3D (bio)printing of magnetic hydrogels: Formulation and applications in tissue engineering

Hydrogels have been widely explored in tissue engineering due to their versatile and customizable properties in terms of their mechanical, biological, and chemical features. These properties allow them to recreate the physiological structures of the extracellular matrix in a highly hydrated state. Particularly, magnetic hydrogels have shown great promise due to their biocompatibility, mechanical attributes, and possibility to be controlled remotely. Three-dimensional (3D) (bio)printing has emerged as an efficient method to fabricate 3D complex scaffolds from hydrogels with a defined structure and porous microarchitecture, which is crucial for cell proliferation, migration, and differentiation. Therefore, combining magnetic-responsive biomaterials with bioprinting strategies offers numerous advantages for tissue engineering applications. Despite the large number of reviews on magnetic hydrogels available in the literature, they lack a clear focus on the fabrication of hydrogels through a 3D (bio)printing process. Thus, this review highlights not only the main characteristics and fabrication methods of magnetic nanoparticles (MNPs), but also the strategies for their incorporation into hydrogels. Furthermore, we also provide an overview of the current state of the art in injectable magnetic hydrogels, which have the potential to be used as bioinks for 3D (bio)printing, envisaging several applications in the regenerative medicine and biomedical engineering fields.
- Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6(1): 426. doi: 10.1038/s41392-021-00830-x
- Wang W, Narain R, Zeng H. Hydrogels, in Polymer Science and Nanotechnology. 2020;Elsevier, 203–244.
- Choi Y, Kim C, Kim HS, Moon C, Lee KY. 3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel. Colloids Surf B Biointerfaces. 2021;208: 112108. doi: 10.1016/j.colsurfb.2021.112108
- Chen M, Tan H, Xu W, et al. A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair. Acta Biomater. 2022;153: 159–177. doi: 10.1016/j.actbio.2022.09.036
- Wang L, Li T, Wang Z, et al. Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration. Biomaterials. 2022;285: 121537. doi: 10.1016/j.biomaterials.2022.121537
- Tognato R, Armiento AR, Bonfrate V, et al. A stimuli‐responsive nanocomposite for 3D anisotropic cell‐guidance and magnetic soft robotics. Adv Funct Mater. 2019;29(9): 1804647. doi: 10.1002/adfm.201804647
- Ghaderinejad P, Najmoddin N, Bagher Z, et al. An injectable anisotropic alginate hydrogel containing oriented fibers for nerve tissue engineering. Chem Eng J. 2021;420: 130465. doi: 10.1016/j.cej.2021.130465
- Li Y, Huang L, Tai G, et al. Graphene oxide-loaded magnetic nanoparticles within 3D hydrogel form high-performance scaffolds for bone regeneration and tumour treatment. Compos Part Appl Sci Manuf. 2022;152: 106672.
doi: 10.1016/j.compositesa.2021.106672
- Qian K-Y, Song Y, Yan X, et al. Injectable ferrimagnetic silk fibroin hydrogel for magnetic hyperthermia ablation of deep tumor. Biomaterials. 2020;259: 120299. doi: 10.1016/j.biomaterials.2020.120299
- Gang F, Jiang L, Xiao Y, Zhang J, Sun X. Multi‐functional magnetic hydrogel: Design strategies and applications. Nano Sel. 2021;2(12): 2291–2307. doi: 10.1002/nano.202100139
- Manjua AC, Cabral JMS, Portugal CAM. Magnetic field dynamic strategies for the improved control of the angiogenic effect of mesenchymal stromal cells. Polymers. 2021;13(11): 1883. doi: 10.3390/polym13111883
- Ishii M, Shibata R, Numaguchi Y, et al. Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. Arterioscler Thromb Vasc Biol. 2011;31(10): 2210–2215. doi: 10.1161/ATVBAHA.111.231100
- Gerdesmeyer L, Zielhardt P, Klüter T, et al. Stimulation of human bone marrow mesenchymal stem cells by electromagnetic transduction therapy - EMTT. Electromagn Biol Med. 2022;41(3): 304–314. doi: 10.1080/15368378.2022.2079672
