L) | Nitrate (mg/L) | Iron (mg/L) | Residual Free Chlorine (mg/L) | Lead (mg/L) | Orthophosphate (mg/L) | Zinc (mg/L) | Copper (mg/L) | Arsenic (mg/L) | Chromium (mg/L) | Manganese (mg/L) | Cadmium (mg/L) | Nickel (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Somthana Lake | 8 | 10 | 100 | 225 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.5 | <0.1 | <0.1 | 0.1 | 0.1 | <0.1 |
Moti Lake | 8 | 10 | 150 | 350 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | 1 | <0.1 | 0.5 | <0.1 | <0.1 | <0.1 | 0.4 | <0.1 |
Kharpudi Lake | 9 | 10 | 100 | 400 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.5 | <0.1 | <0.1 | 0.3 | 0.4 | <0.1 |
Lonar Lake | 12 | 10 | 50 | 175 | 1 | 45 | <0.1 | <0.1 | <0.1 | 2 | <0.1 | 0.5 | <0.1 | <0.1 | <0.1 | 0.4 | <0.1 |
Shakkar Lake | 7 | 5 | 30 | 125 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.5 | <0.1 | <0.1 | <0.1 | 0.4 | <0.1 |
Chhatri Lake | 9 | 10 | 30 | 225 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Wadali Lake | 9 | 5 | 40 | 175 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Sawanga Lake | 8 | 5 | 40 | 250 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 1 | <0.1 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Surabardi Lake | 9 | 10 | 10 | 150 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Ambajhari Lake | 8 | 10 | 40 | 175 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 1 | <0.1 | 0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Futala Lake | 7 | 5 | 20 | 250 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 1 | <0.1 | 0.5 | <0.1 | <0.1 | <0.1 | 0.1 | <0.1 |
Khindsi Lake | 7 | 5 | 10 | 125 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.5 | <0.1 | <0.1 | <0.1 | 0.4 | <0.1 |
Rishi Lake | 8 | >25 | 30 | 175 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 1 | <0.1 | 1 | <0.1 | <0.1 | 0.7 | 0.1 | 0.2 |
Salim Ali Lake | 9 | 25 | 100 | 250 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 1 | <0.1 | 1 | <0.1 | <0.1 | <0.1 | 0.4 | <0.1 |
Harsul Lake | 8 | 5 | 40 | 200 | <0.1 | 10 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.5 | <0.1 | <0.1 | <0.1 | 0.4 | <0.1 |
Watershed | Water Bodies | Built Up | Vegetation | Fallow Land |
---|---|---|---|---|
Ambajhari Lake and Futala Lake | 1 | 25 | 66 | 8 |
Chhatri Lake and Wadali Lake | 0.4 | 16 | 82 | 1 |
Harsul Lake and Salim Ali Lake | 2 | 22 | 63 | 12 |
Kharpudi Lake and Moti Lake | 1 | 20 | 61 | 18 |
Khindsi Lake | 2 | 37 | 51 | 10 |
Lonar Lake | 7 | 5 | 37 | 51 |
Surabardi Lake | 2 | 24 | 67 | 8 |
Rishi Lake | 2 | 8 | 85 | 5 |
Sawanga Lake | 2 | 8 | 75 | 15 |
Shakkar Lake | 0.7 | 17 | 62 | 21 |
Somthana Lake | 0.6 | 7 | 65 | 27 |
pH | Turbidity (NTU) | Chloride | Total Hardness | Fluoride | Nitrate | Orthophosphate | Copper | Manganese | Cadmium | Nickel | |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||||
Turbidity (NTU) | 0.22 | 1 | |||||||||
Chloride | 0.14 | 0.28 | 1 | ||||||||
Total Hardness | 0.07 | 0.10 | 0.75 | 1 | |||||||
Fluoride | 0.61 | −0.17 | 0.35 | 0.16 | 1 | ||||||
Nitrate | 0.77 | −0.04 | −0.03 | −0.16 | 0.57 | 1 | |||||
Orthophosphate | 0.43 | 0.34 | 0.16 | 0.09 | 0.12 | 0.57 | 1 | ||||
Copper | 0.03 | 0.93 | 0.12 | −0.02 | −0.33 | −0.12 | 0.29 | 1 | |||
Manganese | −0.04 | 0.60 | 0.02 | 0.12 | −0.10 | −0.12 | 0.06 | 0.58 | 1 | ||
Cadmium | 0.07 | 0.05 | 0.40 | 0.21 | 0.26 | 0.34 | 0.08 | 0.09 | −0.05 | 1 | |
Nickel | −0.08 | 0.63 | −0.15 | −0.14 | −0.23 | −0.08 | 0.20 | 0.68 | 0.90 | −0.15 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diwate, P.; Lavhale, P.; Singh, S.K.; Kanga, S.; Kumar, P.; Meraj, G.; Debnath, J.; Sahariah, D.; Bhuyan, M.S.; Chand, K. Impact of Land Use Pattern and Heavy Metals on Lake Water Quality in Vidarbha and Marathwada Region, India. Water 2025, 17, 540. https://doi.org/10.3390/w17040540
Diwate P, Lavhale P, Singh SK, Kanga S, Kumar P, Meraj G, Debnath J, Sahariah D, Bhuyan MS, Chand K. Impact of Land Use Pattern and Heavy Metals on Lake Water Quality in Vidarbha and Marathwada Region, India. Water. 2025; 17(4):540. https://doi.org/10.3390/w17040540
Chicago/Turabian StyleDiwate, Pranaya, Prasanna Lavhale, Suraj Kumar Singh, Shruti Kanga, Pankaj Kumar, Gowhar Meraj, Jatan Debnath, Dhrubajyoti Sahariah, Md. Simul Bhuyan, and Kesar Chand. 2025. "Impact of Land Use Pattern and Heavy Metals on Lake Water Quality in Vidarbha and Marathwada Region, India" Water 17, no. 4: 540. https://doi.org/10.3390/w17040540
APA StyleDiwate, P., Lavhale, P., Singh, S. K., Kanga, S., Kumar, P., Meraj, G., Debnath, J., Sahariah, D., Bhuyan, M. S., & Chand, K. (2025). Impact of Land Use Pattern and Heavy Metals on Lake Water Quality in Vidarbha and Marathwada Region, India. Water, 17(4), 540. https://doi.org/10.3390/w17040540