Extension of Gyárfás-Sumner Conjecture to Digraphs

  • Pierre Aboulker
  • Pierre Charbit
  • Reza Naserasr

Abstract

The dichromatic number of a digraph $D$ is the minimum number of colors needed to color its vertices  in such a way that each color class induces an acyclic digraph. As it generalizes the notion of the chromatic number of graphs, it has become the focus of numerous works. In this work we look at possible extensions of the Gyárfás-Sumner conjecture. In particular, we conjecture a simple characterization  of sets $\mathcal F$ of three digraphs such that every digraph with sufficiently large dichromatic number must contain a member of $\mathcal F$ as an induced subdigraph. 

Among notable results, we prove that oriented $K_4$-free graphs without a directed path of length $3$ have bounded dichromatic number where a bound of $414$ is provided. We also show that an orientation of a complete multipartite graph with no directed triangle is $2$-colorable. To prove these results we introduce the notion of nice sets that might be of independent interest.

Published
2021-05-21
Article Number
P2.27