- Betsch M, Cristian C, Lin Y-Y, et al. Incorporating 4D into bioprinting: Real-time magnetically directed collagen fiber alignment for generating complex multilayered tissues. Adv Healthc Mater. 2018;7(21): 1800894. doi: 10.1002/adhm.201800894
- Zhao Q, Xie P, Li X, Wang Y. Magnetic mesoporous silica nanoparticles mediated redox and pH dual-responsive target drug delivery for combined magnetothermal therapy and chemotherapy. Colloids Surf Physicochem Eng Asp. 2022;648: 129359. doi: 10.1016/j.colsurfa.2022.129359
- Morfin-Gutierrez A, Sánchez-Orozco JL, García-Cerda LA, Puente-Urbina B. Preparation and characterization of nanocomposites based on poly(N-vinycaprolactam) and magnetic nanoparticles for using as drug delivery system. J Drug Deliv Sci Technol. 2020;60: 102028. doi: 10.1016/j.jddst.2020.102028
- Huang J, Shu Q, Wang L, Wu H, Wang AY, Mao H. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials. 2015;39: 105–113. doi: 10.1016/j.biomaterials.2014.10.059
- Soleymani M, Velashjerdi M, Shaterabadi Z, Barati A. One-pot preparation of hyaluronic acid‐coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Carbohydr Polym. 2020;237: 116130. doi: 10.1016/j.carbpol.2020.116130
- Zuvin M, Koçak M, Ünal Ö, et al. Nanoparticle based induction heating at low magnitudes of magnetic field strengths for breast cancer therapy. J Magn Magn Mater. 2019;483: 169–177. doi: 10.1016/j.jmmm.2019.03.117
- Ali A, Shah T, Ullah R, et al. Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications. Front Chem. 2021;9: 629054. doi: 10.3389/fchem.2021.629054
- Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater. 2018;7(5): 1700845. doi: 10.1002/adhm.201700845
- Podstawczyk D, Nizioł M, Szymczyk P, Wiśniewski P, Guiseppi-Elie A. 3D printed stimuli-responsive magnetic nanoparticle embedded alginate-methylcellulose hydrogel actuators. Addit Manuf. 2020;34: 101275. doi: 10.1016/j.addma.2020.101275
- Simińska-Stanny J, Nizioł M, Szymczyk-Ziółkowska P, et al. 4D printing of patterned multimaterial magnetic hydrogel actuators. Addit Manuf. 2022;49: 102506. doi: 10.1016/j.addma.2021.102506
- Chandekar KV, Shkir Mohd, Alshahrani T, et al. One-spot fabrication and in-vivo toxicity evaluation of core-shell magnetic nanoparticles. Mater Sci Eng C. 2021;122: 111898. doi: 10.1016/j.msec.2021.111898
- Farzaneh S, Hosseinzadeh S, Samanipour R, Hatamie S. Fabrication and characterization of cobalt ferrite magnetic hydrogel combined with static magnetic field as a potential bio-composite for bone tissue engineering. J Drug Deliv Sci Technol. 2021;64: 102525. doi: 10.1016/j.jddst.2021.102525
- Manjua AC, Cabral JMS, Portugal CAM, Ferreira FC. Magnetic stimulation of the angiogenic potential of mesenchymal stromal cells in vascular tissue engineering. Sci Technol Adv Mater. 2021;22(1): 461–480. doi: 10.1080/14686996.2021.1927834
- Zhang T, Li G, Miao Y, et al. Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy. Biomaterials. 2021;276: 121021. doi: 10.1016/j.biomaterials.2021.121021
- Bonhome-Espinosa AB, Campos F, Durand-Herrera D, et al. In vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering. J Mech Behav Biomed Mater. 2020;104: 103619. doi: 10.1016/j.jmbbm.2020.103619
- Schneider-Futschik EK, Reyes-Ortega F. Advantages and disadvantages of using magnetic nanoparticles for the treatment of complicated ocular disorders. Pharmaceutics. 2021;13(8): 1157. doi: 10.3390/pharmaceutics13081157
- Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci. 2000;30(1): 545–610. doi: 10.1146/annurev.matsci.30.1.545
- Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. Nano Sel. 2021;2(6): 1146–1186. doi: 10.1002/nano.202000162
- Jolivet J-P, Chanéac C, Tronc E. Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun. 2004;(5): 477–483. doi: 10.1039/B304532N
- Bohara RA, Thorat ND, Pawar SH. Role of functionalization: Strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv. 2016;6(50): 43989–44012. doi: 10.1039/C6RA02129H
