Optimized Energy Management System for Wind Lens-Enhanced PMSG Utilizing Zeta Converter and Advanced MPPT Control Strategies
Abstract
:1. Introduction
2. Enhanced Wind Energy Optimization Architecture
2.1. Wind Lens—Introduction
2.2. Power Output Equation with a Wind Lens
2.3. Wind Lens-Enhanced Wind Energy Conversion System
3. Wind Lens-Enhanced WECS with MPPT
Algorithm 1 INC MPPT algorithm. |
Step 1: Measure Instantaneous Voltage (V) and Current (I) from rectifier output. Step 2: Calculate Instantaneous Power Step 3: Calculate Derivatives: Instantaneous Conductance: Incremental Conductance: Step 4: Determine Operating Point: if then The system is at MPP. else if then Increase the voltage (decrease duty cycle). else if then Decrease the voltage (increase duty cycle). end if Step 5: Adjust Duty Cycle: Based on the comparison, adjust the PWM signal controlling the Zeta converter to move the operating point towards the MPP. |
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PMSG | Permanent magnet synchronous generator |
WECS | Wind energy conversion system |
MPPT | Maximum power point tracking |
INC | Incremental conductance |
P&O | Perturb and observe |
EMS | Energy management system |
PWM | Pulse-width modulation |
References
- Hashem, I.; Hafiz, A.A.; Mohamed, M.H. Characterization of aerodynamic performance of wind-lens turbine using high-fidelity CFD simulations. Front. Energy 2020, 16, 661–682. [Google Scholar] [CrossRef]
- Takeyeldein, M.; Lazim, T.M.; Ishak, I.S.; Nik Mohd, N.; Ali, E.A. Wind Lens Performance Investigation at Low Wind Speed. Evergreen 2020, 7, 481–488. [Google Scholar] [CrossRef]
- Dessoky, A.; Bangga, G.; Lutz, T.; Krämer, E. Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology. Energy 2019, 175, 76–97. [Google Scholar] [CrossRef]
- Mayilsamy, G.; Lee, S.R.; Joo, Y.H. Open-switch fault diagnosis in back-to-back NPC converters of PMSG-based WTS via zero range value of phase currents. IEEE Trans. Power Electron. 2023, 39, 4687–4703. [Google Scholar] [CrossRef]
- Venkateswaran, R.; Lee, S.R.; Joo, Y.H. Stability augmentation of pitch angle control for maximum power extraction of PMSG-based WTS with pitch actuator uncertainty via L1 adaptive scheme. Int. J. Electr. Power Energy Syst. 2023, 153, 109392. [Google Scholar] [CrossRef]
- Mayilsamy, G.; Jeong, B.C.; Lee, S.R.; Jeong, J.H.; Joo, Y.H. Constrained Maximum Power Extraction in PMVG Wind Turbine System With Predictive Rotor Position Bias-Based Current Angle Control for Power Factor Improvement. IEEE Trans. Power Electron. 2024, 39, 8858–8871. [Google Scholar] [CrossRef]
- Yesudhas, A.A.; Mayilsamy, G.; Lee, S.R.; Jeong, J.H.; Joo, Y.H. Three Level NPC Converter Switch-open-circuit Fault Localization for PMSG-based WTS Using Estimated Phase Angle Deviation Scheme. IEEE J. Emerg. Sel. Top. Power Electron. 2024. [Google Scholar] [CrossRef]
- Makarov, Y.V.; Huang, Z.; Etingov, P.V.; Ma, J.; Guttromson, R.T.; Subbarao, K.; Chakrabarti, B.B. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations; Technical Report; Pacific Northwest National Lab.(PNNL): Richland, WA, USA, 2010. [Google Scholar]
- El-Hendawi, M.; Gabbar, H.A.; El-Saady, G.; Ibrahim, E.N.A. Control and EMS of a grid-connected microgrid with economical analysis. Energies 2018, 11, 129. [Google Scholar] [CrossRef]
- Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A comprehensive review of recent advances in smart grids: A sustainable future with renewable energy resources. Energies 2020, 13, 6269. [Google Scholar] [CrossRef]
