A comparative study of Filon-type rules for oscillatory integrals
DOI:
https://doi.org/10.33993/jnaat531-1380Keywords:
oscillatory integral, Filon-Clenshaw-Curtis rule, extended FCC rule, adaptive FCC ruleAbstract
Our aim is to answer the following question: "Among the Filon-type methods for computing oscillatory integrals, which one is the most efficient in practice?". We first discuss why we should seek the answer among the family of Filon-Clenshaw-Curtis rules. A theoretical analysis accompanied by a set of numerical experiments reveals that the plain Filon-Clenshaw-Curtis rules reach a given accuracy faster than the (adaptive) extended Filon-Clenshaw-Curtis rules. The comparison is based on the CPU run-time for certain wave numbers (medium and large).
Downloads
References
F. Bornemann, Accuracy and stability of computing high-order derivatives of analytic functions by Cauchy integrals, Found. Comput. Math., 11 (2011), pp. 1–63, https://doi.org/10.1007/s10208-010-9075-z. DOI: https://doi.org/10.1007/s10208-010-9075-z
F. Bornemann and G. Wechslberger, Optimal contours for high-order derivatives, IMA J. Numer. Anal., 33 (2013), pp. 403–412, https://doi.org/10.1093/imanum/drs030. DOI: https://doi.org/10.1093/imanum/drs030
A. Deano, D. Huybrechs, and A. Iserles, Computing Highly Oscillatory Integrals, SIAM, 2017, https://doi.org/10.1137/1.9781611975123. DOI: https://doi.org/10.1137/1.9781611975123
V. Dominguez, I. Graham, and T. Kim, Filon-Clenshaw-Curtis rules for highly oscillatory integrals with algebraic singularities and stationary points, SIAM J. Numer. Anal., 51 (2013), pp. 1542–1566, https://doi.org/10.1137/120884146. DOI: https://doi.org/10.1137/120884146
V. Dominguez, I. Graham, and V. Smyshlyaev, Stability and error estimates for Filon-Clenshaw-Curtis rules for highly oscillatory integrals, IMA J. Numer. Anal., 31 (2011), pp. 1253–1280, https://doi.org/10.1093/imanum/drq036. DOI: https://doi.org/10.1093/imanum/drq036
A. Dutt, M. Gu, and V. Rokhlin, Fast algorithms for polynomial interpolation, integration, and differentiation, SIAM J. Numer. Anal., 33 (1996), pp. 1689–1711, https://doi.org/10.1137/0733082. DOI: https://doi.org/10.1137/0733082
J. Gao and A. Iserles, A generalization of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals, BIT Numer. Math., 57 (2017), pp. 943–961, https://doi.org/10.1007/s10543-017-0682-9. DOI: https://doi.org/10.1007/s10543-017-0682-9
L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987), pp. 325–348, https://doi.org/10.1016/0021-9991(87)90140-9. DOI: https://doi.org/10.1016/0021-9991(87)90140-9
A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM, 2008, https://doi.org/10.5555/1455489. DOI: https://doi.org/10.1137/1.9780898717761
A. Iserles and S. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation, BIT Numer. Math., 44 (2004), pp. 755–772, https://doi.org/10.1007/s10543-004-5243-3. DOI: https://doi.org/10.1007/s10543-004-5243-3
A. Iserles and S. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives, Proc. R. Soc. Lond. A, 461 (2005), pp. 1383–1399, https://doi.org/10.1098/rspa.2004.1401. DOI: https://doi.org/10.1098/rspa.2004.1401
G. Lantoine, R. Russell, and T. Dargent, Using multicomplex variables for automatic computation of high-order derivatives, ACM Trans. Math. Softw., 38 (2012), pp. 1–21, https://doi.org/10.1145/2168773.2168774. DOI: https://doi.org/10.1145/2168773.2168774
H. Majidian, Adaptive FCC+ rules for oscillatory integrals, J. Comput. Appl. Math., 424 (2023), p. 115012, https://doi.org/10.1016/j.cam.2022.115012. DOI: https://doi.org/10.1016/j.cam.2022.115012
H. Majidian, Efficient construction of FCC+ rules, J. Comput. Appl. Math., 417 (2023), p. 114592, https://doi.org/10.1016/j.cam.2022.114592. DOI: https://doi.org/10.1016/j.cam.2022.114592
H. Majidian, M. Firouzi, and A. Alipanah, On the stability of Filon-Clenshaw-Curtis rules, Bull. Iran. Math. Soc., 48 (2022), pp. 2943–2964, https://doi.org/10.1007/s41980-022-00681-4. DOI: https://doi.org/10.1007/s41980-022-00681-4
J. Martins, P. Sturdza, and J. Alonso, The complex-step derivative approximation, ACM Trans. Math. Softw., 29 (2003), pp. 245–262, https://doi.org/10.1145/838250.838251. DOI: https://doi.org/10.1145/838250.838251
H. Millwater and S. Shirinkam, Multicomplex Taylor series expansion for computing high order derivatives, Int. J. Appl. Math., 27 (2014), pp. 311–334, https://doi.org/10.12732/ijam.v27i4.2. DOI: https://doi.org/10.12732/ijam.v27i4.2
R. Neidinger, Introduction to automatic differentiation and MATLAB object-oriented programming, SIAM Rev., 52 (2010), pp. 545–563, https://doi.org/10.1137/080743627. DOI: https://doi.org/10.1137/080743627
M. Patterson, M. Weinstein, and A. Rao, An efficient overloaded method for computing derivatives of mathematical functions in MATLAB, ACM Trans. Math. Softw., 39 (2013), pp. 1–36, https://doi.org/10.1145/2450153.2450155. DOI: https://doi.org/10.1145/2450153.2450155
S. Xiang, X. Chen, and H. Wang, Error bounds for approximation in Chebyshev points, Numer. Math., 116 (2010), pp. 463–491, https://doi.org/10.1007/s00211-010-0309-4. DOI: https://doi.org/10.1007/s00211-010-0309-4
S. Xiang, G. He, and Y. Cho, On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals, Adv. Comput. Math., 41 (2015), pp. 573–597, https://doi.org/10.1007/s10444-014-9377-9. DOI: https://doi.org/10.1007/s10444-014-9377-9
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Hassan Majidian
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.