- Tang J, Qiao Y, Chu Y, et al. Magnetic double-network hydrogels for tissue hyperthermia and drug release. J Mater Chem B. 2019;7: 1311–1321. doi: 10.1039/c8tb03301c
- Miyazaki T, Iwanaga A, Shirosaki Y, Kawashita M. In situ synthesis of magnetic iron oxide nanoparticles in chitosan hydrogels as a reaction field: Effect of cross-linking density. Colloids Surf B Biointerfaces. 2019;179: 334–339. doi: 10.1016/j.colsurfb.2019.04.004
- Gul S, Khan SB, Rehman IU, Khan MA, Khan MI. A comprehensive review of magnetic nanomaterials modern day theranostics. Front Mater. 2019;6: 179. doi: 10.3389/fmats.2019.00179
- Labusca L, Herea D-D, Emanuela Minuti A, et al. Magnetic nanoparticles and magnetic field exposure enhances chondrogenesis of human adipose derived mesenchymal stem cells but not of Wharton jelly mesenchymal stem cells. Front Bioeng Biotechnol. 2021;9: 737132. doi: 10.3389/fbioe.2021.737132
- Lu A-H, Salabas EL, Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007;46(8): 1222–1244. doi: 10.1002/anie.200602866
- Frey NA, Peng S, Cheng K, Sun S. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev. 2009;38(9): 2532. doi: 10.1039/b815548h
- Ansari S, Ficiarà E, Ruffinatti F, et al. Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials. 2019;12(3): 465. doi: 10.3390/ma12030465
- Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging fabrication strategies of hydrogels and its applications. Gels. 2022;8(4): 205. doi: 10.3390/gels8040205
- Mañas-Torres MC, Gila-Vilchez C, Durán JDG, Modesto T. LopezLopez, Cienfuegos LÁ de. Biomedical applications, in Biomedical Applications of Magnetic Hydrogels. 2021;253-271 doi: 10.1016/B978-0-12-823688-8.00020-X
- Materón EM, Miyazaki CM, Carr O, et al. Magnetic nanoparticles in biomedical applications: A review. Appl Surf Sci Adv. 2021;6: 100163. doi: 10.1016/j.apsadv.2021.100163
- Gutiérrez L, De La Cueva L, Moros M, et al. Aggregation effects on the magnetic properties of iron oxide colloids. Nanotechnology.2019;30(11): 112001. doi: 10.1088/1361-6528/aafbff
- Nardecchia S, Jiménez A, Morillas JR, et al. Synthesis and rheological properties of 3D structured self-healing magnetic hydrogels. Polymer. 2021;218: 123489. doi: 10.1016/j.polymer.2021.123489
- Hu X, Nian G, Liang X, et al. Adhesive tough magnetic hydrogels with high Fe3O4 content. ACS Appl Mater Interfaces. 2019;11(10): 10292–10300. doi: 10.1021/acsami.8b20937
- Liu Z, Liu J, Cui X, Wang X, Zhang L, Tang P. Recent advances on magnetic sensitive hydrogels in tissue engineering. Front Chem. 2020;8: 124. doi: 10.3389/fchem.2020.00124
- Koons GL, Mikos AG. Progress in three-dimensional printing with growth factors. J Controlled Release. 2019;295: 50–59. doi: 10.1016/j.jconrel.2018.12.035
- Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8): 773–785. doi: 10.1038/nbt.2958
- Beg S, Almalki WH, Malik A, et al. 3D printing for drug delivery and biomedical applications. Drug Discov Today. 2020;25(9): 1668–1681. doi: 10.1016/j.drudis.2020.07.007
- Yi H-G, Lee H, Cho D-W. 3D printing of organs-on-chips. Bioengineering. 2017;4(4): 10. doi: 10.3390/bioengineering4010010
- Duffy GL, Liang H, Williams RL, Wellings DA, Black K. 3D reactive inkjet printing of poly-ε-lysine/gellan gum hydrogels for potential corneal constructs. Mater Sci Eng C. 2021;131: 112476. doi: 10.1016/j.msec.2021.112476
- Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171: 57–71. doi: 10.1016/j.biomaterials.2018.04.034
- Tortorella S, Greco P, Valle F, et al. Laser assisted bioprinting of laminin on biodegradable PLGA substrates: Effect on neural stem cell adhesion and differentiation. Bioprinting. 2022;26: e00194. doi: 10.1016/j.bprint.2022.e00194
- Gungor-Ozkerim PS, Inci I, Zhang YS, et al. Bioinks for 3D bioprinting: An overview. Biomater Sci. 2018;6(5): 915–946. doi: 10.1039/C7BM00765E