- Palanimuthu, K.; Mayilsamy, G.; Lee, S.R.; Jung, S.Y.; Joo, Y.H. Fault ride-through for PMVG-based wind turbine system using coordinated active and reactive power control strategy. IEEE Trans. Ind. Electron. 2022, 70, 5797–5807. [Google Scholar] [CrossRef]
- Miliket, T.A.; Ageze, M.B.; Tigabu, M.T. Aerodynamic performance enhancement and computational methods for H-Darrieus vertical axis wind turbines. Int. J. Green Energy 2022, 19, 1428–1465. [Google Scholar] [CrossRef]
- Yaramasu, V.; Dekka, A.; Duran, M.J.; Kouro, S.; Wu, B. PMSG-based wind energy conversion systems: Survey on power converters and controls. IET Electr. Power Appl. 2017, 11, 956–968. [Google Scholar] [CrossRef]
- Srinivas, D.; Reddy, K.S.; Shanthini, C.; Devi, V.K. Comparative Analysis of MPPT Techniques for Wind Energy Conversion System. In Proceedings of the 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022; pp. 65–69. [Google Scholar]
- Arun, S.; Manigandan, T. Design of ACO based PID controller for zeta converter using reduced order methodology. Microprocess. Microsystems 2021, 81, 103629. [Google Scholar] [CrossRef]
- Mumtaz, F.; Yahaya, N.Z.; Meraj, S.T.; Singh, B.; Kannan, R.; Ibrahim, O. Review on non-isolated DC-DC converters and their control techniques for renewable energy applications. Ain Shams Eng. J. 2021, 12, 3747–3763. [Google Scholar] [CrossRef]
- Gaied, H.; Naoui, M.; Kraiem, H.; Goud, B.S.; Flah, A.; Alghaythi, M.L.; Kotb, H.; Ali, S.G.; Aboras, K. Comparative analysis of MPPT techniques for enhancing a wind energy conversion system. Front. Energy Res. 2022, 10, 975134. [Google Scholar] [CrossRef]
- Abdalla, O.; Rezk, H.; Ahmed, E.M. Wind driven optimization algorithm based global MPPT for PV system under non-uniform solar irradiance. Sol. Energy 2019, 180, 429–444. [Google Scholar] [CrossRef]
- Khan, S.A.; Hossain, M.I. Intelligent control based maximum power extraction strategy for wind energy conversion systems. In Proceedings of the 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, ON, Canada, 8–11 May 2011; pp. 001040–001043. [Google Scholar]
- Wei, C.; Zhang, Z.; Qiao, W.; Qu, L. An adaptive network-based reinforcement learning method for MPPT control of PMSG wind energy conversion systems. IEEE Trans. Power Electron. 2016, 31, 7837–7848. [Google Scholar] [CrossRef]
- Nancy Mary, J.; Mala, K. Optimized PV Fed Zeta Converter Integrated with MPPT Algorithm for Islanding Mode Operation. Electr. Power Components Syst. 2023, 51, 1240–1250. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, Z.; Qiao, W.; Qu, L. Reinforcement-learning-based intelligent maximum power point tracking control for wind energy conversion systems. IEEE Trans. Ind. Electron. 2015, 62, 6360–6370. [Google Scholar] [CrossRef]
- Vu, N.T.T.; Nguyen, H.D.; Nguyen, A.T. Reinforcement learning-based adaptive optimal fuzzy MPPT control for variable speed wind turbine. IEEE Access 2022, 10, 95771–95780. [Google Scholar] [CrossRef]
- Kumar, D.; Chatterjee, K. A review of conventional and advanced MPPT algorithms for wind energy systems. Renew. Sustain. Energy Rev. 2016, 55, 957–970. [Google Scholar] [CrossRef]
- Ram, J.P.; Rajasekar, N.; Miyatake, M. Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review. Renew. Sustain. Energy Rev. 2017, 73, 1138–1159. [Google Scholar] [CrossRef]