- Gusmão A, Marques DMC, Torres-Garcia R, Ferreira FC, Alberte P, Leite M. Designing and prototyping a 3D printer for multi-extrusion of thermo- and photocurable hydrogels: Enabling affordable and wider access to bioprinting. engrxiv. 2023. doi: 10.31224/2916
- Hölzl K, Lin S, Tytgat L, Vlierberghe SV, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3): 032002. doi: 10.1088/1758-5090/8/3/032002
- Theus AS, Ning L, Kabboul G, et al. 3D bioprinting of nanoparticle-laden hydrogel scaffolds with enhanced antibacterial and imaging properties. iScience. 2022;25(9): 104947. doi: 10.1016/j.isci.2022.104947
- Bartolo P, Malshe A, Ferraris E, Bahattin K. 3D bioprinting: Materials, processes, and applications. CIRP Ann. 2022;71(2): 577–597. doi: 10.1016/j.cirp.2022.06.001
- Babaniamansour P, Salimi M, Dorkoosh F, Mohammadi M. Magnetic hydrogel for cartilage tissue regeneration as well as a review on advantages and disadvantages of different cartilage repair strategies. BioMed Res Int.2022;2022: 1–12. doi: 10.1155/2022/7230354
- Han X, Chang S, Zhang M, Bian X, Li C, Li D. Advances of hydrogel-based bioprinting for cartilage tissue engineering. Front Bioeng Biotechnol. 2021;9: 746564. doi: 10.3389/fbioe.2021.746564
- Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Barbeck M. Bioprinting of tissue engineering scaffolds. J Tissue Eng. 2018;9: 204173141880209. doi: 10.1177/2041731418802090
- Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19): 10793–10833. doi: 10.1021/acs.chemrev.0c00008
- Spangenberg J, Kilian D, Czichy C, et al. Bioprinting of magnetically deformable scaffolds. ACS Biomater Sci Eng. 2021;7(2): 648–662. doi: 10.1021/acsbiomaterials.0c01371
- Kabir W, Di Bella C, Choong PFM, O’Connell CD. Assessment of native human articular cartilage: A biomechanical protocol. Cartilage. 2021;13(2_suppl): 427S–437S. doi: 10.1177/1947603520973240
- Chang S, Wang S, Liu Z, Wang X. Advances of stimulus-responsive hydrogels for bone defects repair in tissue engineering. Gels. 2022;8(6): 389. doi: 10.3390/gels8060389
- Pardo A, Gómez-Florit M, Barbosa S, Taboada P, Domingues RMA, Gomes ME. Magnetic nanocomposite hydrogels for tissue engineering: Design concepts and remote actuation strategies to control cell fate. ACS Nano. 2021;15(1): 175–209. doi: 10.1021/acsnano.0c08253
- Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D bioprinted scaffolds for bone tissue engineering: State-of-the-art and emerging technologies. Front Bioeng Biotechnol. 2022;10: 824156. doi: 10.3389/fbioe.2022.824156
- Jana S, Levengood SKL, Zhang M. Anisotropic materials for skeletal-muscle-tissue engineering. Adv Mater. 2016;28(48): 10588–10612. doi: 10.1002/adma.201600240
- Hwangbo H, Lee H, Jin E-J, et al. Bio-printing of aligned GelMa-based cell-laden structure for muscle tissue regeneration. Bioact Mater. 2022;8: 57–70. doi: 10.1016/j.bioactmat.2021.06.031
- Ajiteru O, Choi KY, Lim TH, et al. A digital light processing 3D printed magnetic bioreactor system using silk magnetic bioink. Biofabrication. 2021;13(3): 034102. doi: 10.1088/1758-5090/abfaee
- Mertz D, Harlepp S, Goetz J, et al. Nanocomposite polymer scaffolds responding under external stimuli for drug delivery and tissue engineering applications. Adv Ther. 2020;3(2): 1900143. doi: 10.1002/adtp.201900143
- Ostrovidov S, Salehi S, Costantini M, et al. 3D bioprinting in skeletal muscle tissue engineering. Smal. 2019;15(24): 1805530. doi: 10.1002/smll.201805530
- Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue engineering. Theranostics. 2021;11(16): 7948–7969. doi: 10.7150/thno.61621
- Allafchian A, Hosseini SS. Antibacterial magnetic nanoparticles for therapeutics: A review. IET Nanobiotechnol. 2019;13(8): 786–799. doi: 10.1049/iet-nbt.2019.0146
- Franco D, Calabrese G, Guglielmino SPP, Conoci S. Metal-based nanoparticles: Antibacterial mechanisms and biomedical application. Microorganisms.2022;10(9): 1778. doi: 10.3390/microorganisms10091778
- Xu C, Akakuru OU, Zheng J, et al. Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections. Front Bioeng Biotechnol. 2019;7: 141. doi: 10.3389/fbioe.2019.00141
- Lee Y, Song WJ, Sun J-Y. Hydrogel soft robotics. Mater Today Phys. 2020;15: 100258. doi: 10.1016/j.mtphys.2020.100258
- Janarthanan G, Noh I. Overview of Injectable Hydrogels for 3D Bioprinting and Tissue Regeneration in Injectable Hydrogels for 3D Bioprinting, ed I, The Royal Society of Chemistry. 2021;1–20. doi: 10.1039/9781839163975-00001
- Devi VKA, Shyam R, Palaniappan A, Jaiswal AK, Oh T-H, Nathanael AJ. Self-healing hydrogels: Preparation, mechanism and advancement in biomedical applications. Polymers. 2021;13(21): 3782. doi: 10.3390/polym13213782
- Raczuk E, Dmochowska B, Samaszko-Fiertek J, Madaj J. Different schiff bases — structure, importance and classification. Molecules. 2022;27(3): 787. doi: 10.3390/molecules27030787
- Janarthanan G, Tran HN, Cha E, Lee C, Das D, Noh I. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Mater Sci Eng C. 2020;113: 111008. doi: 10.1016/j.msec.2020.111008
- Puertas-Bartolomé M, Włodarczyk-Biegun MK, del Campo A, Vázquez-Lasa B, Román JS. 3D printing of a reactive hydrogel bio-ink using a static mixing tool. Polymers. 2020;12(9): 1986. doi: 10.3390/polym12091986
- Banerjee A, Arha M, Choudhary S, et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials. 2009;30(27): 4695–4699. doi: 10.1016/j.biomaterials.2009.05.050
- Ganguly S, Margel S. 3D printed magnetic polymer composite hydrogels for hyperthermia and magnetic field driven structural manipulation. Prog Polym Sci. 2022;131: 101574. doi: 10.1016/j.progpolymsci.2022.101574
- Rizzo F, Kehr NS. Recent advances in injectable hydrogels for controlled and local drug delivery. Adv Healthc Mater. 2021;10(1): 2001341. doi: 10.1002/adhm.202001341
- Almawash S, Osman SK, Mustafa G, El Hamd MA. Current and future prospective of injectable hydrogels—design challenges and limitations. Pharmaceuticals. 2022;15(3): 371. doi: 10.3390/ph15030371
- Gao F, Jiao C, Yu B, Cong H, Shen Y. Preparation and biomedical application of injectable hydrogels. Mater Chem Front. 2021;5: 4912–4936. doi: 10.1039/D1QM00489A
- Pavón JJ, Allain JP, Verma D, et al. In situ study unravels bio‐nanomechanical behavior in a magnetic bacterial nano‐cellulose (MBNC) hydrogel for neuro‐endovascular reconstruction. Macromol Biosci. 2019;19(2): 1800225. doi: 10.1002/mabi.201800225
- Flood-Garibay JA, Méndez-Rojas MA. Synthesis and characterization of magnetic wrinkled mesoporous silica nanocomposites containing Fe3O4 or CoFe2O4 nanoparticles for potential biomedical applications. Colloids Surf Physicochem Eng Asp. 2021;615: 126236. doi: 10.1016/j.colsurfa.2021.126236
- Fernández I, Carinelli S, González-Mora JL, Villalonga R, Lecuona M, Salazar P. Electrochemical bioassay based on l-lysine-modified magnetic nanoparticles for Escherichia coli detection: Descriptive results and comparison with other commercial magnetic beads. Food Control. 2023;145: 109492. doi: 10.1016/j.foodcont.2022.109492
- Sartori K, Choueikani F, Gloter A, Begin-Colin S, Taverna D, Pichon BP. Room temperature blocked magnetic nanoparticles based on ferrite promoted by a three-step thermal decomposition process. J Am Chem Soc. 2019;141(25): 9783–9787. doi: 10.1021/jacs.9b03965
- Tomar D, Jeevanandam P. Synthesis of cobalt ferrite nanoparticles with different morphologies via thermal decomposition approach and studies on their magnetic properties. J Alloys Compd. 2020;843: 155815. doi: 10.1016/j.jallcom.2020.155815
- Kim D, Lee N, Park M, Kim BH, An K, Hyeon T. Synthesis of uniform ferrimagnetic magnetite nanocubes. J Am Chem Soc. 2009;131(2): 454–455. doi: 10.1021/ja8086906
- Shibaev A, Smirnova M, Kessel D, Bedin SA, Razumovskaya IV, Philippova OE. Remotely self-healable, shapeable and pH-sensitive dual cross-linked polysaccharide hydrogels with fast response to magnetic field. Nanomaterials. 2021;11(5): 1271. doi: 10.3390/nano11051271