- Soedibyo, S.; Ridwan, M.; Zulkarnain, G.R.; Pradipta, A.; Anam, S.; Ashari, M. Mppt control system based on incremental conductance and constant voltage using coupled inductor-capacitor zeta converter in hybrid pv-wind turbine system. JAREE (J. Adv. Res. Electr. Eng.) 2018, 1. [Google Scholar] [CrossRef]
- Rehman, S.; Alam, M.M.; Alhems, L.M.; Rafique, M.M. Horizontal axis wind turbine blade design methodologies for efficiency enhancement—A review. Energies 2018, 11, 506. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Datta, R.; Kumar, M.P.; Davim, J.P.; Pramanik, S. Energy conversion strategies for wind energy system: Electrical, mechanical and material aspects. Materials 2022, 15, 1232. [Google Scholar] [CrossRef]
- Ohya, Y.; Karasudani, T. A shrouded wind turbine generating high output power with wind-lens technology. Energies 2010, 3, 634–649. [Google Scholar] [CrossRef]
- Abe, K.; Nishida, M.; Sakurai, A.; Ohya, Y.; Kihara, H.; Wada, E.; Sato, K. Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser. J. Wind. Eng. Ind. Aerodyn. 2005, 93, 951–970. [Google Scholar] [CrossRef]
- Rauh, A.; Peinke, J. A phenomenological model for the dynamic response of wind turbines to turbulent wind. J. Wind. Eng. Ind. Aerodyn. 2004, 92, 159–183. [Google Scholar] [CrossRef]
- Igra, O. Research and development for shrouded wind turbines. Energy Convers. Manag. 1981, 21, 13–48. [Google Scholar] [CrossRef]
- Jamieson, P. Innovation in Wind Turbine Design; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Thongam, J.S.; Ouhrouche, M. MPPT control methods in wind energy conversion systems. Fundam. Adv. Top. Wind. Power 2011, 15, 339–360. [Google Scholar]
- Palanimuthu, K.; Mayilsamy, G.; Lee, S.R.; Jung, S.Y.; Joo, Y.H. Comparative analysis of maximum power extraction and control methods between PMSG and PMVG-based wind turbine systems. Int. J. Electr. Power Energy Syst. 2022, 143, 108475. [Google Scholar] [CrossRef]
- Shiravani, F.; Antonysamy, R.P.; Mayilsamy, G.; Joo, Y.H.; Alkorta, P.; Cortajarena, J.A. Predictive PI Control for Maximum Power Point Tracking and DC-link Voltage Regulation of PMVG-Based Wind Turbine Systems. IEEE J. Emerg. Sel. Top. Ind. Electron. 2024, 1–11. [Google Scholar] [CrossRef]
- Prince, M.K.K.; Arif, M.T.; Gargoom, A.; Oo, A.M.; Haque, M.E. Modeling, parameter measurement, and control of PMSG-based grid- connected wind energy conversion system. J. Mod. Power Syst. Clean Energy 2021, 9, 1054–1065. [Google Scholar] [CrossRef]
Equipment | Parameter | Value |
---|---|---|
PMSG | Nominal power | 1000 W |
Nominal voltage | 66 V | |
Nominal current | 15 A | |
Rated speed | 120 rps | |
Stator resistance | 0.56 | |
Stator inductance () | 0.0045 mH | |
Pole pair (P) | 4 | |
Moment of inertia (J) | 2.08 × 10−3 kg·m2 | |
Coefficient of friction (K) | 3.90 × 10−3 N·m·s/rad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvaraj, A.; Mayilsamy, G. Optimized Energy Management System for Wind Lens-Enhanced PMSG Utilizing Zeta Converter and Advanced MPPT Control Strategies. Wind 2024, 4, 275-287. https://doi.org/10.3390/wind4040014
Selvaraj A, Mayilsamy G. Optimized Energy Management System for Wind Lens-Enhanced PMSG Utilizing Zeta Converter and Advanced MPPT Control Strategies. Wind. 2024; 4(4):275-287. https://doi.org/10.3390/wind4040014
Chicago/Turabian StyleSelvaraj, Arun, and Ganesh Mayilsamy. 2024. "Optimized Energy Management System for Wind Lens-Enhanced PMSG Utilizing Zeta Converter and Advanced MPPT Control Strategies" Wind 4, no. 4: 275-287. https://doi.org/10.3390/wind4040014